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From fundamental discovery to practical application, advances in the optical and quantum sci-

ences rely upon precise control of light-matter interactions. Systems of coupled optical cavities are

ubiquitous in these efforts, yet design and active modification of the hybridized mode properties

remains challenging. Here, we demonstrate the design, fabrication, and analysis of a tunable hetero-

geneous photonic molecule consisting of a ring resonator strongly coupled to a nanobeam photonic

crystal cavity. Leveraging the disparity in mode volume between these two strongly coupled cavi-

ties, we combine theory and experiment to establish the ability to actively tune the mode volume

of the resulting super-modes over a full order of magnitude. As the mode volume determines the

strength of light-matter interactions, this work illustrates the potential for strongly coupled cavities

with dissimilar mode volumes in applications requiring designer photonic properties and tunable

light-matter coupling, such as photonics-based quantum simulation.
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I. INTRODUCTION

Coupled optical microcavities serve as a basic building block for many integrated photonic systems and technologies.

Similar to the way bound electronic states of individual atoms couple to form those of a molecule, confined photonic

excitations of two or more optical cavities can electromagnetically interact to form so-called “photonic molecules”

[1–6]. Electronic excitations in molecules are described through hybridization of the orbitals of the constituent atoms

and, in analogy, the electromagnetic super-modes of photonic molecules can be constructed by blending the resonances

of the individual cavities. While single cavities are instrumental to a diverse set of applications ranging from single

photon generation [7–10] and strong light-matter coupling [11–14] to sensing [15–23] and cavity-controlled chemistry

[24–29], systems of two or more cavities have shown promise in a number of applications, including low-threshold

lasing [30–32], cavity optomechanics [33–35], nonclassical light generation [36–42], quantum simulation [43–47], and

biochemical sensing [48, 49].

Critical to the advantages of photonic molecules over individual cavities is the ability to engineer designer super-

modes with properties that differ from those of the constituent components. Of particular interest are coupled cavity

structures whose optical properties evolve with tunable parameters such as cavity-cavity separation and detuning. In

recent years, the active tuning of such photonic molecules has been demonstrated in several experiments [6, 35, 50], but

all have focused on coupled structures composed of near-identical individual cavities. While these devices are useful

for many applications, homogeneity of the constituent cavities limits the dynamic range of the resulting super-mode

properties such as the mode volume, important both for the scaling of light-matter coupling and Purcell enhancement.

In contrast, a heterogeneous photonic molecule composed of two distinctly different cavities allows for a richer

set of emergent properties with a wider scope of applications, such as improved single photon indistinguishability

of quantum emitters [41, 42]. However, lack of a theoretical framework analogous to molecular orbital theory that

is capable of elucidating the dependencies of the composite system upon single cavity parameters makes design and

analysis of coupled optical cavities difficult. Absent such a formalism, prediction of super-mode field profiles and

other downstream properties such as hybridized resonant frequencies and mode volumes must be left to numerical

simulation. The latter can be costly for all but the simplest coupled cavities and impossible for many heterogeneous

systems, providing impetus for theoretical advances in understanding cavity mode hybridization.

In this Letter, we demonstrate thermally tunable hybridization of optical cavity modes in a heterogeneous photonic

molecule composed of a ring resonator and a nanobeam photonic crystal (PhC) cavity. This is achieved by embedding

the coupled cavity structure in a high thermo-optic coefficient polymer that preferentially blue-shifts the nanobeam

resonance relative to the ring due to the “air-mode” design of the PhC cavity [51]. To better understand the resulting

super-modes of this heterogeneous optical system, we introduce a theoretical framework which provides rigorous

underpinnings to the more familiar coupled mode theory for hybridized cavity systems and, for the first time, derive

analytic expressions for the super-mode field profiles and mode volumes expressed in terms of the single cavity field

profiles. Using this formalism, we demonstrate the ability to extract crucial system parameters, such as the bare

resonant frequencies and couplings, as a function of the temperature-dependent detuning. Lastly, we use this theory

to predict the evolution of the resonant frequencies, field profiles, and hybridized mode volumes of the two super-modes,

revealing a temperature-dependent progression which spans a full order of magnitude and results in the coalescence

of the two mode volumes near zero detuning.
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II. RESULTS

