
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quadratic Solitons in Singly Resonant Degenerate Optical
Parametric Oscillators

M. Nie and S. -W. Huang
Phys. Rev. Applied 13, 044046 — Published 17 April 2020

DOI: 10.1103/PhysRevApplied.13.044046

http://dx.doi.org/10.1103/PhysRevApplied.13.044046


PHYSICAL REVIEW APPLIED 

Quadratic Solitons in Singly Resonant Degenerate Optical Parametric Oscillators 

M. Nie* and S. -W. Huang† 
Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO 80309 

(Received xxx; published xxx) 

By identifying the similarities between the coupled-wave equations and the parametrically driven nonlinear 
Schrödinger equation, we for the first time unveil the existence condition of quadratic solitons in continuous-
wave pumped singly resonant degenerate optical parametric oscillators (SR-DOPOs). Compared to the 
previously explored doubly resonant DOPOs, quadratic solitons in SR-DOPOs are advantageous in their robustness 
against perturbations induced by dispersion of the effective third-order nonlinearity and temporal walk-off between 
the signal and the pump. Terahertz comb bandwidth and femtosecond pulse duration are attainable in an 
example periodically poled Lithium niobate waveguide resonator in the short-wave infrared. The working 
principle can be extended to other material platforms, making it a competitive ultrashort pulse and broadband 
comb source architecture at the mid-infrared. 
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I. INTRODUCTION 
Mode-locked laser (MLL) and optical frequency comb (OFC) 

have been the cornerstones and key enabling technologies for many 
scientific breakthroughs in precision frequency metrology, 
ultrastable time keeping, extreme light-matter interaction, coherent 
comb spectroscopy and more [1, 2]. Recently, OFC based on 
dissipative Kerr soliton (DKS) formation in high-Q cubic nonlinear 
cavities has emerged as a promising complement to the traditional 
MLL-based OFC [3-12]. The approach provides a new type of 
compact OFC with ultrahigh repetition rates in the range of 10 to 
1000 GHz, further expanding the already remarkable scope of OFC 
applications. 

Quadratic nonlinear resonators provide yet another compelling 
route to OFC generation, through either optical parametric 
oscillation (OPO) or cavity-enhanced second harmonic generation 
(SHG). In particular, OPO is intrinsically broadband and tunable 
and it extends the OFC to otherwise inaccessible wavelengths 
including the mid-infrared (MIR) spectral range [1]. Traditionally, 
OPO-based OFC is generated through synchronous pumping, in 
which the circulating OPO signal is periodically amplified by a 
MLL that is synchronized to the OPO cavity. Synchronously 
pumped degenerate OPOs (DOPOs) based on periodically poled 
Lithium niobate (PPLN) [13-15] and orientation-patterned gallium 
arsenide (OP-GaAs) [16, 17] have all been successfully 
implemented as viable MIR OFC sources. In addition, a new 
operation regime of a near-synchronously pumped DOPO has been 
observed recently in which temporal simultons are formed through 
the balance between synchronization timing mismatch and 
nonlinear pulse acceleration [18]. 

However, synchronously and near-synchronously pumped 
OPOs require additional MLLs and associated synchronization 
electronics, thus generally resulting in increased complexity, large 
footprint, and high cost for such OPOs. To address the issues, 
techniques to mode-lock continuous-wave (CW) pumped OPO 
have been investigated and developed. Early efforts in this research 
direction focused on active mode-locking with intracavity electro-
optic modulator and acousto-optic modulator [19-24]. The first 

attempts towards the passively mode-locked OPO and OFC 
generation via quadratic nonlinearity were reported in 2013 and 
2014 where the intracavity phase mismatched SHG was utilized 
[25, 26]. Recent theoretical analysis further showed that OFC 
based on quadratic soliton formation can be attained through either 
a cavity-enhanced SHG [27] or a DOPO [28-30] in the doubly 
resonant (DR) configuration. 

