Influence of Irradiation on Defect Spin Coherence in Silicon Carbide

Phys. Rev. Applied 13, 044054 — Published 21 April 2020
DOI: 10.1103/PhysRevApplied.13.044054
Influence of irradiation on defect spin coherence in silicon carbide

C. Kasper¹, D. Klenkert¹, Z. Shang², D. Simin¹, A. Gottscholl¹, A. Sperlich¹, H. Kraus³, C. Schneider⁴, S. Zhou², M. Trupke⁵, W. Kada⁶, T. Ohshima⁷, V. Dyakonov¹, and G. V. Astakhov², ¹, *

¹Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilian University of Würzburg, 97074 Würzburg, Germany
²Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
⁴Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
⁵Vienna Center for Quantum Science and Technology, Universität Wien, 1090 Vienna, Austria
⁶Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
⁷National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292, Japan

(Dated: March 24, 2020)

Irradiation-induced lattice defects in silicon carbide (SiC) have already exceeded their previous reputation as purely performance-inhibiting. With their remarkable quantum properties, such as long room-temperature spin coherence and the possibility of downscaling to single-photon source level, they have proven to be promising candidates for a multitude of quantum information applications. One of the most crucial parameters of any quantum system is how long its quantum coherence can be preserved. By using the pulsed optically detected magnetic resonance (ODMR) technique, we investigate the spin-lattice relaxation time (T_1) and spin coherence time (T_2) of silicon vacancies in 4H-SiC created by neutron, electron and proton irradiation in a broad range of fluences. We also examine the effect of irradiation energy and sample annealing. We establish a robustness of the T_1 time against all types of irradiation and reveal a universal scaling of the T_2 time with the emitter density. Our results can be used to optimize the coherence properties of silicon vacancy qubits in SiC for specific tasks.

INTRODUCTION

Defect spins in silicon carbide (SiC) attract growing interest because of their high potential as multidimensional qubits – the so-called qudits – for wafer-scale quantum information processing at room temperature [1–4]. Particularly, silicon vacancies (V_{Si}) and divacancies (VV) demonstrate an extremely long spin-lattice relaxation time (T_1) and spin coherence time (T_2), even in commercial wafers without isotope purification [5–12]. These defects can be used for room-temperature quantum metrology [13–16], including magnetometry [17–22] and thermometry [17–23]. Furthermore, single defects have been isolated, which can be used as single photon emitters [24, 25], and coherent control of single defect spins [26, 27] with high fidelity [28–30] has been realized.

SiC itself is a technologically highly developed wide band gap semiconductor with unique mechanical, electrical and optical properties, that make it very attractive for various electronic and optoelectronic applications under extreme conditions. Therefore, it is a unique platform to implement hybrid quantum systems, where defect spins can be coupled to the eigenmodes of mechanical resonators [31, 32] and photonic cavities [33–36] or integrated into photoelectronic circuits [37–39]. Because SiC is a bio-compatible material, the fabrication of spin-carrying defects in SiC nanocrystals [40, 41] gives an opportunity for in-vivo imaging of chemical processes.

Various approaches can be used to create intrinsic defects in SiC, including thermal quenching [1] and laser writing [42]. However, the most common and frequently used methods are based on electron [43, 44], neutron [25, 45] and ion [46–51] irradiation. There is no optimum irradiation method, as they all have their own advantages and disadvantages, which are schematically presented in Fig 1.

![Fig. 1. Schematic generation of the V_{Si} defects in SiC by MeV energy particle irradiation. (a) Neutron irradiation leads to a homogeneous distribution of the V_{Si} defects in the crystal. (b) Electrons show a penetration depth depending on the electron energy. It varies between several 100 μm to several mm for the electron energy between 1 MeV and 25 MeV, respectively. (c) Ion irradiation (e.g., protons) results in the formation of a V_{Si} layer at a depth depending on the ion energy. For instance, the Bragg peak of protons with an energy of 1.7 MeV in SiC is located at a depth of 26 μm below the irradiated sample surface.](image-url)

The irradiation with neutrons generates a homogeneous distribution of silicon vacancies in bulk crystals.
isolated defects. To improve the coherence of SiC quantum devices, our findings can be used as a sensitive probe material is crucial for the performance of SiC quantum systems. We optimize the irradiation parameters for a variety of ion types applied, fluence and particle energy as well as sample annealing. Our results allow to predict the formation of defect clusters, resulting in a deterioration of the V\text(sub)\text{Si} coherence properties.

