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Abstract: Recent developments in Nernst-Ettingshausen (NE) physical phenomena combined 
with advances in the performance of rare-earth permanent magnets makes thermomagnetic (TM) 
cryocoolers well suited for practical applications. The device performance of a NE cryocooler 
depends on both the material and the geometrical shape of the device. Despite the continued 
progress in TM materials, the optimum shape is still based on a simplified infinite-stage model 
derived by T. C. Harman in 1963 [1]. Harman's model assumes several non-realistic 
assumptions, such as temperature-independent material properties and constant current density. 
We are relaxing such assumptions and derive a fully temperature-dependent numerical model to 
accurately solve for the thermomagnetic features of a Nernst-Ettingshausen cooler (NEC) with 
arbitrary geometry. We correct Harman's analytical function and compare its performance with 
various shaped devices. The corrected shape has a higher Coefficient of Performance (COP) at 
higher temperature differentials, which indicates that when the material resistivity is a strong 
function of the temperature, the corrected infinite stage device can provide better performance 
than Harman's geometry. Moreover, the corrected shaped device can provide higher heat flow 
density at a similar optimum COP condition. A case study based on the state-of-the-art TM 
material, BiSb alloy, is presented, and the critical parameters for designing an efficient 
thermomagnetic cooler are discussed in detail.  
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Introduction 

Solid-state coolers such as Thermoelectrics (TE) based on the Peltier-Seebeck effect and 
Thermomagnetics based on the Nernst-Ettingshausen effect have taken much attention as 
competitive green technologies for next-generation cooling applications over the conventional 
methods due to their near-zero Ozone depletion potential and global warming potential [2-5]. 
Moreover, these devices offer many salient features like a long lifetime, high reliability, no 
moving parts, low maintenance cost, flexible form-factor, small size, efficient localized cooling, 
light-weight, fast and dynamic response, better thermal control, noise- and vibration-free 
application,  which helps to improve the resolution of cooled infrared focal-plane arrays, no 
refrigerants, and cost competitiveness [6,7]. Solid-state coolers are linearly coupled systems 
governed by Onsager's theorem, where the entropy is carried by charge, heat, and spin carriers 
(spin or spin-wave) of the system in the presence or absence of a magnetic field via diffusive and 
advective transport process [8-11]. Each type of solid-state cooler has its own efficient operating 
temperature range [7,12]. Among them, thermomagnetic (TM) devices show better performance 
at the cryogenic temperature range (< 200K) [7,12]. Compared to Peltier or TE coolers (TEC), 
TM or NE coolers (NEC) provide higher temperature differentials at the cryogenic temperature 
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range, which can be further increased by cascading. TE or Peltier coolers can achieve a large 
temperature differential with multistage cascading, which is practically limited to 5-6 stages [12]. 
Moreover, NECs have smaller losses due to lower contact resistance compare to TECs. The 
device performance of NE cryocoolers depends on both the shape of the device and the material 
properties under the transverse magnetic field [7,12]. Recent findings of exotic thermomagnetic 
effects in different materials [13-16] show huge prospects in enhancing thermomagnetic 
performance from a material perspective, which has revived the research on NE cryocoolers. 
However, fewer works [7,17-19] addressed the contribution of the geometric shape of NE 
devices to enhance its performance. Till now, the infinite-stage shape, derived by T. C. Harman 
in 1963 [1], has been considered the most optimum shape for the cascade structure. Harman's 
model is based on some idealistic assumptions of temperature-independent material properties 
and, therefore, temperature independent current density. This assumption introduced an excess 
Joule heating, and therefore, there is a possibility to optimize the infinite-stage shape further by 
utilizing more realistic considerations. 

Infinite-stage cascading can enhance the performance of the NECs by increasing the cross-
sectional area in the direction of the heat flow, which improves the heat pumping capacity of the 
successive stages [20]. Infinite-stage cascading is not possible for TE devices. But an infinite-
staged NEC can be built from a single block of material, as there is no need for electrical 
isolation between the stages [20]. The need for permanent magnets may make these devices 
bulky and costly. However, with the invention of the strong rare earth magnets, magnetic fields 
as high as 0.6 T are accessible with reasonable size magnets [21,22]. In general, solid-state 
coolers suffer from low-efficiency due to low figure-of-the merit (zT) resulted from the counter-
indicative properties that define the zT, such as electrical conductivity, thermal conductivity, 
Seebeck coefficient, or Nernst coefficient [7,12,23-24]. In NE devices, zT has a T7/2 dependence; 
hence, it drops more quickly with lowering the temperature [25].  Low zT reduces the efficiency 
of the solid-state cooler below that of the vapor compression-based coolers [6,7]. Several TE and 
TM devices were found promising for cryogenic applications [26-29], yet more research is 
needed to improve the performance of these devices further to meet the application needs. 

Recent research on solid-state coolers is mostly focused on discovering TE materials with high 
zTs [30,31]. Compared to TEs, less research has been conducted on TM materials and devices 
[32-35]. But the recent resurgence of the need for solid-state cryocoolers has triggered the need 
for improving the material properties as well as optimizing the device structure. Till now, most 
of the works [36-38] on NE device shape were based on Harman's exponential shape, ignoring 
the conceptual approximations in deriving the exponential infinite-stage shape [7,37]. This work 
will address some limitations of prior works, such as constant current density and resistivity 
approximations [1,37]. We develop a corrected version of Harman's shaping function, 
considering a variable current density for a constant electric field and temperature-dependent 
electrical resistivity. A comprehensive comparison of the device parameters is derived in terms 
of the maximum heat pump density, Coefficient of Performance (COP), and transverse 
temperature gradient among different shaped devices, including rectangular, trapezoid, Harman's 
infinite shape, and the corrected infinite geometry. The degree of enhancement among different 
geometries determines the right shape for a target application as the construction of the infinite 



state device can be costly; hence, it is not always the best solution. We will further introduce a 
numerical engine that can calculate the different device properties considering the realistic 
temperature dependence of the material properties for an arbitrary shape cooler. The numerical 
model is applied to calculate the properties of several coolers with different shapes based on the 
well-known BiSb alloy for TM applications [38,39]. According to the numerical analysis, the 
corrected geometry has the highest COP when the current density and heat flow are at their 
optimum values. However, in practice, one may desire to increase the cooling power or the heat 
flow at the cost of lower COP. Under such conditions, trapezoid geometry can deliver higher 
heat flow at reasonable COP, which is also a more accessible geometry for fabrication.  