On the other hand, quadratic soliton formation in the singly 
resonant (SR) DOPO configuration has not been demonstrated and 
analyzed, despite much reduced complexity in device fabrication 
and wavelength tuning. Here, we theoretically study quadratic 
soliton formation in a CW-pumped PPLN SR-DOPO and unveil 
for the first time the existence condition of both high-quality bright 
quadratic solitons and dark quadratic soliton pairs. Terahertz comb 
bandwidth and femtosecond pulse duration are attainable, with 
their properties characterized through bifurcation analysis, linear 
stability analysis, and numerical simulation. We identify the phase 
matching condition as the most critical design constant in 
search for the quadratic soliton in CW-pumped SR-DOPOs. 
It determines not only the parametric pump driving term but also 
the dispersive effective third-order nonlinearity that perturbs 
the quadratic solitons in two distinctive ways. Finally, we 
investigate the quadratic soliton perturbation from dispersive 
nonlinearity as well as group velocity mismatch (GVM) and 
develop the suitable strategy to avoid their detrimental effects. 

II. THEORETICAL ANALYSIS AND 
NUMERICAL RESULTS 

A. Dispersive effective TPA and Kerr nonlinearity 

The field evolution in the retarded time frame through a CW-
pumped SR-DOPO (Fig. 1) obeys the coupled equations: 

           (1) 
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FIG. 1.  Schematic of the quadratic soliton mode-locked SR-DOPO. 
The two end-faces of the Fabry–Pérot (FP)  cavity are both coated 
with high transmission at the pump frequency and high reflectivity 
at the signal frequency. With proper pump and cavity parameters, 
ultrashort pulses and broadband combs can be generated. 

and the boundary conditions: 

               (3) 

                         (4) 

where A is the signal field envelope, B is the pump field envelope, 
Bin is the CW pump, αcs, p are the propagation losses, Δk is the wave-
vector mismatch, Δk’ is the GVM, and k”

s, p are the group-velocity 
dispersions (GVDs), L is the nonlinear cavity length, θs, p are the 
coupler transmission coefficients and δs is the signal-resonance 
phase detuning [31].  is the 

normalized second-order nonlinear coupling coefficient, where ω0 
is the center frequency of the signal field, deff is the effective second-
order nonlinear coefficient, Aeff is the effective mode area, c is the 
speed of light, ε0 is the vacuum permittivity, and ns, p are the linear 
refractive indices. Higher-order dispersion and nonlinearity are 
both neglected for simplicity. 

Under the mean field, low pump propagation loss, and 
good cavity approximations [32], Eqs. (1)-(4) can be simplified 
into a single mean-field equation for the signal field [31]: 

            (5) 

where t is the “slow time” that describes the envelope evolution 
over successive round-trips, tR is the roundtrip time, τ is the “fast 
time” that depicts the temporal profiles in the retarded time frame, 
and αs is the total signal linear cavity loss. The fourth term on the 
right-hand side is the effective third-order nonlinearity where the 
nonlinear response function 

                            (6) 

and  describes the dispersion of the effective 
third-order nonlinearity. Here,  where 
Ω is the angular frequency with respect to the signal, ξ = Δk · L is 
the wave-vector mismatch parameter, D1 = Δk’ · L is the temporal 
walk-off, Dp = k”

p L / 2 is the pump group delay dispersion (GDD). 
The last term on the right side, , 

is the phase-sensitive parametric pump driving term. Of note, ξ ≠ m 

∙ 2π (m∈	ℤ, m ≠ 0) to guarantee a non-zero parametric pump driving 
term. To shed light on the frequency-dependent nonlinear response 
function, we separate  into the real and 

imaginary parts to individually examine their effects. Here, P(Ω) 
and Q(Ω) resemble the dispersive two-photon absorption (TPA) 
and the dispersive Kerr effect, respectively. Importantly, P(Ω) and 
Q(Ω) are set by the choice of the pump parameters and the wave-
vector mismatch parameter. We first consider the case of zero 
GVM (D1 = 0) and then treat GVM as a perturbation to the 
quadratic soliton in the CW-pumped SR-DOPO. 