A more gentle approach is electron irradiation (Fig. 1b) as a large part of their energy is lost in interactions with crystal electrons. However, the electron damage cannot (in reasonable beam time with common accelerators) reach the quantum center densities achievable after irradiation with neutrons in nuclear reactors. Furthermore, the electron irradiation leads to a quantum center density gradient in the sample, with highest density close to the surface. The electron penetration depth depends on its kinetic energy. For thin samples (up to 100 \text{μm}) and MeV-electron energy, the inhomogeneity of the in-depth defect distribution is marginal and can be neglected [52]. However for thick (>1 mm) samples, the in-depth inhomogeneous distribution should be taken into account. The samples in this study have a thickness of about 300 \text{μm}.

In contrast to the aforementioned methods, ions show an increasing stopping power for lower energies according to the Bethe-Bloch equation [53]. This results in the formation of a defect layer at a depth corresponding to the so-called Bragg peak (Fig. 1c). This approach can be used to write 3D defect structures in a SiC crystal using a focused ion beam [47], allowing the creation of defect spins in the desired place of a nanostructure. On the other hand, the ion irradiation is not suitable for the creation of defect spin ensembles with an in-depth homogeneous distribution.

Any type of irradiation results in the creation of various types of defects, which also change the coherence properties of the vacancy-related spins. The impact of the irradiation on the T_1 and T_2 times, in spite of their crucial importance for quantum applications, has not been systematically investigated so far. In this work, we compare the V\text(sub)\text{Si} spin relaxation and spin coherence in SiC created by neutron, electron and proton irradiation. Particularly, T_1 and T_2 times are measured in a broad range of the density of optically active quantum centers in the infrared regime (from here on referred to as emitter density N_V), from dense ensembles down to isolated defects. To improve the coherence of the V\text(sub)\text{Si} defects after irradiation, we also examine the influence of sample annealing. Our results allow to predict the V\text(sub)\text{Si} spin coherence properties depending on the irradiation type applied, fluence and particle energy as well as to optimize the irradiation parameters for a variety of quantum applications. Furthermore, because the initial material is crucial for the performance of SiC quantum devices, our findings can be used as a sensitive probe of the purity of SiC materials. In our experiments, we use commercial high-purity semi-insulating (HPSI) 4H-SiC wafers from the leading companies on the SiC market. Because of their relatively low fabrication cost and mass-scale production, these wafers are considered for the practical realization of room-temperature SiC-based quantum devices.

METHODS

Neutron irradiation was performed in two different research reactors. For the first irradiation set, we purchased a high-purity semi-insulating (HPSI) 3-inch SiC wafer from CREE and used chambers DBVK and DBVR at the BER II reactor at Helmholtz-Zentrum Berlin. Since thermal neutrons produce negligible displacement, only epithermal and fast neutrons are counted in the fluence calculation [54]. The neutron fluence spanned a large range from $3.3 \times 10^{16} \text{cm}^{-2}$ to $3.5 \times 10^{19} \text{cm}^{-2}$. For the second irradiation set, we purchased a HPSI SiC wafer from Norstel and used the TRIGA Mark II reactor (General Atomics, San Diego) of the Atomistitut, TU Wien [25]. During irradiation, the temperature of the crystals did not exceed 100°C. Vacancy creation by neutron irradiation in SiC is weakly dependent on neutron energy in the range 0.18 MeV < E_n < 2.5 MeV, but falls off rapidly for smaller energies. The neutron energies in the TRIGA reactor are distributed evenly in the range between 100 eV and 1×10^5 eV, with a peak in flux density around 2.5 MeV following by a sharp cut-off.

For the electron irradiated sample series, a HPSI 3-ich 4H-SiC wafer was purchased from Norstel and diced in many pieces. The irradiation with electron energies of 1 and 2 MeV was performed at electron beam irradiation facility at QST Takasaki (Japan). During the irradiation, the samples were placed on a water cooled copper plate to avoid heating by the electron beams. The irradiation with electron energies of 20 and 25 MeV was performed at the electron accelerator ELBE in HZDR (Germany). The beam was extracted through a 300 μm Beryllium vacuum window and passes 150 mm through air before hitting the sample. The incident beam distribution and the small angle scattering in the vacuum window and air leads to a Gaussian shaped beam distribution on the sample. The beam profile was measured at the position of the sample with a Roos ionisation chamber (IC) N34001. The certificate calibrated IC and a Faraday cup were used for the dose and current calibration. From the profile measurement, the irradiation parameters were deduced. To monitor the current stability of the electron gun as well as dark current contributions, the edge field of the gun was tracked. Because of their relatively low fabrication cost and mass-scale production, these wafers are considered for the practical realization of room-temperature SiC-based quantum devices.