 

Figure 1: (Left) Infinite staged Nernst-Ettingshausen (NE) device along with the direction of the magnetic field, 
current flow, and temperature gradient, and (Right) representation of an infinite staged device with single staged 
parallelepiped NE elements along with corresponding equivalent circuit model. 

Derivation of the Corrected Infinite Staging Function  

The formalism of the corrected infinite staging function was obtained by following similar steps 
as Harman's method, however, with no limiting assumption on the current density. It is 
convenient to consider the infinite staged device as a combination of many single stages with 
parallelepiped geometry, as shown in Figure 1. In a multistage device, each stage pumps the 
combination of heat from the previous stage and the joule heating of the present stage to the next 
stage [7,20]. Therefore, the following stages must be able to pump more heat, which requires the 
size of the single staged element to increase in the heat flow direction. The general assumptions 
to derive the size and shape of the successive stages are the energy conservation principle and 
optimum coefficient of performance (COP) among the stages [1]. It is mention-worthy that 
maximum COP (COPQmax) and optimum COP (COPopt) in NE devices have different definitions. 
Maximum COP (COPQmax) is associated with the maximum cooling power, Qmax. Therefore, 
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COPQmax is not necessarily the highest COP of a NE device. Instead, optimum COP (COPopt) is 
associated with the highest COP condition of the device. At optimum COP, the device operates 
at an economical current but with a lower heat flow rate. Therefore, the cooling power may fall 
too small to provide any useful cooling, which may not be desired for many applications. 
Following Harman's derivation technique (see appendix for more details), the primary 
differential relation among power (P), rate of heat flow (߳ሶ), and temperature (T) can be expressed 
as [1]: ݀ܲܲ ൌ ݀߳ሶ߳ሶ ൌ  ሻ       ሺ1ሻߜ௜ሺܨܶܶ݀

Here, F(δ) is derived from the COP of a single-stage rectangular device as [1,40]: 

ܱܲܥ ൌ  ଴ܶ∆௫ܶ ሺ1 െ ߜ ௅ܶܶ଴ሻሺ1 ൅ ሻߜ ൌ  ሻ      ሺ2ሻߜሺܨሺܶሻܥ

where C(T) denotes the Carnot efficiency of the device and F(δ) is a function of δ where ߜ ൌ ሺ1 െ ோݖ തܶሻଵ/ଶ. zNE is the thermomagnetic figure-of-merit expressed as [20] ݖோ ൌ ሺߙ௬௫ ൅ ௭ܪ ௬ܰ௫ሻଶߢ௫௫ߩ௬௬     ሺ3ሻ 

where αyx is the magneto-Seebeck coefficient along the yx plane (a negligible term that often 
ignored in literature), Hz is the magnetic field in the z-direction, Nyx is the Nernst coefficient in 
the yx plane, κxx is the thermal conductivity in the x-direction, and ρyy is the electrical resistivity 
in the y-direction. 

It is worth clarifying four different types of figure-of-merit (zNE) found in the literature [37,41]. 
The differences are for the isothermal or adiabatic material properties. The first definition is ݖோ ൌ ሺܪ௭ ௬ܰ௫ሻଶ ௫௫ൗߢ௬௬ߩ , where the material properties are isothermal and 0 ൑ ோݖ ൑ 1. The 
second definition is ݖோכ ൌ ሺܪ௭ ௬ܰ௫ሻଶ כ௫௫ߢ௬௬ߩ ൌ ோݖ ሺ1 ൅ ோܶሻ⁄ൗݖ  where ߢ௫௫כ ؠ ௫௫ሺ1ߢ ൅ݖோܶሻ, and always ݖோܶכ ൏ 1. In most experiments, one measure ߢ௫௫כ because there is usually 
no load connected to the sample, hence,  ܬ௬௬ ൌ 0 and ߢ௫௫כ includes transverse corrections due to 
the Nernst effect on electrical conductivity and the Ettingshausen effects [41]. The third 
definition is the adiabatic Ettingshausen figure-of-merit that assumes adiabatic resistivity, i.e. ߩ௬௬௔ ൌ ௬௬ߩ ሺ1 ൅ ⁄ோܶሻݖ  and hence, ݖோ௔ ൌ ሺܪ௭ ௬ܰ௫ሻଶ ௬௬௔ߩ ௫௫ൗߢ ோ௔ݖ .  can take any value from zero 
to infinity. Finally, forth Ettingshausen figure-of-merit considers ߩ௬௬௔  and ߢ௫௫כ. Therefore, the 
forth figure-of-merit is ݖோ௔כ ൌ ሺܪ௭ ௬ܰ௫ሻଶ ௬௬௔ߩ ൗכ௫௫ߢ  . Since ߩ௬௬௔ כ௫௫ߢ ൌ כோ௔ݖ ௫௫, we haveߢ௬௬ߩ ൌݖோ. Due to the existence of different definitions of zNE, it is vital to understand which zNE is used 
in formulating the device operation and performance. Experimentally, one usually measures ߩ௬௬௔  
and ߢ௫௫כ. Therefore, the experimental figure-of-merit is ݖோ௔כ , i.e., ݖோ ൑ 1. Theoretically, one 
usually calculates the thermal conductivity ߢ௫௫ and ߩ௬௬. Therefore, the theoretical figure-of-
merit is also ݖோ ൑ 1. 
Here, in the following, we are assuming isothermal quantities for all material properties ߢ௫௫ߩ ,כ௬௬, and ௬ܰ௫, i.e., they are the values measured for zero temperature gradient unless a 
temperature gradient in a direction is needed for the measurement. Further, we will be using the 