A. Experiment

Fig. 1a. displays a scanning electron microscope (SEM) image of the heterogeneous, coupled cavity system fabri-

cated on a 220 nm thick silicon nitride film, grown on thermal oxide on a silicon substrate. The pattern is defined

by e-beam lithography and reactive ion etching [52]. The nanobeam cavity is designed such that a significant portion

of the cavity field is concentrated in SU-8 polymer, which both forms a cladding for the entire device and fills the

holes of the PhC [51] (see Fig. 1b). In contrast, the ring resonator mode is predominantly confined within the silicon

nitride. Due to the relatively high thermo-optic coefficient of the polymer (∼ −10−4/◦C), which is nearly an order of

magnitude larger than that of silicon nitride, heating the entire device leads to a blue-shift of the nanobeam cavity

mode relative to that of the ring. The detuning between the ring and nanobeam modes can therefore be reversibly

controlled by changing the temperature.

To investigate the effect of ring-nanobeam mode detuning, the transmission spectrum is measured through the

nanobeam PhC cavity for a range of temperatures spanning 33.5 − 73.5◦C. Spectra are measured using a supercon-

tinuum laser which is coupled to the system via an on-chip grating (see Fig. 1a). The transmitted light is collected

through the opposite grating and is sent to the spectrometer. While the gratings already provide a spatial separation

to improve the signal to noise ratio, a pinhole is used in the confocal microscopy setup to collect light only from

the output grating. The temperature of the entire chip is controlled using a hot-plate. Fig. 1c displays the result-

ing transmission spectra (gray circles) for a subset of temperatures, with additional measurements included in the

Supplemental Material [53]. As the cavity modes of the ring and nanobeam are coupled, it is difficult to distinguish

how much of the energy separation between transmission peaks at each temperature is due to detuning versus mode

splitting resulting from coupling.

Understanding the impact of these individual contributions and analysis of emergent properties requires a theoretical

formalism capable of describing the super-modes of the coupled ring-nanobeam structure. Coupled mode theory

provides one such approach, but typically relies on several phenomenological rates which simplify modeling, often

at the expense of over-simplifying the underlying physics. Furthermore, coupled mode theory does not provide a

means to predict super-mode properties of interest for heterogeneous photonic molecules, such as hybridized mode

volumes. To amend these deficiencies we develop a first principles theory that provides analytic understanding of the

super-mode resonant frequencies, field profiles, and volumes based only upon knowledge of the individual, uncoupled

cavities.

B. Theoretical model

The resonant modes of an optical cavity are given by the independent harmonic solutions of the wave equation

∇×∇×A(x, t) +
ε(x)

c2
Ä(x, t) = 0, (1)

where A is the vector potential related to the cavity fields by the usual relations E = −Ȧ/c and B = ∇ ×A, ε(x)

is the dielectric function of the structure of interest, and c is the speed of light. As is typical for cavity quantum
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FIG. 1. (a) SEM image of the SU-8 cladded, coupled ring resonator-nanobeam device with a 500 nm gap between ring and
nanobeam at the point of closest separation. Scale bar: 5 µm. (b) y-component of the electric field profiles for the nanobeam
cavity mode (bottom) and ring resonator mode (top) studied. The system is modeled as a coupled oscillator, parameterized
by an effective coupling strength

√
G12G21 and effective frequencies Ωi distinct from the bare resonant frequencies ωi. (c)

Transmission spectra collected for four equally-spaced temperatures (gray circles) with simultaneous least-squares fits to the
model overlaid (red lines).

electrodynamics calculations, we work entirely in the generalized Coulomb gauge defined by ∇ · ε(x)A(x) = 0 which

leads to a vanishing scalar potential for systems without free charge [54, 55]. While optical cavities may alternatively

be described at the level of the fields themselves, the vector potential accommodates a more natural basis for both a

Lagrangian formulation of the cavity dynamics and canonical quantization [56].