 
FIG. 2.  Frequency response of P(Ω) (a) and Q(Ω) (b) as a function 
of the wave-vector mismatch parameter ξ. Line profiles of P(Ω) 
and Q(Ω) at ξ = ±π and ξ = ±2π are plotted in (c)(e) and (d)(f), 
respectively. Influence of ξ on the convolution of test pulse and 
inverse Fourier transformation of P(Ω) and Q(Ω) are shown in (e) 
and (f), respectively. The white dashed lines in (a)(b) and (g)(h) 
depict the test pulse bandwidth and duration, respectively. L = 15 
mm, αp = 0, D1 = 0 ps, and Dp = 1222 fs2. 
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Figure 2 plots the dispersive effective third-order nonlinearity as 
a function of the wave-vector mismatch parameter ξ. Similarly, Fig. 
S1 (Supplemental Material [33]) plots the dispersive effective 
third-order nonlinearity as a function of pump GDD D2. Two 
distinct regimes can be evidently identified and divided into the 
upper zone where ξ · Dp > 0 and lower zone where ξ · Dp < 0 (Figs. 
2a and 2b). The upper zone is characterized by the two resonant 
effective TPA peaks and associated nonlinear phase anomalies 
symmetrically located at . In comparison to DR-

DOPO, the expression is similar except that the pump detuning is 
now replaced by the phase mismatch parameter [34]. As phase 
mismatch parameter can be set at a much higher value than the 
pump detuning, SR-DOPO is advantageous in the ultrabroad 
bandwidth of its effective third-order nonlinearity and thus it can 
support solitons with larger bandwidth without perturbation and 
tolerate larger walk-off between pump and signal. In the lower 
zone, both dispersive effective TPA and dispersive effective Kerr 
nonlinearity vary periodically with the wave wave-vector 
mismatch parameter. Figs. 2e and 2f plot the two extreme profiles 
of the lower zone P(Ω) and Q(Ω), respectively. To elucidate their 
effect on a pulse, a Gaussian test signal field with a transform 
limited pulse duration ΔT of 500 fs is introduced to convolve 
with the inverse Fourier transformation of the real and 
imaginary part of the nonlinear response function (Figs. 2g 
and 2h). In time domain, the test pulse does not experience severe 
distortion due to the large bandwidth of P(Ω) and Q(Ω) for both 
branches. While the effective TPA manifests itself into breathing 
behavior around ξ = m ∙ 2π, the effective Kerr nonlinearity 
manifests itself into pulse distortion around phase matching point. 

For the sub-ps pulses discussed in this paper, the variation of 
P(Ω) and Q(Ω) over the THz bandwidth is less than 1 % (Fig. 2). 
Thus, Equation (5) can be further simplified into a similar form of 
the parametrically driven damped nonlinear Schrödinger 
equation (NLSE) [35, 36], by treating P(Ω) and Q(Ω) as 
constant values P(0) and Q(0) respectively: 

           (7) 

where  is the effective 

TPA coefficient and  is 

the effective Kerr nonlinear coefficient. Of note, both coefficients 
can be adjusted through the wave-vector mismatch parameter, the 
nonlinear cavity crystal length, and the normalized second-order 
nonlinearity coupling coefficient. 

As shown in Fig. 3a, γeff can be enhanced from the intrinsic value 
γ by more than an order of magnitude when ξ is chosen to be 
between π and 5π. In addition, Figure 3b plots the nonlinear figure 
of merit (FOM, γeff / αTPA) as a function of ξ. The oscillatory FOM 
reaches local maxima and minima at ξ = m ∙ 2π and ξ = 
(2n+1) ∙ 2π (n∈	ℤ), respectively. Of note, these local maxima 
cannot be utilized as the parametric pump driving term 
diminishes at ξ = m ∙ 2π. On the other hand, the local minima 

linearly increase from the phase matching point with a slope 
of ξ/2 and thus all the local minima are larger than unity, 
meaning that the effective Kerr nonlinearity always 
dominate over the effective TPA. Importantly, wave-vector 
mismatch parameter ξ is the most critical design constant in 
search for the quadratic soliton in the CW-pumped SR-
DOPO as it determines not only the dispersive third-order 
nonlinearity but also the parametric pump driving term. 