 in the equations. However, for convenience, we drop the superscript * from this כோݖ and כ௫௫ߢ
point. As NE devices are usually assumed as a transverse isothermal cooler, there is no heat flow 
in the y and z directions; therefore, the device is generally made long in the y-direction with 
respect to x [20]. The net input power to the ith stage, which is the difference between the input 
and output energy flow rate, can be expressed as [1]: ܲ௜ ൌ ௬௜ܧ௬ܮ௜ݔ∆ݖ2 ௬௜ܬ      ሺ4ሻ 
Similarly, for the next stage, (i+1)th, the input power is [1]: ܲ௜ାଵ ൌ 2ሺݖ ൅  ௬௜ାଵ     ሺ5ሻܬ௬௜ାଵܧ௬ܮ௜ାଵݔ∆ሻݖ∆
where Δx is the height, Ly is the length, z is the width of the corresponding stage, and Δz is the 
increment of the size in the z-direction with respect to the previous stage. For multistage devices, 
where all stages are physically connected, it is a reasonable consideration that the electric field 
across all stages must be the same. However, the current through each stage can be different 
because the stages are at different temperatures, and the electrical conductivity is a function of 
the temperature. To obtain optimum geometry, it is also essential to optimize the individual 
stages for the corresponding current density and voltage gradient [1]. Expressions of current 
density and voltage gradient for the optimized shaped device are given by [1]: ܬ௬ ൌ െ ௭ܪ௫௫ߢ ௬ܰ௫ Δ௫ܶܶ ሺ1 ൅ ݔሻΔߜ                ሺ6ሻ ܧ௬ ൌ െܪ௭ ௬ܰ௫ Δ௫ܶΔݔ ሺ1ߜ െ  ሻ          ሺ7ሻߜ

Here, it is imperative to mention that different expressions for optimum current densities were 
reported by Harman [1] and Hawkins et al. [20], which are essentially equal to each other. From 
the expressions of the electric field and the current density for the optimized shaped device, 
temperature-dependent Ohm's law for the NE device can be expressed as: ܬ௬ ൌ ௬௬ඥ1ߩ1 െ ோܶݖ  ௬                    ሺ଼ሻܧ
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Figure 2: Resistivity (blue circle) of Bi97Sb3 as a function of reciprocal temperature with the 
corresponding exponential fit (red line). 

Resistivity usually has a reciprocal relation with temperature [37]; however, the exponential 
relationship is more suitable for BixSb1−x semimetals in the cryogenic temperature range because 
the resistivity is mainly a function of carrier concentration, and the carrier excitation follows an 
exponential function vs. temperature. A good exponential fit to the experimental data is shown in 
Figure 2. Since a good thermomagnetic material must have a low extrinsic carrier concentration, 
the exponential relationship assumption is expected to be generally valid for other 
thermomagnetic coolers too. Therefore, the exponential function is used in the subsequent model 
calculations. According to this consideration, the resistivity in the temperature range of interest 

(Figure 2) may be written as, ߩ ൌ ଴݁ି்ߩ బ்ൗ , where ߩ଴ and T0 are the material dependent 
constants. Replacing ߩ in (8), we can write the expression for temperature-dependent Ohm's law 
for the ith stage as: ܬ௬ ൌ ்݁೔ బ்ൗߩ଴√1 െ ܶݖ ௬௜ܧ           ሺ9ሻ 

Assuming zT as a temperature-independent parameter and Ey constant for each stage, current 
density for (i+1)th stage can be written with respect to ith stage as: 

௬௜ାଵܬ ൌ ்݁೔శభ బ்ൗߩ଴√1 െ ܶݖ ௬௜ାଵܧ ൌ ்݁೔శభି்೔ బ்ൗ ௬௜ܬ      ሺ10ሻ 

Simplifying (10), the ratio of the current densities of the (i+1)th and ith stages can be expressed 
as: ܬ௬௜ାଵܬ௬௜ ൌ ்݁೔శభି்೔ బ்ൗ ൌ 1 ൅ ∆ܶܶ଴       ሺ11ሻ 

Here, ∆ܶ ൌ ௜ܶାଵ െ ௜ܶ. To obtain the differential relation of eq. (1), we can write from (4), (5), 
and (10): ܲ௜ାଵ െ ܲ௜ܲ௜ ൌ 2ሺݖ ൅ ௬௜ܧ௬ܮ௜ାଵݔ∆ሻݖ∆ ௬௜ାଵܬ െ ௬௜ܧ௬ܮ௜ݔ∆ݖ2 ௬௜ܧ௬ܮ௜ݔ∆ݖ௬௜2ܬ ௬௜ܬ       ሺ12ሻ 

Using (10), we can simplify the above expression by assuming a similar height (Δx) for all the 
stages: ܲ௜ାଵ െ ܲ௜ܲ௜ ൌ Δܲܲ ൌ ൬1 ൅ Δݖݖ ൰ ൬1 ൅ ∆ܶܶ଴ ൰ െ 1     ሺ13ሻ 

Ignoring the second-order derivative terms after factor-multiplication, we can derive the 
following expression from (13):  



Δܲܲ ൌ Δݖݖ ൅ Δܶܶ଴          ሺ14ሻ 

Finally, from (1) and (14), we can get the following differential relation: ݀ܲܲ ൌ ݖݖ݀ ൅ ݀ܶܶ଴ ൌ ݀߳ሶ߳ሶ ൌ ሻߜሺܨܶܶ݀ ൌ ܾ       ሺ15ሻ 

Here, b is an arbitrary constant. To operate a multistage device at its optimum COP, one must 
adjust the intermediate stage temperatures according to the following relation [1]:   Δܶ௜Δݔ௜ܶ௜ିଵ ൌ Δܶ௜ାଵΔݔ௜ାଵܶ௜ ൌ ܾᇱ,        ሺ16ሻ 

where, ܾᇱ is another constant. Taking ܾᇱ equal to bF(δ),  we can write a generalized expression 
for (16) as [1]: ݀ܶܶܨሺߜሻ ൌ  ሺ17ሻ        ݔܾ݀

From (15) and (17), the following expression can be derived: ݀ݖݖ ൌ ݔܾ݀ െ ݀ܶܶ଴         ሺ18ሻ 