Proton irradiation was done at the TIARA irradiation facilities in Takasaki, Japan. A piece of a 4H-SiC wafer purchased from CREE was placed on an aluminum plate and irradiated with a focused proton beam generated by...
a single-ended particle accelerator with a typical spot size of 1 \(\mu m \times 1 \mu m \) and proton energy of 1.7 MeV. The irradiation beam current was monitored by a beam dump (Faraday cup) connected to a picoamperemeter before and after irradiation.

The continuous wave and pulsed ODMR measurements were performed with a confocal setup. For optical excitation, a 788 nm diode laser (LD785-SE400 from Thorlabs) was coupled into a 50 \(\mu m \) optical fiber and focused onto the sample using a \(\times 10 \) objective (Olympus LMPLN10XIR), with the laser spot measuring approximately 10 \(\mu m \) in diameter. The laser power at the surface of the sample was about 20 mW, illuminating a volume of approximately 300 \(\mu m^3 \) for the measurements of electron and neutron irradiated samples. For the measurement of the proton irradiated sample, a \(\times 100 \) objective (Olympus LCPLN100XIR) was used, which leads to laser illumination of approx. 2.6 \(\mu m^3 \). The PL was collected through the same objective and separated from the scattered laser light using a 850 nm short pass dichroic mirror and a 875 nm long pass filter. Behind the filter, it was coupled into a 600 \(\mu m \) optical fibre and detected using a Si avalanche photodiode (APD120A from Thorlabs). The sample was placed on a 0.5 mm copper-stripline to apply an RF-switch (Mini-Circuits ZASWA-2-50DR+) and amplifier (Vectawave VBA1000-18). A permanent magnet was mounted below the sample to generate the external magnetic field of 15 mT. To generate the laser pulses needed for time-resolved ODMR experiments, an acousto-optic modulator (Opto-Electronic MT250-A02-800) was placed in the laser beam path. The microwaves were modulated using an RF-switch (Mini-Circuits ZASWA-2-50DR+) TTL pulsing for laser and microwave modulation was provided by a PulseBlaster ESR-PRO 500 MHz card from SpinCore. The ODMR signal was processed using either a lock-in amplifier (Signal Recovery DSP 7230) or an oscilloscope card from GaGe CompuScope (Razor Max).

RESULTS

Figure 2a shows the modification of the optical properties of a SiC crystal with increasing neutron irradiation fluence. The irradiation was performed in nuclear research reactors. Since thermal neutrons only produce negligible displacement, only epithermal and fast (MeV) neutrons are counted in the fluence calculation [54]. SiC is a wide bandgap semiconductor with a bandgap of 3.23 eV and is therefore transparent in case of the lowest neutron fluence \(\Phi_n = 9.2 \times 10^{15} \text{ cm}^{-2} \). Neutron irradiation creates a variety of optically active and inactive defects, which has a direct effect on the optical properties of the crystal due to absorption and scattering of light by the defects. High irradiation fluences cause crystal destruction and in case of the highest neutron fluence \(\Phi_n = 3.5 \times 10^{19} \text{ cm}^{-2} \), SiC becomes completely opaque. The generation of the \(V_{Si} \) defects is verified by their characteristic room-temperature photoluminescence (PL) band in the near infrared (NIR) spectral range of 800 – 1000 nm [55], as shown in Fig. 2b. The \(V_{Si} \) PL intensity shows non-monotonic behavior with the irradiation fluence. This is because high irradiation fluences lead to crystal damage and the creation of other types of defects (including defect clusters) providing non-luminescent relaxation paths for the \(V_{Si} \) defects.

To find the emitter density \(N_V \), we calibrate the PL intensity in our confocal setup with a defined collection volume using a 4H-SiC sample with known \(N_V \) [25]. Figure 2c presents the concentration of the optically active \(V_{Si} \) defects as a function of the neutron fluence, which is varied over more than three orders of magnitude. The maximum \(N_V = 2 \times 10^{16} \text{ cm}^{-3} \) is observed for \(\Phi_n = 6.7 \times 10^{17} \text{ cm}^{-2} \) and dramatically drops down for the higher neutron fluences. The electron irradiated samples reveal qualitatively similar behavior. Figure 2d presents \(N_V \) as a function of the electron fluence \(\Phi_e \).
for an electron energy of $E_e = 2\, \text{MeV}$. The maximum $N_V = 1 \times 10^{16} \, \text{cm}^{-3}$ is achieved for $\Phi_e = 4 \times 10^{18} \, \text{cm}^{-2}$. A higher Φ_e than Φ_n is required to achieve the respective maximum N_V in our samples, pointing at a lower V_{Si} creation yield in case of electron irradiation compared to neutron irradiation.