 
FIG. 3.  (a) Enhancement factor of the effective Kerr nonlinearity 
(γeff / γ) as a function of the wave-vector mismatch parameter ξ and 
the crystal length L in PPLN. The enhancement factor reaches its 
peak at ξ = π. (b) Nonlinear FOM (γeff / αTPA) as a function of the 
wave-vector mismatch parameter ξ. The local minima linearly 
increase from the phase matching point with a slope of ξ/2. 

B. Bifurcation and linear stability analysis of the CW 
solutions 

In this subsection, we will analyze the bifurcation 
behavior of the CW solutions of Eq. (7), including both the 
trivial (zero) and non-trivial solutions that are also the 
solutions of Eq. (5). Linear stability analysis using Eq. (7) is 
developed to study the stable regimes of these solutions [33]. 
As an example, we choose ξ = ±π such that the parametric 
pump driving term is a real number. Beside the zero solution, 
Eq. (7) also has non-trivial CW solutions in the form of 

 with the intracavity power  

satisfying: 

                     (8) 

where , , 

, and pump power . 

 
FIG. 4.  Bifurcation diagram of Eq. (8) for a subcritical case (blue 
lines, ξ · δs > 0 and ξ · ks

” < 0) and a supercritical case (magenta lines, 
ξ · δs < 0 and ξ · ks

” > 0). g = 0.2105, η = 0.1340, αs = π/160, and δs 

/αs = 6. 
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Figure 4 shows the bifurcation diagram of Eq. (8) for the at ξ = 
±π. Linear stability analysis of the zero solution shows that there is 
a threshold 𝑋!" ≡

#!"$%!"

&"'"()*+"(- .⁄ ) above which the zero solution 
becomes modulationally unstable (section II in Supplementary 
Material [33]). In the parameter space where ξ · δs > 0 and ξ · ks

” 
< 0 (blue lines), the intracavity power exhibits a bistable hysteresis 
cycle when the pump power falls within 𝑋!" − ∆𝑋!" < 𝑋 < 𝑋!" 
where ∆𝑋!" =

(1#!23%!)" 41"$3"56
&"'"()*+"(- .⁄ )

. Linear stability analysis of 
the non-trivial CW solutions shows that the lower branch is 
modulationally unstable while the upper branch is modulationally 
stable (section II in Supplementary Material [33]).  

In the parameter space where ξ · δs < 0 and ξ · ks
” > 0 

(magenta lines), the intracavity power (only upper branch exists) 
increases monotonically when the pump is above the threshold. 
Linear stability analysis of the non-trivial CW solutions 
shows that it is modulationally stable (section II in 
Supplementary Material [33]). 

C. Bright soliton 

In the simulation, pump power and signal detuning are 
both scanned in search of the quadratic solitons. Table 1 
summarizes the existence condition of bright quadratic 
solitons in a CW-pumped SR-DOPO. Eq. (7) shows that the 
sign of the effective Kerr nonlinearity (or g in Eq. (8)) is 
solely determined by the choice of the wave-vector 
mismatch ξ such that bright quadratic solitons can exist in 
both normal and anomalous GVD regimes as long as ξ · ks

” 
< 0. As bright quadratic solitons are formed from locking of 
fronts connecting the two stable solutions (zero solution and the 
upper branch solution) [29], they can only exist in the bistable 
regime (purple area in Fig. 4) where 𝑋!" − ∆𝑋!" < 𝑋 < 𝑋!" 
and ξ · δs > 0. 

 Finally, dispersion of the effective third-order nonlinearity that 
perturbs the quadratic solitons further categorizes the bright 
quadratic solitons into the upper zone where ξ · kp

” > 0 and lower 
zone where ξ · kp

” < 0 (Figs. 2a and 2b). 