Taking the integration on both sides of (18), finally, we get: ݈݊ݖ ൌ ݔܾ െ ܶܶ଴ ൅ ܿ     ሺ19ሻ 

where c is a constant. Applying the boundary conditions, i.e., T=Tc at x=0 and T=Th at x=Lx, we 
can find b and c. By inserting them in (19), we can write:   ݈݊ ሺ0ሻݖሻݔሺݖ ൌ ௫ܮݔ ݈݊ ሺ0ሻݖ௫ሻܮሺݖ ൅ ௫ܮݔ ௛ܶ െ ஼ܶ଴ܶ െ ܶ െ ஼ܶ଴ܶ          ሺ20ሻ 

Eq. (20) is the corrected function for the infinite stage geometry. Compared with Harman's 
shaping function [1],  ݈݊ ሺ0ሻݖሻݔሺݖ ൌ ௫ܮݔ ݈݊ ሺ0ሻݖ௫ሻܮሺݖ         ሺ21ሻ 

We can introduce the corrected shaping function as: ݈݊ ሺ0ሻݖሻݔሺݖ ൌ ௫ܮݔ ݈݊ ሺ0ሻݖ௫ሻܮሺݖ ൅  ሺ22ሻ        ܥ

in which the correction term, C, is:  ܥ ൌ ௫ܮݔ ௛ܶ െ ஼ܶ଴ܶ െ ܶ െ ஼ܶ଴ܶ        ሺ23ሻ 



According to the above expression, C has a contribution from temperature-dependent and 
material property-dependent corrections. From (23), it can be seen that hot side temperature, cold 
side temperature, the device length, the spatial temperature profile of the device, and the T0 
parameter can deviate the optimum shape of the multistage device from that of Harman's shaping 
function. Corrected infinite stage function can be reduced to Harman's infinite stage function 
with dT = 0. 

Numerical Framework 

In this section, we develop a generalized numerical model based on the device fundamental 
equations [40]. All material properties are taken temperature-dependent. The model is solved to 
analyze and compare the different geometries of the NECs. The numerical framework is based 
on the thermodynamic relations of a single-stage parallelepiped NE device [40], which is then 
extended to include the current density and spatial temperature distribution along the x-direction 
of a cooler in a self-consistent manner. In transverse isothermal thermomagnetic coolers, ׏௬ܶ ൌ 0 and Jx = 0 conditions are usually applied to the thermodynamic relations [40]. The 
interdependent temperature gradient and the heat flow density of individual stages are self-
consistently solved across the target geometry. An equivalent electrical circuit model (shown in 
Figure 1) is used to simplify the calculations. In this model, heat-flow and temperature are 
represented by electrical current and voltage sources, respectively. The thermal resistance of 
each stage is modeled by electrical resistance. The temperature profile across the cooler is 
calculated iteratively, considering the interdependent heat current density and temperature.        

The temperature at jth stage can be expressed as:     

௝ܶ ൌ ௝ܶାଵ െ ܴ௧௛ ௝ ቌ෍ ܳா௖௜௝
௜ୀଵ െ ෍ ܳா௛௜௝ିଵ

௜ୀଵ െ ܳ௜௡ െ ෍ ܳ௃௜௝
௜ୀଵ ൅ ܳ௃௝2 ቍ      ሺ24ሻ 

where Rth is the thermal resistance of a single stage at the isothermal condition. QEc and QEh are 
the Ettingshausen heat flow density at the cold side and hot side of a single-stage, respectively. 
Qin is the input heat flow density, and QJ is the Joule heat flow density. Here, Rth is calculated 
from ܴ௧௛ ൌ 1 ሺߢ௫௫ሺ1 െ כோݖ ܶሻሻ⁄ ൈ Δݔ௜ ሺܮ௬ܮ௭೔ሻ⁄  [20], in which T is the average temperature of 
the stage. We have considered the second definition of the figure-of-merit, ݖோכ, as described 
earlier in the manuscript, in the calculation of the thermal resistance ܴ௧௛ and any other device 
properties. From (24), the expression for cold side temperature can be written as:  

௖ܶ ൌ ௛ܶ െ ෍ ܴ௧௛ ௝ ቌ෍ ܳா௖௜௝
௜ୀଵ െ ෍ ܳா௛௜௝ିଵ

௜ୀଵ ቍே
௝ୀଵ ൅ ෍ ܴ௧௛ ௝ܳ௜௡ே

௝ୀଵ ൅ ෍ ܴ௧௛ ௝ ෍ ܳ௃௜௝
௜ୀଵ

ே
௝ୀଵെ 12 ෍ ܴ௧௛ ௝ܳ௃௝ே

௝ୀଵ .    ሺ25ሻ 

Finally, the input heat current density can be expressed as: 



ܳ௜௡ ൌ 1∑ ܴ௧௛ ௝ே௝ୀଵ ቌ ௖ܶ െ ௛ܶ ൅ ෍ ܴ௧௛ ௝ ቌ෍ ܳா௖௜௝
௜ୀଵ െ ෍ ܳா௛௜௝ିଵ

௜ୀଵ ቍே
௝ୀଵ െ ෍ ܴ௧௛ ௝ ෍ ܳ௃௜௝

௜ୀଵ
ே

௝ୀଵ൅ 12 ෍ ܴ௧௛ ௝ܳ௃௝ே
௝ୀଵ ቍ   ሺ26ሻ 

In the following, we will study and compare the performance of different shaped devices. Figure 
3 illustrates the geometry of studied devices. To compare the different device geometries, we 
chose the device parameters as Lx = 0.5 cm, Ly = 1 cm, Lz at cold side = 0.1 cm, Th = 150K, and 
zratio = 5. All devices are divided into 500 single parallelepiped stages. The physical properties of 
single-crystal Bi97Sb3 were assumed in the numerical model [20]. The cooling temperature, the 
heat flow density, and COP were compared for the different geometries. Furthermore, the COP 
and dT/T across the device (versus x) was calculated to validate the assumptions made in 
deriving the optimum geometry. The detailed discussion is presented in the following section. 

 
Figure 3: Different geometries used to compare NE device performance, which includes rectangle (pink), 
trapezoid (blue), Harman's infinite stage (red), and temperature-dependent corrected infinite stage (black). The 
corrected infinite stage aligns with Harman's at dT = 0. With the increase of dT, the corrected shaped device 
becomes thinner in the middle. According to (25), device length can also affect the optimum shape deviation. 