Given ε(x), it is in principle straightforward to numerically solve for the modes of the two-cavity structure in Fig.

1a. Such an approach, however, offers limited predictivity and insight into the interaction between the individual ring

resonator and nanobeam modes. In addition, the vastly different length scales of the ring resonator and nanobeam

cavity make electromagnetic simulations of the coupled structures computationally challenging, rendering a purely

numerical exploration of parameter space infeasible. A more flexible strategy is to numerically solve for the modes of

the individual, uncoupled cavities. With the aid of analytics, these individual modes may then be appropriately mixed

to form super-modes dependent on basic system parameters such as the spectral detuning and physical separation

between the cavities.

Considering just a single cavity mode of both the ring resonator and nanobeam, the vector potential for the double

cavity structure can be expanded as

A(x, t) =
∑
i=1,2

√
4πc

Vi
qi(t)fi(x). (2)
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Here, i = 1, 2 corresponds to the ring and nanobeam, respectively, while fi(x) is a mode function of the ith cavity [53]

and qi(t) a time-dependent amplitude. The former are normalized such that the mode volume [57–59] is given by

Vi =

∫
d3x εi(x) |Ei(x)|2

max[εi(x) |Ei(x)|2]
=

∫
d3x εi(x) |fi(x)|2 . (3)

The mode expansion in Eq. (2) is approximate and, in general, requires additional terms to ensure Gauss’s law is

obeyed [60, 61]. However, these contributions only become physically relevant at small inter-cavity separations where

the evanescent field of one cavity “spills” into the dielectric medium composing the other, and therefore may be ignored

for the ring-nanobeam resonator studied [53].

The resonant super-mode frequencies are most easily computed through diagonalization of the equations of motion

for the generalized coordinates qi. Deriving such equations is straightforward using standard techniques of Lagrangian

mechanics (see Appendix A), but an equivalent route involves directly integrating Eq. (1) [62]. Regardless of the

approach, the coupled equations of motion are

d2

dt2

q1

q2

 =

Ω2
1 G12

G21 Ω2
2

q1

q2

 , (4)

where Ω2
i = (ω̄2

i −ḡE ḡM )/(1−ḡ2
E/ω̄1ω̄2) and Gij =

√
ω̄j V̄i/ω̄iV̄j (ω̄iḡM − ω̄j ḡE) /(1−ḡ2

E/ω̄1ω̄2) define effective resonant

frequencies and couplings.

These coupled equations of motion differ from those often assumed in application of coupled mode theory to multiple

cavity systems [6, 63, 64]. In particular, the diagonal elements of the above coefficient matrix are distinct from the

bare resonance frequencies ωi. This is a consequence of the absence of a weak coupling approximation, resulting in

coupling-induced resonance shifts [65] that scale as higher-order products of the three distinct coupling parameters

corresponding to the electric (gE) and magnetic (gM ) inter-cavity couplings, and the polarization-induced intra-cavity

self-interaction (Σi) defined by

gE =

√
ω1ω2

V1V2

∫
d3x ε(x)f1(x) · f2(x)

gM =
1

2

√
1

ω1ω2V1V2

∫
d3x

[
ω2

1ε1(x) + ω2
2ε2(x)

]
f1(x) · f2(x)

Σi =

√
1

V1V2

∫
d3x [ε(x)− εi(x)] |fi(x)|2 .

(5)

The intra-cavity self-interaction Σi does not explicitly appear in Eq. (4) as all inter-cavity couplings, resonant

frequencies (ωi), and mode volumes (Vi) have been replaced by renormalized counterparts (indicated by a bar),

defined explicitly in Appendix A.

While coupled mode theory often reduces cavity-mode interactions to a single coupling parameter independent of

the detuning, we note that this is not completely accurate, and more rigorous first-principles treatments relying on

tight-binding methods [62, 66] have revealed three distinct coupling parameters in agreement with those defined above.