Table 1. Existence of bright quadratic soliton with 
respect to the signs of the wave-vector mismatch 
parameter, signal GVD, signal-resonance phase 
detuning, and pump GVD. 

quadratic soliton type     

upper zone + - + + 
upper zone - + - - 
lower zone + - + - 
lower zone - + - + 

By solving Eqs. (1)-(4) with the standard split-step Fourier 
method, representative pulse shapes and optical spectra of the upper 
zone (first row in Table 1) and the lower zone (last row in Table 1) 
bright quadratic solitons are shown in Fig. 5. The bright solitons are 

excited by writing a 500-fs Gaussian signal pulse for the first 100 
iterations and then removing it until the simulation reaches a steady 
state. Dispersive wave at , resulting from the 

phase mismatched nonlinear interaction between the incident pump 
and the intracavity signal fields, is suppressed by the inclusion of a 
super-Gaussian filter with a full width at half maximum (FWHM) 
bandwidth of 20 THz. In both regimes, terahertz comb bandwidth 
and femtosecond pulse duration are attainable. Both quadratic 
solitons are stationary in time domain and slightly chirped form its 
transform limit, with sign of the chirp depending on the existence 
regime. Importantly, unlike the DKS-based OFC [3-12], OFC 
based on quadratic soliton formation in SR-DOPO does not have 
the undesirable CW spectral peak and temporal background. The 
signal acquires cascaded second-order nonlinearity from the 
conversion and back-conversion between pump and signal. The 
process manifests itself into the pulse peak power evolution along 
the propagation distance in the DOPO cavity (Fig. 5c and 5d). 

 
FIG. 5.  (a)(b) Pulse shape and optical spectrum of the upper zone 
(solid lines) and the lower zone (dashed lines) bright quadratic 
soliton in the GV matched SR-DOPO. The pump power |Bin|2 is set 
below the threshold (Pth = 53.2 mW) at 45 mW. The 10-dB comb 
bandwidth is 0.95 THz and the FWHM pulse duration is 640 fs, 
slightly chirped form its transform limit of 584 fs. Sign of the chirp 
depends on the existence branch. Evolution of the upper zone bright 
quadratic soliton (c) and the residual pump (d) along the FP cavity. 
L = 15 mm, tR = 222 ps, αs = θs = π/160, θp = 1, Aeff  = 28 µm2, κ = 
54.2 W-1/2 m-1, and Dp = 1222 fs2. Positive regime: ξ = π, δs /αs = 6, 
and ks” = -325 fs2/mm; negative regime: ξ = -π, δs /αs = 6, and ks” 
= -325 fs2/mm. 

The parameters used for the upper zone bright quadratic solitons 
(solid lines in Figs. 5a and 5b) can be readily achieved in a 
monolithic PPLN waveguide FP resonator with a 28-μm2 mode 
area, a 15-mm length (Fig. S3 in Supplemental Material [33]), a 
1262-nm CW pump wavelength, and a 2524-nm signal center 
wavelength. Dichroic thin-film coatings with 2% and 100% 
transmission coefficients at signal and pump respectively are 
deposited on both waveguide end surfaces. Due to the large 
effective Kerr nonlinear coefficient of 14 W-1m-1, high-quality 
bright quadratic soliton can be obtained with a CW pump power as 
low as 45 mW. On the other hand, existence condition of lower 
zone bright quadratic solitons, ξ · ks

” < 0 and ξ · kp
” < 0, is much 

x ''
sk sd
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more stringent and it is more challenging to fulfill it in conventional 
bulk materials and waveguide designs. Multiple zero-dispersion 
points between the pump and signal wavelengths are required to 
meet the existence condition and a strategy to achieve it is by 
employing a recently studied sandwich waveguide structure [37]. 

D. Dark soliton 

Dark quadratic soliton pairs are formed from the locking of two 
fronts connecting two stable non-trivial CW solutions with 
identical amplitude but π phase difference. Thus, dark quadratic 
soliton pairs can only exist in regimes (i) two upper branches (blue 
area in Fig. 4) where the solutions above the threshold are 
modulationally stable; (ii) the regime between the Maxwell point 
and the threshold where the upper branch solution is also 
modulationally stable [29]. Note that the parametric pump 
driving term ρA* in Eq. (7) breaks down the continuous 
phase symmetry A → eiϕA for the undriven case (ρ=0) to the 
discrete one A → -A. Thus the two states of the non-trivial 
CW solutions are out of phase (π difference in phase), 
leading to the formation of Ising wall (also called Néel wall) 
with the form of hyperbolic tangents (also called kinks or 
dark solitons) [29, 38-41]. 