Result and Discussion 
The device characteristics were calculated numerically using temperature-dependent material 
properties of single crystal Bi97Sb3. Quite often, in the literature, only the temperature difference 
is reported as a function of current for different hot side temperatures [20,38], and the COP or 
heat flow densities are usually neglected due to their complicated calculations [20]. Therefore, 
we demonstrated the usefulness of the model by calculating all the three quantities for different 
geometries and under different conditions. Four different shapes were modeled, namely, a 
rectangular cuboid, a trapezoidal prism, Harman's infinite stage, and the corrected temperature-
dependent infinite stage device.  

-2 -1 0 1 2
Z (mm)

0

1

2

3

4

5



Figure 4 illustrates the temperature map of differently shaped NE devices superimposed on their 
geometrical shapes for the maximum temperature difference (ΔTmax). In all devices, the hot side 
is at the bottom of the devices, which was kept fixed at 150 K. Therefore, heat flow occurs in a 
downward direction from the cold to the hot side. The temperature profile for different 
geometries can be compared to the figure. In the rectangular cuboid, the temperature increases 
more quickly compared to other geometries below the top surface. Therefore, the cooling 
performance of shaped devices is better than that of a rectangular-shaped device. 

Figure 4:  Spatial Temperature map with cooling depth (arrow) at maximum temperature difference in 
differently shaped NE devices: (a) thin rectangular cuboid, (b) trapezoidal prism, (c) Harman's infinite stage 
device, and (d) the corrected infinite stage. The cold and hot side widths are assumed to be 1 mm and 5 mm, 
respectively, and the hot side temperature is fixed at 150 K.  

A similar kind of comparison is demonstrated in Figure 5, where temperature variation along the 
x-axis for all devices is plotted at two temperature differences of ΔT = 0K and ΔTmax. 
Temperature variation is shown for both maximum heat flow, Qmax, and optimum COP 
conditions. It can be seen from both figures that the temperature at any x point inside the device 
is higher in the rectangular device compared to the others. Therefore, it is expected that the 
cooling performance in the shaped devices should be better than the rectangular device. 

(a) (b) 

(c) 



Moreover, the spatial temperature profile becomes linear in infinite staged devices at ΔTmax. 
Generally, ΔT = 0K happens when the device works at its maximum cooling power, Qmax. All 
Ettingshausen devices, except the corrected infinite staged device, show higher temperatures 
inside the device than the ends under Qmax condition at ΔT = 0K. For COPopt condition, the inner 
temperature of all staged devices, except rectangle one, drops compared with the end 
temperatures at ΔT = 0K. Temperature variation trend along x-axis under ΔTmax condition for all 
devices is in agreement with the observed trends in Figure 4. 

Figure 5: The temperature variation along x-axis for different devices at (a) ΔT = 0K and (b) ΔTmax. 

The typical performance indicator for Ettingshausen devices is the temperature difference as a 
function of operating current. To evaluate the devices' performances with different geometric 
shapes, we plotted the temperature difference, ΔT, as a function of current in Figure 6. As 
expected, shaped NE devices provide larger ΔT than rectangular shaped devices, which was also 
confirmed in previous figures. For rectangular devices, ΔTmax~36K is obtained at 7A, while 
ΔTmax~50K for trapezoidal at 32A, ΔTmax~52K for Harman's infinite stage at 25A, and 
ΔTmax~52.3K for corrected infinite staged NE device at 24A are obtained. The results also show 
good agreement with the previously published data [20,38]. After ΔTmax, ΔT decreases with the 
increase of the electrical current due to the dominancy of the Joule heating over Ettingshausen 
cooling. The corrected infinite stage gives a slightly higher ΔTmax at the lower current than 
Harman's infinite stage device. As we will discuss, the corrected infinite stage device can operate 
at a simultaneously higher COP and heat flow density compared to other geometries. Therefore, 
to evaluate the device performance, COP and heat flow density are also important parameters 
along with the highest achievable ΔT. Moreover, at maximum ΔT, heat flow density, hence COP, 
is zero. As mentioned earlier, no prior reports were found for the heat flow and COP of different 
geometries so that this study can provide a benchmark for future works. Such calculations are 
comparatively more extensive than ∆T and require detailed analysis. In the following, we will 
demonstrate both COP and heat flow density for different shaped devices and compare their 

 

(a) ΔT = 0K  (b) ΔT=ΔTmax 



performances. Both heat flow and COP are shown for two temperature differences lower than 
ΔTmax, namely, ΔT=10K and ΔT=50K  for a low and a high-temperature difference condition. 

 
Figure 6: Illustration of temperature difference (ΔT) versus current (I) for different shaped NE devices: 
rectangular, trapezoidal, Harman's infinite, and corrected infinite staged device derived in this work. 

Heat flow density from the cold side to the hot side as a function of the electrical current is 
calculated at ΔT = 10K and ΔT = 50K for all NE devices. Heat flow inside a NE device consists 
of both Joule and Ettingshausen components, as shown in Figure 1. The heat flow density for 
each NE device is higher for smaller ΔT as expected, and shown in Figure 7(a). With the increase 
of ΔT to 50K, the heat flow reduces significantly, as shown in Figure 7(c). At ΔT = 50K, heat 
flow density becomes negative for rectangular NE devices, as ΔTmax≈36K for this device. 
Therefore, heat flow density for the rectangular NE device is not shown in Figure 7(c) and (d). 
As mentioned earlier, heat flow density shows a decrease after a maximum value with the 
increase of the current density, which is related to the domination of the Joule heating over the 
Ettingshausen cooling. While shaped NE devices show better heat flow capacity than the 
rectangular one, the trapezoidal NE device has a higher heat flow density than that of the infinite 
staged devices at ΔT = 10K, which corresponds to its larger electrical current (larger input 
power) as shown in Figure 6. Note that Ettingshausen's heat flow density is proportional to the 
current, while Joule heat flow density is proportional to the current square. Therefore, the heat 
flow density trend follows the trend of Ettingshausen heat flow density at the lower current 
range, and at higher currents, the total heat flow density follows the pattern of the Joule heating. 
The corrected infinite staged device gives higher heat flow density at around 50K than that of the 
trapezoid and Harman's infinite-stage device, and the peak happens at a lower electrical current, 
which can be attributed to the more accurate consideration of the Joule heating in designing this 
device. At ΔT = 10K, the corrected infinite staged NE device also has higher heat flow density 
than that of Harman's infinite stage devices at a lower current. As we will discuss, this results in 
a higher COP for the corrected infinite stage device. Here, it is essential to mention that the 
corrected staged device is thinner than both trapezoid and Harman's infinite stage devices; hence, 
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it pumps more heat with less amount of material. It should be noted that, according to eq. (20), 
the optimum geometry is a function of both TC and ΔT. Therefore, the corrected infinite staged 
NE device optimized for ΔT=50K may not be optimum for a different ΔT (or TC). 