The crystallographic V_{Si} configuration is schematically presented in Fig. 3a. The capture of an electron by a silicon vacancy, in addition to the four electrons from the surrounding carbon atoms leads to a negatively charged V_{Si} defect ($S = 3/2$). Only this charge configuration of V_{Si} is optically active in NIR. Two of the total five electrons build a spin singlet and the three remaining electrons form a spin quadruplet with $S = 3/2$ [13]. Upon laser excitation at 785 nm, the radiative recombination from the excited state (ES) to the ground state (GS) leads to the characteristic NIR PL of the V_{Si} defects, as presented in the energetic structure of Fig. 3b. There are two types of the V_{Si} defect in the 4H-SiC polytype, referred to as V1 and V2 centers [43].

In this study, we concentrate on the V2 center with the characteristic zero-phonon line (ZFL) at 917 nm and the zero-field splitting (ZFS) of 70 MHz between the GS spin sublevels $m_S = \pm 1/2$ and $m_S = \pm 3/2$. There is also spin-dependent recombination from the ES to the GS through a metastable state (MS), resulting in the preferential population of the $m_S = \pm 1/2$ spin sublevel (Fig. 3b). The PL intensity is higher for the $m_S = \pm 3/2$ spin state, which is the basis for the optically detected magnetic resonance (ODMR) experiments with microwave (MW) induced transitions between the GS spin sublevels [17]. In the absence of an external magnetic field ($B = 0\, \text{mT}$), the ZFS can directly be observed in the ODMR spectrum (Fig. 3c). The ODMR contrast is calculated as the MW induced PL change (ΔPL) divided by the PL intensity; i.e., $\Delta\text{PL}/\text{PL}$. In an external magnetic field ($B \neq 0\, \text{mT}$), the GS spin sublevels are split as shown in the inset of Fig. 3c. This results in two ODMR lines at the MW frequencies $\nu_{\pm 1/2} = |\text{ZFS} \pm \gamma B|$, where $\gamma = 28 \, \text{MHz/mT}$ is the electron gyromagnetic ratio. An example of an ODMR spectrum at $B = 15\, \text{mT}$ is shown in Fig. 3c.

We employ quantitative electron paramagnetic resonance (EPR) to alternatively measure the defect density. The EPR signal intensity is proportional to the absolute number of spins and hence, by comparing to a known reference sample, the absolute spin number can be obtained. We used the typical EPR reference 1,3-bis(diphenylene)-2-phenylallyl (BDPA) – a molecular radical with one spin per molecule. The molecular weight is known and the sample weight is carefully measured to yield an absolute spin standard. The reference and SiC samples have been measured in the same spectrometer with the same settings in the dark (i.e., without laser excitation) at room temperature to ensure comparability (Fig. 4). A typical EPR spectrum of the V2 spin $S = 3/2$ defect in SiC consists of three transitions [13]. The center transition at $g = 2$ is accompanied by the lower and higher magnetic field transitions. We used the lower field transition as at this magnetic field range, no other EPR transitions are present resulting in undistorted, background-free spectra. EPR spectra are recorded as the first derivative of the MW absorption spectrum. The integral of the absorption is proportional to the spin number. The relative intensities of the fitted, doubly integrated EPR spectra thus yield absolute spin numbers. In case of SiC, we fit the main peak of the lower field transition and its two satellites caused by the hyperfine interaction with ^{29}Si isotopes [1]. Considering the spin of the reference radical ($S = 1/2$) and the V_{Si} defect ($S = 3/2$), as well as the sample geometry, the spin density of the V2 centres can be determined. Though this procedure does not take into account the spin density of the V1 centres, their concentration is assumed to be comparable to that of V2. This leads to some underestimation of the total V_{Si} density.