However, as shown in Eq. (4), these three parameters may be combined, along with the resonant frequencies, to form
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TABLE I. Parameter Estimates

~ω1(T0) ~ω2(T0) dλ1/dT dλ2/dT ~γ1 ~γ2

1.6922 eV 1.6918 eV −39 pm/◦nC −50 pm/◦nC 0.16 meV 0.23 meV

V1 V2 κ ~gE ~gM Σ1 Σ2

5.0 µm3 0.49 µm3 9.7 µeV −16.4 meV −15.6 meV 1.1×10−5 8.5×10−5

effective coupled oscillator equations which account for these subtleties. Notably, all parameters may be computed

given only the dielectric function composing the individual cavities along with associated field mode profiles.

C. Fit to experimental data

Aided by the effective oscillator equations in Eq. (4), the transmission spectrum is derived through standard

input-output methods [53, 63, 67], yielding

T (ω) =

∣∣∣∣∣ κ

ω − Ω1 + iκ+ G12G21/4Ω1Ω2

ω−Ω2

∣∣∣∣∣
2

. (6)

Simultaneous least-squares fits are performed to transmission spectra at the eight experimentally probed temperatures

shown in Fig. 1c and the Supplemental Material [53]. To minimize the number of free parameters, Σ1, Σ2, V1 and

V2 are calculated using the theory, supplemented by numerically calculated single cavity field profiles. Similarly, gE

and gM are constrained to within ±1% of their theoretical values, while the waveguide-induced dissipation rate κ is

estimated from electromagnetic simulation of the nanobeam.

The remaining free parameters, displayed in the top row of Table I, are extracted through a simultaneous least-

squares fit to all measured transmission spectra. Among them is the resonant frequency of both the ring resonator and

nanobeam at room temperature T0 and associated intrinsic dissipation rates, the latter of which may be introduced

via input-output theory in the standard way by generalizing Ω1 and Ω2 to be complex-valued [63]. We find that the

temperature dependence of the resonant wavelength of each cavity is well-approximated as linear. All other param-

eters are assumed to depend negligibly upon temperature and are treated as constant. Even with these simplifying

approximations, agreement between experiment (circles) and theory (solid lines) is excellent, as evident in Fig. 1c.

Fig. 2a displays the full set of transmission measurements (circles) and fits (curves) for all eight probed temperatures,

while Fig. 2b shows the super-mode resonant frequencies (ω±) as a function of energy detuning ~ω2 − ~ω1. For each

temperature measured, resonant frequencies are estimated from the peaks in transmission spectra and are shown as

black circles. Theory curves (red and blue) are computed through diagonalization of the effective oscillator model in

Eq. (4) which we parameterize according to Table I. Because both ring and nanobeam modes blue-shift with increasing

temperature, plotted curves and points are shifted with respect to the average resonant energy ωavg = (ω+ + ω−)/2

for both panels.

The resonant frequencies undergo an anticrossing as the system nears zero detuning around T = 40 ◦C, with upper
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FIG. 2. (a) Anticrossing resulting from strong coupling between the ring resonator and nanobeam cavity modes. Experimental
data are shown as circles, while colored solid lines display the resulting least-squares fit to Eq. (6). Gray lines overlay the
theoretical values of ω±, extrapolated via parameter values obtained from the fits. (b) Evolution of the super-mode resonant
frequencies as a function of detuning. Black points correspond to experimentally measured peak transmission energies, while
error bars indicate uncertainty in the peak energy due to the finite density of transmission energies measured. Solid curves
display theoretical super-mode energies computed from Eq. (4), parameterized through simultaneous fits to transmission
measurements.

and lower cavity polariton energies differing by ∼ 0.8 meV. Because the coupled oscillator model is parameterized by

the effective frequencies Ω1 and Ω2, and not the bare cavity resonances ω1 and ω2, the anticrossing occurs where the

former, and not the latter, are co-resonant. Thus, the anticrossing in Fig. 2 is slightly shifted from zero detuning.