  
Figure 7: Heat flow density ((a) and (c)) and COP ((b) and (d)) as a function of driving current for different 
geometric-shaped NE devices at ΔT = 10K ((a) and (b)), and ΔT = 50K ((b) and (d)). 

For evaluating the performance of the shaped devices, a comparison of the COPs is also critical, 
shown in Figure 7(b) and (d). COP versus current for each shaped device at a given ΔT is 
calculated. Here, the heat flow with respect to the electrical current is adjusted so that the ΔT 
remains fixed. At a lower temperature difference (ΔT =10K), the rectangular NE device shows a 
higher COPopt of around 1.35 at 1.8A with a significantly lower heat flow density (around 
1W/cm2), which is not desirable for practical applications. However, rectangular devices can 
provide a higher heat flow density of around 3.2W/cm2 at around 6.7A and COP of 0.35. On the 
other hand, corrected shaped NE devices give higher COPQmax (around 0.3) at a lower current 
(around 20A) than other shaped NE devices (around 0.2 for both Trapezoid and Harman's 
infinite-stage shaped devices). Compared to the trapezoid NE device, the corrected shaped 
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device provides around 30% higher COP with around 18% less heat flow density at ΔT =10K. 
Despite showing higher COP at the low-temperature difference, the COP of rectangular devices 
drops sharply with the current. At lower ΔT and COPopt condition, Qopt is much lower than Qmax, 
and all shaped devices provide similar Qopt performance. In general, shaped NE devices have a 
higher COP than those of rectangular NE devices at a particular current value and higher 
temperature difference, consistent with the previous results and theory [20,38]. At 10K, the 
trapezoidal device has slightly higher COP at a slightly higher current with similar heat flow 
density, as seen in Figure 7(a) and (b). But, at a larger ΔT, infinite stage devices show much 
better COP than the trapezoidal device. At 50K, both infinite stage devices pump more heat flow 
at a lower current than the trapezoidal device (Figure 7), which results in higher COPs. 
Moreover, corrected infinite staged devices can pump slightly higher heat at a slightly lower 
current than Harman's infinite stage device, which gives it a somewhat higher COP. While the 
COPQmax for the Harman's infinite stage device is about 0.2 at ΔT = 10K, the corresponding 
value is about 0.28 for the corrected infinite stage device, i.e., 40% improvement. At a 50K 
temperature difference, the corrected shaped device provides around 5% higher COPQmax than 
Harman's infinite shaped device. Both infinite staged devices show similar COPopt with similar 
Qopt performance. As mentioned, COP can be two types, namely, COPQmax and COPopt. To 
determine the optimum operating condition for a NE device, we must consider both the current 
and the heat flow density. Heat flow density should be maximized as a function of the current or 
the desired temperature differential. Then, the corresponding COP is calculated versus the 
current density and heat flow conditions. 

One can see from Figure 7 that the efficient operation of a NE cooler typically requires a high 
current at a low voltage. Depending on the cooler's size, the current and voltage scale with the 
cross-section and length of the cooler, respectively. The voltage scales with z, which does not 
affect the cross-section, hence, the optimum current. Indeed, this is one of the advantages of NE 
coolers compared to TECs, as the same current can cool larger areas by simply scaling the device 
in the z-direction. The current scales with the cross-section in the xy-plane and can be much 
smaller for a miniature cooler, e.g., for on-chip cooling of FPAs or electronic devices. The 
optimum current density is in the order of a few 100 A/cm2, which is practical for many devices.  

Finally, the contact resistance usually is less an issue for NECs compared to TECs because (a) 
NECs have only two contacts, while TECs have many, and (b) NECs can be made long (in the z-
direction); as such, their resistance dominates over the contact resistance. For instance, the 
resistance of the thin rectangular NEC (5×10×2 mm3) is around 0.04 Ω at 100K. The typical 
metal-semiconductor contact resistance for the given cross-section is ~0.00001 Ω, assuming 
ρ=10-6 Ωcm2, which is comparatively negligible. According to Figure 7, rectangular devices can 
operate at lower current, i.e., 6.7 A for Qmax or 1.8 A for the COPopt at ΔT=10 K. But unlike 
shaped NECs, the ΔT of the rectangular device is limited by 1 2ൗ ோݖ ௖ܶଶ or 1 2ൗ כோݖ ௛ܶଶ [37,41] 
independent from the dimensions.  

To show the concept of optimum device operating conditions, we illustrate some critical 
parameters in Figure 8. Figure 8(a) shows the heat flow density, Q, which is maximized as a 
function of current density for each ΔT, Figure 8(b) provides COP versus ΔT for maximum Q, 



i.e., COPQmax, and the corresponding current density, and Figure 8(c) gives current density that 
maximizes Q. On the other hand, Figure 8(d) shows the heat flow density, Q, versus ΔT which 
maximizes the COP, i.e., Qopt, as a function of current density, Figure 8(e) provides COPopt 
versus ΔT for optimum Q and the corresponding current density, and Figure 8(f) illustrates 
current density that optimizes Q. As expected, maximum heat flow density and COP both 
decrease linearly with the increase of ΔT and approach zero at ΔTmax. In Figure 8(b), the 
rectangular device shows higher COPmax at lower ΔT, which is also seen in Figure 7. Note that 
COP is presented as a function of current in Figure 7, while COPQmax at ΔT=10K is for the 
maximum heat flow density at the same temperature difference (shown in Figure 7). According 
to Figure 7, the heat flow density of different NE devices at ΔT=10K maximizes at different 
current, which corresponds to different COPs in Figure 8. In general, higher COPQmax at lower 
temperature difference for rectangles can be related to its lower current density at the cost of 
lower heat flow capacity, which is not always desired for practical use. In contrast, shaped NE 
devices can take higher heat at the expense of higher current density, which makes them better 
for higher ΔT applications. Importantly, the corrected infinite stage device always shows better 
COP than that of other shaped devices, as it carries more heat at a less current. 