The V_{Si} density obtained from the quantitative EPR is shown by the open triangles in Fig. 2c and d. In case of neutron irradiation (Fig. 2c), the estimation of the V_{Si} density from the PL (N_V) and quantitative EPR ($N_{V_{\text{Si}}}^{\text{EPR}}$) methods gives similar values for $\Phi_n < 1 \times 10^{17} \, \text{cm}^{-2}$. The non-radiative quenching of the V_{Si} PL is an increasingly dominant process for samples that were subject to high Φ_n, resulting in a depreciation of the defect densities for high fluences. In case of electron irradiation, we observe a qualitatively good agreement between the PL-based and EPR-based methods for high $\Phi_e = 1 \times 10^{18} \, \text{cm}^{-2}$.
MW Pulse

(b)

EPR Signal (arb. units)

Magnetic Field (mT)

-4

-2

0

2

4

-20000

-10000

0

10000

20000

Neutron Irradiation

Electron Irradiation

(a) (b) (c)

N^EPR

N^EPR

EPR signal

EPR signal

V2 defects

V2 defects

Irradiation with a neutron fluence of $\Phi_n = 1.6 \times 10^{16}$ cm$^{-2}$. The obtained density is $N^EPR = 4.5 \times 10^{15}$ cm$^{-3}$. (c) Irradiation with an electron fluence of $\Phi_e = 1 \times 10^{18}$ cm$^{-2}$ yields $N^EPR = 8.6 \times 10^{15}$ cm$^{-3}$. The dashed lines are fits as described in the text.

FIG. 4. Determination of the defect density N^EPR from quantitative EPR spectra at room temperature. (a) Reference sample of molecular BDPA radicals with known spin number $n_{BDPA} = 3.6 \times 10^{17}$. (b, c) Low-field EPR transition of the V2 defect for the 4H-SiC samples. The ratio of the double integrated spectral fits (dashed lines) yields absolute V2 defect numbers. (b) Irradiation with a neutron fluence of Φ_n. The ratio of the double integrated spectral fits (dashed lines) yields absolute V2 defect numbers. (c) Irradiation with an electron fluence of $\Phi_e = 1 \times 10^{18}$ cm$^{-2}$ yields $N^EPR = 8.6 \times 10^{15}$ cm$^{-3}$. The dashed lines are fits as described in the text.

FIG. 5. Coherent control of the V$_{Si}$ defects. (a), (c), (e) Laser and MW pulse sequences to measure Rabi oscillations, spin lattice relaxation time T_1 and spin echo coherence time T_2, respectively. For read out of the spin state we use a second laser pulse and collect the PL (dashed box), where τ is a variable parameter. (b), (d), (f) The symbols represent experimental data for Rabi oscillations as well as for T_1 and T_2, respectively. The solid lines are fitting curves as discussed in the main text. The data are obtained at room temperature in a magnetic field of 15 mT. The measured 4H-SiC sample is irradiated with electrons to a fluence $\Phi_e = 1 \times 10^{17}$ cm$^{-2}$ corresponding to $N^EPR = 3.9 \times 10^{14}$ cm$^{-3}$.

To measure the spin-lattice relaxation time T_1 we use the protocol of Fig. 5c, where the MW π-pulse is applied after the variable delay time τ to exchange the spin population between the $m_S = +3/2$ and $m_S = +1/2$ states. The fitting of the experimental data to a mono-exponential decay of $\exp(-2\tau/T_1)$ gives the spin relaxation time T_1 [27]. A fitting example is shown in Fig. 5d by the solid line. We note that the spin relaxation time between the $m_S = +1/2$ and $m_S = -1/2$ states is expected to be shorter $T_1 = 3T_1/4$ [12].

To measure the spin coherence time T_2, we use the spin echo sequence presented in Fig. 5c. The first $\pi/2$-pulse creates a coherent superposition of the $m_S = +3/2$ and $m_S = +1/2$ states. It is followed by a π-pulse to refocus the spin coherence after dephasing and the last $\pi/2$-pulse to project the created superposition to an optically readable state. An example of the experimental data is presented in Fig. 5f. In addition to an exponential decay, the signal is modulated with a few frequency components, known as the electron spin-echo en-
velo modulation (ESEEM). These modulations have been shown to arise through hyperfine interactions between the V_{Si} defect spins and the surrounding ^{29}Si and ^{13}C nuclei [7, 26, 27]. In case of $S = 3/2$, the modulation frequencies and modulation amplitudes reveal a complex magnetic field dependence. To fit the experimental data, we use the product of oscillating functions decaying as $\exp(-\tau/T_2)$. The details of the fitting procedure are described elsewhere [9]. An example of such a fit (solid line), from which we determine T_2 is shown in Fig. 5f.