In addition, the super-mode resonances ω± tend towards the effective frequencies (dotted lines) at large positive and

negative values of the detuning. Strong coupling is confirmed quantitatively through comparison of the computed

effective coupling strength [53] with the dissipation rates reported in Table I [68, 69]. In particular, we find that∣∣∣~√G12G21/4Ω1Ω2

∣∣∣ ≈ 0.40 meV, nearly double the dominant intrinsic dissipation rate ~γ1 = 0.23 meV.

D. Analysis of super-mode properties

Hybridization is further investigated through inspection of the super-mode profiles

f∓(x) =
1

A(θ)

[(
G12

G21

)1/4√
V2

V1
f1(x) cos θ −

(
G21

G12

)1/4√
V1

V2
f2(x) sin θ

]

f±(x) =
1

B(θ)

[(
G21

G12

)1/4√
V1

V2
f2(x) cos θ +

(
G12

G21

)1/4√
V2

V1
f1(x) sin θ

] (7)

and their associated mode volumes

V∓ = V1

[
V2

V1

√
G12

G21

1 + Σ1

A(θ)2

]
cos2 θ + V2

[
V1

V2

√
G21

G12

1 + Σ2

A(θ)2

]
sin2 θ −

√
V1V2

[
gE/
√
ω1ω2

A(θ)2

]
sin 2θ

V± = V2

[
V1

V2

√
G21

G12

1 + Σ2

B(θ)2

]
cos2 θ + V1

[
V2

V1

√
G12

G21

1 + Σ1

B(θ)2

]
sin2 θ +

√
V1V2

[
gE/
√
ω1ω2

B(θ)2

]
sin 2θ,

(8)
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FIG. 3. (a) Field profile for the upper (top) and lower (bottom) cavity polaritons at various temperatures. Both super-modes
are dominated by the nanobeam field at all observed temperatures due to the weighting of f1(x) and f2(x) in Eq. (7). (b)
Hybridized mode volumes V+ (blue curve) and V− (red curve) of the upper and lower cavity polaritons. The gray region
indicates the range of experimentally measured temperatures, while dotted lines specify V1, V2, and V1 + V2. Due to the
predominant localization of both modes in the nanobeam cavity, both V+ and V− coalesce at a value less than 5 times the
mode volume of the isolated ring resonator mode.

where A(θ) and B(θ) are normalization factors defined by [53]

A(θ)2 = Max

ε(x)

[(
G12

G21

)1/4√
V2

V1
f1(x) cos θ +

(
G21

G12

)1/4√
V1

V2
f2(x) sin θ

]2


B(θ)2 = Max

ε(x)

[(
G21

G12

)1/4√
V1

V2
f2(x) cos θ −

(
G12

G21

)1/4√
V2

V1
f1(x) sin θ

]2
 ,

(9)

θ = (1/2) tan−1(2
√
G12G21/[Ω

2
2 − Ω2

1]) is the mixing angle, and the upper (lower) subscript corresponds to the case

θ > 0 (θ < 0). The mixing angle has two distinct regimes; when the detuning is much larger than the effective

coupling strength (θ → 0), the above mode functions reduce to those of the bare ring resonator and nanobeam cavity.

In contrast, for small detuning relative to the coupling (θ → ±π/4) the mode functions become a superposition of

f1(x) and f2(x).

Fig. 3a shows the evolution of the y-component of the upper (top) and lower (bottom) cavity polariton field profiles

across the experimentally measured temperature range. Because the limits of this range constrain the mixing angle to

−π/8 . θ . π/6, neither f+(x) nor f−(x) entirely localize to one of the constituent cavities at any probed temperature.

For all mode profiles shown, a significant portion of the field is contributed by the mode function of the nanobeam

f2(x). We note, however, that there is no fundamental reason that the device could not be heated past the maximum

temperature studied here (73 ◦C), or cooled below room temperature.

Notably, the super-mode profiles are not equal superpositions of f1(x) and f2(x) near zero detuning (T = 40 ◦C).