Interestingly, the COP of the trapezoid is slightly higher at low ΔTs and only marginally lower at 
high ΔTs than that of the infinite staged devices. Therefore, the trapezoidal device can be a better 
option for practical applications due to its simpler structure. At high ΔTs, the COP of both 
infinite stage devices becomes higher due to the higher heat flow at a lower driving current. 
Rectangular device performance shown in Figure 8 agrees with previous results [20]. We have 
not seen any report of the COPs of other devices in the literature.  

Optimum heat flow and COP show different trends than Qmax and COPQmax. Optimum heat flow 
first increases with an increase in ΔT, but above ΔT>30K, it shows a rapid decrease with a 
further rise in ΔT. On the other hand, COPopt of all Ettingshausen devices at ΔT<20K show 
approximately similar values. At a lower temperature difference, COPopt is higher than unity for 
all devices, and it increases rapidly as ΔT approaches zero, as also shown in Figure 10. Above 
ΔT=25K, while the shaped devices exhibit approximately the same COPopt, they are significantly 
higher than the COPopt of the rectangular device. This trend is expected as the shaped devices 
always carry higher heat flow density than the rectangle device. The trapezoidal device shows 
somewhat better performance in terms of Qopt up to approximately ΔT=40K at the cost of a 
higher current. At ΔT>40, however, the COPopt of the trapezoidal device drops rapidly below 
those of the infinite stage devices. The corrected infinite stage device carries higher optimum 
heat flow at a slightly higher current than Harman's infinite stage device while providing almost 
similar COPopt. 



 

Figure 9 presents the COP versus heat flow density for different NE devices at (a) ΔT = 10K and 
(b) ΔT = 50K conditions, respectively. According to the figure, the trapezoidal-shaped NE 
device can give higher heat flow density at ΔT=10K than the other devices with the cost of 
higher current density at a particular COP. A similar characteristic is also observed in Figure 8(a) 
that trapezoidal devices can give higher heat flow at a specific temperature differential. Like 
Figure 7, COPQmax and COPopt, as shown in Figure 9(a), are significantly different at small ΔTs. 
This is usually not the case for TE or Peltier coolers. On the other hand, at larger ΔT, infinite 
staged devices have significantly higher COP with higher heat flow density than that of trapezoid 
devices. Between the Harman's and corrected infinite stage devices, the corrected infinite stage 
devices have slightly higher COP for the same heat flow density condition. Therefore, the 
corrected infinite staged device shows overall better performance than the other shaped devices 
of similar material at higher ΔT. At higher ΔT, both COPQmax and COPopt have similar values, 
which can also be seen in Figure 11.  

Figure 8: (a) Maximum heat flow density versus temperature differential when the current is adjusted to achieve 
maximum Q, (b) COP at maximum heat flow density, (c) Current density at maximum heat flow density, (d) 
optimum heat flow density versus temperature differential when the current is adjusted to achieve maximum 
COP, (e) COPopt versus temperature differential, and (f) the corresponding current. 



 

Figure 9: COP versus heat flow density for different geometric-shaped Nernst-Ettingshausen devices at ΔT = 
10K (a) and ΔT = 50K (b). 

Figure 10 and Figure 11 illustrate the overall comparison of the device performance among 
different shaped devices. Figure 10 demonstrates COP and heat flow density with respect to the 
electric field and temperature difference. COP as a function of electric field and ΔT looks similar 
for all NE devices with a divergent point at lower electric fields and lower ΔTs. COP drops 
sharply with the increase in both temperature difference and the electric field. On the other hand, 
heat flow density as a function of the temperature difference, and the electric field demonstrates 
similar trends observed in earlier figures. Rectangle NE devices provide less heat flow density, 
while trapezoid NE devices show better heat pump capability than others at lower temperatures 
at the cost of a higher current. Corrected infinite stage device is better in terms of the heat pump 
at higher operating temperature differential. Figure 11 compares the temperature differential as a 
function of COP and heat flow density under maximum COP and maximum Q conditions for all 
the devices. Rectangular devices show almost similar characteristics of ΔT for both conditions, 
while shaped devices have different trends of ΔT under different circumstances. Similar ΔTmax is 
obtained at maximum Q and COP conditions for each device. Like the earlier discussion, infinite 
stage devices show better performances at larger ΔT, while corrected infinite stage devices can 
carry more heat flow at higher COP than the other devices. This improvement supports the 
argument that Harman's infinite shaped expression was formulated based on some simplifying 
assumptions, which overestimated the Joule heating of the device. Among all the geometries, the 
trapezoidal device gives consistent optimum performance in terms of the heat flow and COP 
over the whole range of ΔT at the cost of slightly smaller ΔTmax. The trapezoidal device, 
considering the complexity of making infinite staged devices, can be a better option for practical 
cooling applications. 
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Figure 10: (a) COP and (b) heat flow density as a function of applied electric field and temperature differential 
for different shaped devices. 

 
Figure 11: Temperature differential as a function of COP and heat flow density for different NE devices under 
maximum COP and maximum heat flow conditions. 