Here we focus on the dark quadratic soliton pair in the first 
regime where supercritical upper branch solution bifurcates from 
the zero solution the pump power exceeds the threshold Xth (blue 
area in Fig. 4). Another feature is that the dark solitons must be 
formed in pairs to satisfy the cavity boundary condition. Figure 6 
shows pulse shapes of example dark quadratic soliton pairs overlaid 
with their temporal phase profiles. It can be seen that a dark 
quadratic soliton is consisted of two adjacent out-of-phase upper 
branch solutions. Pulse duration of the dark quadratic soliton is 
determined by the signal-resonance phase detuning δs and the 
signal GVD ks

”. The additional π phase difference between 
constituent pulses in a dark quadratic soliton pair provides the 
repelling force that stabilizes their separation [38]. 

 
FIG. 6.  Existence of dark quadratic soliton pairs above the 
threshold (Pth = 53.2 mW) in the GV matched SR-DOPO, with 
|Bin|2 = 55 mW, , and  (a) or  (b). All the 
other parameters are the same with that in Fig. 5a. 

III. EFFECT OF WALK-OFF 

When the temporal walk-off D1 is considered, the frequency-
dependent nonlinear response function  is evidently perturbed 
and asymmetry occurs in both P(Ω) and Q(Ω) as shown in the 
Figure 7. In the upper zone where ξ · Dp > 0, real roots of 

 can be found and thus two resonant 
effective TPA peaks and associated nonlinear phase anomalies 
always exist (Figs. 7a and 7b). As the temporal walk-off D1 
increases, the resonance closer to the center frequency (Ω=0) 
asymptotically approaches Ω = ξ / D1 while the other resonance 
continues to move away from the center frequency. In comparison 
to DR-DOPO, the expression is similar except that the pump 
detuning is now replaced by the phase mismatch parameter [34]. 
As phase mismatch parameter can be set at a much higher value 
than the pump detuning, SR-DOPO is more robustness against 
perturbations and can tolerate larger temporal walk-off between 
pump and signal. In the lower zone where ξ · Dp < 0, the behavior of 
the frequency-dependent nonlinear response function is divided 
into two distinct regimes (Figs. 7c and 7d). When the temporal 
walk-off is small such that , there is no real root 

of  and thus no narrowband resonance 
phenomenon is present near the center frequency. In this regime, 
the smooth profiles of P(Ω) and Q(Ω) and the relatively large 
bandwidth guarantee the GVM has minimal perturbative effect to 
the quadratic soliton. On the other hand, resonant effective TPA 
peaks and associated nonlinear phase anomalies reappear as the 
temporal walk-off increase above . Similarly, the 

resonance closer to the center frequency asymptotically approaches 
Ω = ξ / D1. 

 
FIG. 7.  Effect of temporal walk-off D1 on the frequency response 
of P(Ω) and Q(Ω) in the upper zone where ξ = 5π (a)(b) and the 
lower zone where ξ = -5π (c)(d). The dashed (white and black) lines 
show the bandwidth of the test pulse. The arrows in (a) and (b) 
indicate the spectral locations of the resonant TPA peaks and the 
associated nonlinear phase anomalies. Dp = 1222 fs2. 

A straightforward strategy to avoid the detrimental narrowband 
perturbation is to keep the closer resonance well away from the 
center frequency by more than the pulse bandwidth, namely 