This may be understood by considering the large mismatch in mode volume between the ring resonator and nanobeam

modes (V1/V2 ∼ 10). According to Eq. (7), the nanobeam contribution to both f+(x) and f−(x) scales like (V1/V2)1/4,

while that of the ring resonator scales like (V2/V1)1/4. As a result, both super-modes are predominantly localized to
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the nanobeam.

Fig. 3b shows theoretical predictions for the hybridized mode volumes as a function of temperature-controlled

detuning, calculated using Eq. (8) paired with the experimentally-informed parameter values in Table I. As before,

blue and red curves correspond to the upper and lower cavity polaritons in Fig. 2a. The gray region indicates the

range of experimentally probed temperatures. Both hybridized mode volumes tend towards those of the individual

cavities at large positive and negative detuning and coalesce at a value of V± ≈ 0.95 µm3, more than a factor of 5

less than the mode volume of the isolated ring resonator.

While the nanobeam mode volume V2 clearly serves as a lower bound for V±, analysis of Eq. (8) indicates a

maximum near V1 + V2. V+ slightly exceeds this value due to constructive interference between the two modes, while

V− peaks at a value below V1 + V2 due to destructive interference. Both mode volumes display a “turning point”

at values of the mixing angle θ such that f1(x) and f2(x) are equally-weighted in either f+(x) or f−(x). Due to the

large mismatch between V1 and V2, between these two points is a full order-of-magnitude of attainable values for

both hybridized mode volumes, illustrating the potential of this heterogeneous device for actively-tunable photonic

properties.

III. CONCLUSION

In conclusion, for the first time we have demonstrated actively tunable hybridization in a heterogeneous photonic

molecule consisting of a ring resonator coupled to a photonic crystal cavity. Critically, we establish an ability to exert

control over the coupled cavity’s mode volumes, spanning over a full order of magnitude. Aided by a theoretical

formalism developed to study hybridized cavity states, we rigorously extract system parameters from experiment and

derive analytic expressions for the super-mode resonant frequencies, field profiles, and mode volumes, elucidating their

evolution with temperature. As the mode volume is a critical parameter dictating the degree of Purcell enhancement

and scaling of light-matter interaction, these results bear impact upon diverse efforts in the emerging fields of quantum

simulation and quantum information processing.
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Appendix A: Dynamics for two single mode cavities

As mentioned in the main text, the equations of motions for coupled cavity modes may be computed either through

integration of the wave equation [62], or via an Euler-Lagrange approach. Here, we follow the latter strategy and use

the standard electromagnetic Lagrangian

L =

∫
d3x

8π

[
ε(x)

Ȧ2

c2
− (∇×A)2

]
(A1)

in the modified Coulomb gauge (and in the absence of free charge). Plugging in the expansion Eq. (2) for the vector

potential leads to

L =
1

2

∑
i

q̇i
Vi

[1 + Σi]−
1

2

∑
i

ω2
i

Vi
q2
i +

gE√
ω1ω2V1V2

q̇1q̇2 − gM
√
ω1ω2

V1V2
q1q2, (A2)

where the analytic forms of gE , gM , and Σi are given in the main text. Application of the Euler-Lagrange equations

then gives

q̈1

V̄1
+ ω̄2

1

q1

V̄1
+

ḡE√
ω̄1ω̄2V̄1V̄2

q̈2 + ḡM

√
ω̄1ω̄2

V̄1V̄2
q2 = 0

q̈2

V̄2
+ ω̄2

2

q2

V̄2
+

ḡE√
ω̄1ω̄2V̄1V̄2

q̈1 + ḡM

√
ω̄1ω̄2

V̄1V̄2
q1 = 0

(A3)

where renormalized mode volumes, frequencies and coupling strengths are defined as

V̄1 = V1/(1 + Σ1) V̄2 = V2/(1 + Σ2)

ω̄1 = ω1/
√

1 + Σ1 ω̄2 = ω2/
√

1 + Σ2

ḡE = gE/[(1 + Σ1)(1 + Σ2)]3/4

ḡM = gM/[(1 + Σ1)(1 + Σ2)]1/4.