Conclusion 

(a) (b) 



The prospect of superconductors and spin-based applications at cryogenic temperature range 
guided the scientific community to observe several exotic thermomagnetic effects coming from 
spin and quantum effects [42-44] which provide superior performance in solid-state cryocoolers 
[45,46]. We derived a modified expression for the shaping function of the infinite stage Nernst-
Ettingshausen coolers, which considers the temperature-dependent material resistivity, the device 
size, and the temperature conditions for designing a fully optimized cooler. In this derivation, 
some ideal assumptions made by Harman was corrected to obtain the modified infinite stage 
shape function. The corrected shape agrees with Harman's shape at zero temperature difference 
and temperature-independent resistivity conditions and differs otherwise. A numerical model 
was further introduced that can consider all temperature-dependent material properties and for 
any given shape device. A case study based on BiSb material was discussed to analyze and 
compare the performance of different shaped coolers. The corrected infinite stage device was 
found better in terms of the maximum heat flow density and coefficient of performance (COP) at 
higher temperature differentials. A complete comparison of the device performance among 
different shaped devices was provided to guide the selection of an optimum device structure 
based on the cost and applications. The trapezoidal device, while having a more straightforward 
shape for fabrication purposes, can provide consistent cooling performance at the expense of a 
slightly lower temperature differential.  
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Appendix 

Harman's Derivations for the Infinite Stage NE Cooler 

Based on the energy conservation principle, the rate of the output energy flow (߳ሶ) from the 
(i+1)th stage should be equal to the sum of the rate of the input energy flow coming from the 
previous ith stage and total power input (P) to the (i+1)th stage. The conservation law also ensures 
that the output energy of the ith stage is equal to the input energy of the (i+1)th stage. Considering 
these relations, we can write the energy balance for the (i+1)th stage as: ߳ሶ௢௨௧௜ାଵ ൌ ܲ௜ାଵ ൅ ߳ሶ௜௡௜ାଵ ൌ ܲ௜ାଵ ൅ ߳ሶ௢௨௧௜      ሺܽ1ሻ 

Considering, ߳ሶ௢௨௧௜ ൌ ߳ሶ௜ and ߳ሶ௢௨௧௜ାଵ ൌ ߳ሶ௜ାଵ, eq. (a1) can be written as: ߳ሶ௜ାଵ ൌ ܲ௜ାଵ ൅ ߳ሶ௜     ሺܽ2ሻ 

Now, according to the definition of the COP of the (i+1)th stage (COP is the ratio of the energy 
flow rate at the cold side and input power), we can write: ܱܲܥ௜ାଵ ൌ ߳ሶ௜ܲ௜ାଵ ൌ ߳ሶ௜߳ሶ௜ାଵ െ ߳ሶ௜        ሺܽ3ሻ 

Similarly, COP for the ith stage can be written as: 



௜ܱܲܥ ൌ ߳ሶ௜ିଵܲ௜ ൌ ߳ሶ௜ିଵ߳ሶ௜ െ ߳ሶ௜ିଵ          ሺܽ4ሻ 

Here, ∆ܲ௜ାଵ ൌ ܲ௜ାଵ െ ܲ௜. Therefore, eq. (a3) can be rewritten as: ܱܲܥ௜ାଵ ൌ ߳ሶ௜ିଵ ൅ ܲ௜ܲ௜ ൅ ∆ܲ௜ାଵ        ሺܽ5ሻ 

For deriving the optimum device shape, another essential assumption is the requirement of an 
equal individual COP among all the stages. Hence, ܱܲܥ௜ାଵ ൌ ௜ܱܲܥ ௜ which requiresܱܲܥ ൌ ܲ௜∆ܲ௜ାଵ ൌ ܲ௜ܲ௜ାଵ െ ܲ௜          ሺܽ6ሻ 

From eqs. (a4) and (a6), a differential relation can be obtained as: ݀ܲܲ ൌ ݀߳ሶ߳ሶ        ሺܽ7ሻ 

Moreover, for a parallelepiped-shaped NE stage (see Figure 1), the input heat flux density (Qin) 
and input power (P) can be found from the thermodynamic relations [40], and can be written as 
[20]: ܳ௜௡ ൌ ௬௬ߩ௬ܧ ௭ܤ ௬ܰ௫ ଴ܶ െ 12 ௬௬ߩ௬ଶܽܧ െ ൫1 െ ௬௫ݖ തܶ൯ߢ௫௫ ∆ܶܽ         ሺܽ8ሻ 

ܲ ൌ ௬௬ߩ௬ଶܽܿܧ ൅ ௭ܤ ௬ܰ௫ߩ௬௬ ∆ܶܿ        ሺܽ9ሻ 

Here, E is the electric field, B is the magnetic field, ρ is the resistivity, κ is the thermal 
conductivity, N is the Nernst coefficient, T0 is the temperature on the cold side, TL is the 
temperature on the hot side, ∆ܶ ൌ ௅ܶ െ ଴ܶ and തܶ ൌ ሺ ௅ܶ ൅ ଴ܶሻ/2, z is the figure-of-merit, and a, 
b, and c are the device length along the x, y, and z-axis. Now, according to the definition, COP 
can be written as: ܱܲܥ ൌ ܳ௜௡ܾܿܲ         ሺܽ10ሻ 

The COP in eq. (a10) can be maximized for the optimum electric field, which provides a 
simplified expression for optimum COP: 

ܱܥ ௠ܲ௔௫ ൌ ଴ܶ∆ܶ ሺ1 െ ߜ ௅ܶܶ଴ሻሺ1 ൅ ሻߜ ൌ ଴ܶ∆ܶ  ሻ       ሺܽ11ሻߜሺܨ

To derive the optimum geometry, we must optimize the individual COPs [1]. From eqs. (a4), 
(a6), and (a11), the final differential relation can be written as: 



݀ܲܲ ൌ ݀߳ሶ߳ሶ ൌ  ሻ       ሺܽ12ሻߜሺܨܶܶ݀

Following the similar steps given in the Derivation section, a slightly different differential 
relation was obtained by Harman, which is [1]: ݀ܲܲ ൌ ݖݖ݀ ൌ ݀߳ሶ߳ሶ ൌ ሻߜሺܨܶܶ݀ ൌ ܾ       ሺܽ13ሻ 

Again, based on similar conditions given in the Derivation section, the Harman's infinite shape 
function can be found from eq. (a13), which is [1]: ݈݊ ሺ0ሻݖሻݔሺݖ ൌ ௫ܮݔ ݈݊ ሺ0ሻݖ௫ሻܮሺݖ         ሺܽ14ሻ 
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