6s sd a = x p= x p= -

( )I W!
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 (assuming a sech2 pulse shape), through the 
choice of large wave-vector mismatch parameter at the cost of 
reduced effective Kerr nonlinearity and parametric pump driving 
term (see Eq. (7)). Figure 8 plots the pulse shape and optical 
spectrum of an upper zone bright quadratic soliton under a large 
GVM of Δk’ = 100 fs/mm and temporal walk-off of D1 = 1.5 ps. 
Asymmetry is evidently observed in both the pulse shape and the 
optical spectrum. One of the spectral peaks of the pump closer to 
the center frequency is located precisely at the point indicated by 
the arrows in Figs. 7a and 7b. The temporal walk-off between the 
signal and the pump manifests itself into the enhanced oscillatory 
tails on either side of the pump [42], depending on the sign of D1. 
Thus, the corresponding pump spectrum exhibits apparent spectral 
fringes. Importantly, the signal pulse shape remains clean and 
minimally perturbed even when the pump is already highly 
modulated. The bright quadratic soliton is stationary in time 
domain, but it evolves along the propagation distance in the DOPO 
cavity as shown in Fig. 8c and 8d due to the conversion and back-
conversion between pump and signal. On the other hand, the pump 
experiences pulse splitting like the soliton fission dynamics [43]. 

 
FIG. 8.  Pulse shape (a) and optical spectrum (b) of the upper zone 
bright quadratic soliton under an increased temporal walk-off of 
D1=1.5 ps. Evolution of the upper zone bright quadratic soliton (c) 
and the residual pump (d) along the FP cavity. All the other 
parameters are the same as in Fig. 5a, except for |Bin|2 = 0.4 W and 
ξ = 5π. 

When the GVM Δk’ and the temporal walk-off D1 are increased 
to 160 fs/mm and 2.4 ps respectively (ξ /D1 = π /ΔT), perturbation 
grows so strong that pulse modulation also builds up in the signal 
pulse though it remains stable (Fig. S5 in Supplementary Material 
[33]). The corresponding pump power requirement is increased to 
600 mW. Further increase of the GVM and the temporal walk-off, 
pulse destabilization eventually occurs, and bright quadratic soliton 
ceases to exist in the CW-pumped SR-DOPO. As shown in Fig. 9, 
GVM imposes similar effects on the dark quadratic soliton pairs 
where dark quadratic soliton pairs drift and ripples emerge on one 
side of the pulses. 

 
FIG. 9.  Time evolution and pulse profile of the dark soliton under 
an increased temporal walk-off of D1 = 1.5 ps are shown in (a) and 
(b), respectively. All the other parameters are the same as in Fig. 6b. 

IV. CONCLUSIONS 
In conclusion, we study the previously unexplored 

parameter space and unveil the existence condition of 
quadratic solitons in CW-pumped SR-DOPO. The coupled-
wave equations describing the dynamics of SR-DOPO can 
be simplified into a single signal mean-field equation that 
resembles the parametrically driven NLSE. Bifurcation 
analysis and linear stability analysis of the CW solutions of 
the equation identify the origin of quadratic solitons in the 
CW-pumped SR-DOPO as locking of two modulationally-
stable solutions. Bright quadratic solitons can exist in the below-
threshold regime exhibiting a bistable behavior, while dark 
quadratic soliton pairs can exist in both the below-threshold and 
above-threshold regimes, depending on the system parameters. The 
exact existence condition depends on the interplay between the 
wave-vector mismatch parameter, the signal GVD, the signal-
resonance phase detuning, and the pump GVD. 

The dominant perturbation to the quadratic soliton results from 
the dispersion of the effective third-order nonlinearity; its 
characteristics can be divided into two distinct branches depending 
on the sign of the multiplication of the wave-vector mismatch and 
the signal GDD. In the absence of temporal walk-off, such intrinsic 
perturbation to the quadratic soliton can be minimized through the 
choice of large wave-vector mismatch parameter and small pump 
GDD. When the temporal walk-off is present, the dispersion of the 
effective third-order nonlinearity becomes highly asymmetric and 
the recommended strategy to alleviate the additional GVM 
perturbation is increasing the wave-vector mismatch parameter. 

Numerical simulation confirms that terahertz comb bandwidth 
and femtosecond pulse duration are attainable in an example PPLN 
waveguide FP microresonator. The working principle can be 
further extended to other material platforms, such as CdSiP2, 
ZnGeP2, orientation-patterned (OP-) GaP, and OP-GaAs, making 
it a competitive ultrashort pulse and broadband comb source 
architecture at the MIR spectral region (3-10 μm). 

1 0.315D Tx p D!
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