(A4)

Further algebra yields the equations of motion defined in the main text,

d2

dt2

q1

q2

 =

Ω2
1 G12

G21 Ω2
2

q1

q2

 (A5)

where Ω2
i = (ω̄2

i − ḡE ḡM )/(1− ḡ2
E/ω̄1ω̄2) and Gij =

√
ω̄j V̄i/ω̄iV̄j (ω̄iḡM − ω̄j ḡE) /(1− ḡ2

E/ω̄1ω̄2).

Appendix B: Physical importance of the mode volume

The mode volume is a critical figure-of-merit for dielectric cavities which determines the strength of light matter

interactions [58, 59, 70]. Here, we show that this remains true in the basis of super-modes of a photonic molecule,
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lending physical meaning to V±. The interaction energy between a dipole emitter and the two-cavity field is given by

Hint = −d ·E(r0). (B1)

where d is the dipole moment of the emitter and r0 its position. Upon transformation to the super-mode basis [53],

the field of the cavity may be written as

E = −Ȧ

c
= −
√

4π

V+
q̇+(t)f+(x)−

√
4π

V−
q̇−(t)f−(x) (B2)

Plugging this into the interaction Hamiltonian and writing the dipole moment in terms a generalized coordinate

d = ex,

Hint = −e
√

4π

V+
[f+(r0) · x̂]xq̇+ −

e
√

4π

V−
[f−(r0) · x̂]xq̇−, (B3)

which clearly reveals the dependence of the coupling strength on the mode volume V±. Importantly, the mode

functions are normalized such that max[ε(x)f±(x) · f±(x)] = 1, and therefore the limit f±(r0) · x̂→ 1 corresponds to

the case of maximal coupling when ε(x) is real and dispersionless.

Appendix C: Effective Hamiltonian approach for calculation of transmission spectra

Computation of the power transmitted through the coupled ring-nanobeam system is most easily achieved in the

basis of creation and annihilation operators. Standard canonical quantization techniques rely on computation of the

Hamiltonian associated with the Lagrangian in Eq. (A2). Due to the coupling between q̇1 and q̇2, however, this

leads to conjugate momenta which themselves are coupled in the Hamiltonian. The result of this is that the rotating-

wave approximation is no longer valid, and standard techniques of input-output theory for coupled systems become

ineffective.

The most straightforward path to quantization is via the effective Lagrangian

L =
1

2

∑
i

[
q̇2
i

Vi
− Ω2

i

q2
i

Vi

]
−
√
G12G21

V1V2
q1q2 (C1)

where 1/V1 = (G21/ω̄1ω̄2)/
√
V̄1V̄2 and 1/V2 = (G12/ω̄1ω̄2)/

√
V̄1V̄2. While different in form from the standard La-

grangian in Eq. (A1), application of the Euler-Lagrange equations yields the exact same equations of motion. Notably,

there is no direct coupling between q̇1 and q̇2, significantly simplifying quantization.

Legendre transform of the above Lagrangian yields the effective Hamiltonian

H =
∑
i

[
Vi
2
p2
i +

Ω2
i

2Vi
x2
i

]
+

√
G12G21

V1V2
q1q2

=
∑
i

~Ωia
†
iai + ~

√
G12G21

4Ω1Ω2
(a†1a2 + a1a

†
2)

(C2)
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where ai =
√

Ωi/2~Vi[xi+i(Vi/Ωi)pi] and counter-rotating terms have been discarded in accordance with the rotating

wave approximation. This procedure also allows us to identify
√
G12G21/4Ω1Ω2 as the “effective coupling strength”

to be compared with the dissipation rates in quantitatively testing for strong coupling. The transmission spectrum

may then be computed through standard input-output methods [63, 67], yielding

T (ω) =

∣∣∣∣∣ κ

ω − Ω1 + iκ+ G12G21/4Ω1Ω2

ω−Ω2

∣∣∣∣∣
2

. (C3)
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