DISCUSSION

Effect of irradiation

Figure 6 summarizes the measurements of the spin-lattice relaxation time T_1 and the spin coherence time T_2 as a function of the emitter density (N_v) in electron, neutron and proton irradiated samples. Because the emitter density depends non-monotonically on neutron fluence (Fig. 2), we analyze N_v for $\Phi_n < 6.7 \times 10^{17}$ cm$^{-2}$.

The results for T_1 are shown in Fig. 6. It is quite robust against irradiation for all irradiation types up to $N_v = 7 \times 10^{15}$ cm$^{-3}$ and equals $T_1 \sim 300$ µs. Remarkably, the electron energy in the range from 1 MeV to 25 MeV has no effect on T_1. The V_{Si} spin relaxation is dominated by the Raman mechanism of spin-phonon scattering [9, 32], which is an intrinsic property of a SiC crystal and hence independent of the irradiation fluence. This result corresponds well to $T_1 = 500 \pm 160$ µs reported for a single V_{Si} defect in a sample with $N_v \sim 10^{11} - 10^{13}$ cm$^{-3}$ [27]. In case of higher emitter density, the spin relaxation is given by the interaction with surrounding defects and the T_1 time decreases rapidly with N_v.

The spin coherence time T_2 reveals strong dependence on the irradiation fluence as shown in Fig. 6b. The spin decoherence is governed by interactions with the surrounding spin bath of nuclei (^{29}Si, ^{13}C) $1/T_2^{(n)}$, paramagnetic centers (particularly ^{14}N) $1/T_2^{(p)}$ as well as residual (particularly carbon vacancies) $1/T_2^{(c)}$ and irradiation-induced defects $1/T_2^{(i)}$ [6, 7, 56]. The resulting spin decoherence rate is then $1/T_2 = 1/T_2^{(n)} + 1/T_2^{(p)} + 1/T_2^{(c)} + 1/T_2^{(i)}$. By applying a moderate magnetic field $1/T_2^{(n)}$ is suppressed [6]. We assume that $1/T_2^{(i)}$ is proportional to the number of all irradiation induced defects, which in turn scales with N_v. Under this assumption, the effect of irradiation can be described by

$$T_2 = \frac{T_2^{(\text{pristine})}}{1 + T_2^{(\text{pristine})} \kappa N_v}. \quad (1)$$

Here, $T_2^{(\text{pristine})}$ is the spin coherence time in a pristine, non-irradiated sample given by the presence of residual paramagnetic centers and nuclear spins. It is therefore depending on the intrinsic properties and quality of a wafer. We assume linear dependence of the spin dephasing rate on the concentration of paramagnetic centers [57] and obtain $1/T_2^{(i)} = \kappa N_v$ where κ is the coefficient of proportionality.

We now discuss the experimental data for T_2 in the electron irradiated samples presented in Fig. 6b. As in case of the T_1 time, we do not find any signifi-
cant dependence on the electron energy. In our HPSI wafers (solid symbols) with low irradiation fluence ($\Phi_e < 3 \times 10^{17}$ cm$^{-2}$, $N_V = 7 \times 10^{14}$ cm$^{-3}$), the T_2 time is nearly independent of N_V. The experimental data can be well fitted to Eq. (1) with $T_2^{\text{pristine}} = 48 \mu$s and $\kappa = 0.8 \times 10^{-11}$ s$^{-1}$ cm3 (solid line in Fig. 6b). A deviation towards lower values is observed for $N_V > 7 \times 10^{15}$ cm$^{-3}$, which correlates with the T_1 shortening in Fig. 6a.

The V_{Si} spin coherence in some other SiC samples (open triangles in Fig. 6b) was reported to be longer. It is $T_2 \sim 100 \mu$s for a single V$_{\text{Si}}$ with $N_V \sim 10^{11} - 10^{12}$ cm$^{-3}$ in an epitaxial 4H-SiC layer [27]. Another HPSI 4H-SiC wafer after electron irradiation $\Phi_e = 5 \times 10^{17}$ cm$^{-2}$ gives $T_2 = 81 \pm 4 \mu$s [7]. As N_V was not reported for this wafer, we assume the same creation yield as in Fig. 2d and obtain $N_V \sim 10^{15}$ cm$^{-3}$. The longer coherence time is likely related to lower concentration of intrinsic paramagnetic centers and hence longer T_2^{pristine} compared to that in our non-irradiated wafer (Fig. 6b). The dashed line in Fig. 6b represents a fit to Eq. (1) with $T_2^{\text{pristine}} = 100 \mu$s and the same κ as in the case above.

Compared to electron irradiation, neutron irradiation creates a higher defect density, but also a higher percentage of defects other than V$_{\text{Si}}$, resulting in a larger κ. As a consequence, the coherence time is significantly shorter for a moderate concentration of the created V$_{\text{Si}}$ centers. The coherence time measured for the neutron-irradiated samples should be seen as a lower bound, due to inhomogeneity in the applied microwave field across the detection volume. Application of optimized pulses will be required to test the limits of coherence in such samples [58]. Figure 6b shows experimental data for HPSI 4H-SiC wafers irradiated in two scientific reactors with different distribution of neutron energy. They can be described assuming $\kappa = 3.8 \times 10^{-11}$ s$^{-1}$ cm3 and $\kappa = 25.2 \times 10^{-11}$ s$^{-1}$ cm3 and the same $T_2^{\text{pristine}} = 48 \mu$s as for our electron irradiated wafer, which is represented by the cyan area in Fig. 6b. We would like to emphasize that for $\Phi_n > 1 \times 10^{17}$ cm$^{-2}$, when the discrepancy between N_V and $N_{\text{NPR}}^{\text{EPR}}$ becomes significant, the T_2 time is too short and not in favor of quantum applications.

We now compare the aforementioned results to the spin coherence time in ion-irradiated samples. The ion irradiation can also damage the SiC lattice resulting in a reduction of T_2. It is expected that the irradiation induced damage is stronger for heavier atoms. From this point of view, it is advantageous to use light atoms – particularly H (protons) – for the creation of highly coherent V$_{\text{Si}}$ centers. In case of low proton irradiation fluence $\Phi_p = 2 \times 10^{14}$ cm$^{-2}$ corresponding to $N_V = 3 \times 10^{13}$ cm$^{-3}$ (Fig. 6b), the coherence time $T_2 = 42 \pm 20 \mu$s approaches that in the pristine wafer $T_2^{\text{pristine}} = 48 \mu$s [47]. It was found in another work that with increasing Φ_p and N_V the T_2 time decreases. For $\Phi_p = 1 \times 10^{14}$ cm$^{-2}$ with estimated emitter density $N_V = 3 \times 10^{14}$ cm$^{-3}$, the spin coherence time $T_2 = 22 \pm 5 \mu$s from a stretched exponential fit was reported [50].

In fact, the dependence of the spin coherence on the proton (or any other ion) irradiation fluence is more complex than in the case of electron or neutron irradiation. The ions penetrate to a certain depth, which depends on their energy and the ion type. Though the highest probability to create defects is at the Bragg peak, there is a non-zero probability to create V$_{\text{Si}}$ centers between the sample surface and the Bragg peak, which have longer coherence time [11]. We expect that Eq. (1) can still be used for ion irradiation though the parameter κ should depend on the ion type and energy as well as on the depth from the irradiated surface.

Effect of annealing

Since, as previously mentioned, a high V$_{\text{Si}}$ density combined with long spin coherence is desirable for various applications, we anneal a heavily irradiated sample to explore crystal healing. Figure 7a shows the V$_{\text{Si}}$ PL spectrum in a neutron irradiated sample with a fluence $\Phi_n = 1 \times 10^{18}$ cm$^{-2}$ and the corresponding initial emitter density $N_V = 1 \times 10^{16}$ cm$^{-3}$. Figures 7c and 7d show...
the emitter density as a function of the annealing time t_{ann} and temperature T_{ann}, respectively. The PL intensity linked to N_V increases by a factor of 4 after optimum annealing conditions. This increase can be explained by healing of some irradiation-induced and intrinsic defects other than V$_{\text{Si}}$, which can provide non-radiative recombination paths for the V$_{\text{Si}}$ defects if they are located in their vicinity. This conclusion is also confirmed by the in-depth (along the z direction) PL scans, presented in Fig. 7b. Exponential fits to $\exp(-\alpha z)$ allow to estimate the absorption coefficient $\alpha = \alpha_{\text{laser}} + \alpha_{\text{PL}}$. It decreases from $\alpha = 50.8 \text{ cm}^{-1}$ to $\alpha = 8.0 \text{ cm}^{-1}$ after annealing, indicating that some color centers are indeed removed.

The annealing temperature in our experiments is limited to 500°C since the V$_{\text{Si}}$ defects can otherwise be eliminated at higher temperatures [25]. We would like to note that we do neither observe any PL enhancement nor an increase of T_1 or T_2 in the electron irradiated sample. This again strongly hints at less severe crystal damage and a higher percentage of created V$_{\text{Si}}$ centers by electron irradiation.

To explore the effect of annealing on the coherence properties of the V$_{\text{Si}}$ defects, we measure T_1 and T_2 in the $\Phi_n = 1 \times 10^{18} \text{ cm}^{-2}$ sample after each annealing step. Figure 8a shows the spin-echo experimental data before and after annealing (symbols), fitted with ESEEM (the solid lines). An improvement of the coherence properties with annealing can be clearly seen from these data.

Figure 8b presents the measured spin relaxation time T_1 as a function of the annealing temperature ($t_{\text{ann}} = 120 \text{ min}$). Though T_1 increases, it is not completely restored to the value of 300 μs as in case of low irradiation fluences (Fig. 6a). We note, T_1 as a function of T_{ann} does not saturate in our experiments. For higher T_{ann}, T_1 might increase further, but N_V would drop due to healing out of the V$_{\text{Si}}$ defects. The spin coherence time T_2 can be improved by a factor of 2.5 as presented in Fig. 8c. The maximum value achieved in the heavily irradiated sample is $T_2 = 7.6 \pm 0.5 \mu$s. Since $1/T_2^{(i)}$ scales with the number of all created defects, this increase of T_2 can be explained by healing of paramagnetic, non-V$_{\text{Si}}$ defects at temperatures below 500°C and therefore a suppression of decoherence caused by the spin-spin interaction.

To conclude, we have thoroughly investigated the irradiation impact on the room-temperature spin coherence properties of silicon vacancies in SiC. We have measured the spin-lattice relaxation time and the spin coherence time depending on the irradiation particle (electron, neutron and proton), irradiation fluence and irradiation energy. In order to find the broader systematics, we have analyzed the available literature values, too.

We have established, that the spin-lattice relaxation time remains constant up to high irradiation fluences, independently of the irradiation type. This is to be expected, as the dominant effect determining the T_1 time is spin-phonon-scattering, which is an intrinsic property of the crystal and therefore, up to a certain level, independent of the fluence. Only for high emitter densities, the interactions between the defects get to play a role for the T_1 time and cause it to drop rapidly.

On the contrary, the spin coherence time is very sensitive to the irradiation type and fluence, indicating a much higher sensitivity regarding the interactions between the defects compared to the T_1 time. The longest spin coherence time for the same emitter density is observed for electron irradiation. The interaction of electrons with the crystal is mainly limited to ionisation. Electrons, that create crystal defects, already lost a lot of energy due to collisions with crystal electrons before. In comparison, neutrons lose almost all of their energy to crystal atoms and thus create much more severe damage than electrons. Surprisingly, the electron energy has no influence on the silicon vacancy coherence properties and all data can be well described by the same equation with two independent parameters. The shortest spin coherence time was observed in neutron-irradiated samples, which, however, can be partially recovered using thermal annealing. Since we assume that the dominant effect limiting the T_2 time is $1/T_2^{(i)}$, the increase of the T_2 time in the annealed samples hints at a reduction of the number of irradiation induced defects other than V$_{\text{Si}}$. This leads to a suppression of the V$_{\text{Si}}$ defects’ spins decoherence.

We thus expect that our study provides important information for the optimization of the V$_{\text{Si}}$ defect spin coherence properties and allows to design quantum devices and structures with the desired parameters based on SiC as a platform.
ACKNOWLEDGMENTS

This work has been supported by the German Research Foundation (DFG) under Grants AS 310/5-1 and DY 18/13-1, the WFW project I 3167-N27 SiC-EiC as well as JSPS KAKENHI 17H01056 and 18H03770. V. D. also acknowledges financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id 39085490). H. K. states that part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration; and acknowledges funding by the NASA Postdoctoral Program. Z. S. thanks support from the China Scholarship Council (CSC File No.: 201706220060). We thank M. Villa and R. Bergmann for operation of the TRIGA reactor as well as G. Bukalis for operation of the BER II reactor.

[22] C. J. Cochrane, J. Blacksberg, M. A. Anders, and P. M. Lenahan, Vectorized magnetometer for space applications using electrical readout of atomic scale defects in...
silicon carbide, Scientific Reports 6, 37077 (2016).
[49] J. Wang, Y. Zhou, X. Zhang, F. Liu, Y. Li, K. Li, Z. Liu,

