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Non-reciprocity of signal transmission enhances capacity of communication channels and protects trans-
mission quality against possible signal instabilities, thus becoming an important component ensuring coherent
information processing. However, non-reciprocal transmission requires breaking time-reversal symmetry (TRS)
which poses challenges of both practical and fundamental character hindering the progress. Here we report a
new scheme for achieving broadband non-reciprocity using a specially engineered hybrid microwave cavity.
The TRS breaking is realized via strong coherent coupling between a selected chiral mode in the microwave
cavity and a single collective spin excitation (magnon) in a ferromagnetic yttrium iron garnet (YIG) sphere. The
non-reciprocity in transmission is observed spanning nearly a 0.5 GHz frequency band, which outperforms by
two orders of magnitude the previously achieved bandwidths. Our findings suggest a promising direction for
robust coherent information processing in a broad range of systems in both classical and quantum regimes.

I. INTRODUCTION

Non-reciprocity protects coherent information processing
against noise and backscattering which degrade global coher-
ence [1–3]. Recent implementations of non-reciprocal devices
utilized high quality factor resonators [4–9]. Most of them
suffer a narrow bandwidth and/or the lack of tunability which
hindered the wide application of these approaches. An alter-
native approach employing magnetism [10] seems tempting,
but recent developments [11, 12] utilizing ferrites for breaking
time-reversal symmetry in microwave cavities brought weak
effects due to small dispersive perturbation.

Hybrid systems that couple two or more dynamic excita-
tions provide yet another promising solution for obtaining
lacking functionalities. An encouraging example is strongly
coupled magnonic systems [13–20], where spin waves—
the dynamic magnetization excitation in a collective spin
ensemble—coherently interact with microwave cavity pho-
tons. There, spin waves propagating in cavity and described
by quantum electrodynamics (QED) demonstrate a good tun-
ability thus having high potential for quantum applications at
macroscopic scale [18, 21]. Along the similar path, the non-
reciprocity of magnons, which has been observed and utilized
for coherent information processing [22–25], can be brought
into microwave electrodynamics through hybridization. Yet,
non-reciprocity has not been reported in hybrid magnon-
microwave photon systems until very recently [26]. Even
there the bandwidth of the non-reciprocal effect remains lim-
ited. We address this challenge by utilizing strong coupling
which has been shown as an effective approach to increase
system bandwidths[27]. Using a specially-engineered chiral-
state microwave cavity, non-reciprocal magnon-microwave
photon coupling is achieved within a bandwidth that is two
orders of magnitude larger than what has been previously re-
ported.

In our approach, the chirality of magnons and cavity pho-
tons is used to introduce non-reciprocity. Magnons being el-
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ementary excitation of spin waves inherit the single spin’s
ability to precess, hence chirality[28]. Therefore, their in-
teraction with chiral microwave photons obeys the selection
rule: only magnons and microwave photons with the same
chirality interact with each other, while the interaction of
magnons and photons with opposite chiralities is forbidden.
In the microwave cavity supporting two orthogonal chiral
states (clockwise and counterclockwise circularly polarized
photons)[29, 30], the magnons and cavity photons having the
same chirality interact with each other and form hybridized
modes. Accordingly, avoided-crossing or mode splitting is
expected in the transmission spectra (Fig. 1a). Once the pho-
ton chirality is reversed, the interaction disappears and the
photons will pass through the cavity without interactions with
magnons, (Fig. 1b), hence our cavity will exhibit strong non-
reciprocal effects.

II. RESULTS

A. Microwave cavity with chiral states

The cavity is fabricated on a printed circuit board (PCB)
following a substrate integrated waveguide (SIW) design
(Fig. 1c). One-dimensional arrays of metalized vias are ar-
ranged on the substrate to form cavity walls. The sub-
wavelength via spacing (1.2 mm) ensures that the via arrays
function as metal boundaries and enclose electromagnetic
waves inside the substrate. With a fixed via pitch, the cav-
ity resonance frequency is determined by the number of vias
along each direction, Nx and Ny. We employ two transverse
electric modes, TE120 and TE210, as illustrated in Fig. 1d,
whose microwave magnetic fields are the strongest at the cav-
ity center where the magnon resonator is placed. More im-
portantly, when Nx = Ny the cavity possesses a four-fold
rotational symmetry. In this case, the two linearly polarized
modes are degenerate and can form chiral cavity modes with
angular momentum Jz = ±1.

In order to excite a particular chiral state, the two linear
cavity modes need to be linearly combined with a ± π2 phase
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FIG. 1. Illustration of principles for the non-reciprocal magnon-microwave photon coupling in a microwave cavity hosting a magnon
resonator. a. Magnons and microwave photons with the same chirality couple with each other, resulting in magnon-microwave photon
hybridization which appears as the avoided-crossing and normal mode splitting features in the transmission spectrum. b. Magnons and
microwave photons with opposite chiralities do not couple with each other. Microwave photons propagate through the cavity as if there were
no magnons present. The transmission spectra are identical to that of a bare cavity. c. Schematic drawing of the substrate-integrated waveguide
cavity. Yellow area is the copper layer, which also covers the entire backside of the chip. Gray area is the high-dielectric-constant substrate.
The array of black dots are metalized vias that connect the top and bottom copper layer. P1 and P2 are the coupling ports connected to the cavity
through tapered microstrips. The hole in the center of the cavity hosts the YIG sphere. d. Simulated cavity field distribution for two orthogonal
resonances in a rectangular cavity (Nx = 10 and Ny = 9). These two modes have linear microwave magnetic fields at the cavity center along
orthogonal directions. Colors and arrows represent the electric and magnetic fields, respectively. e & f. Simulated cavity field distribution and
field polarization at the center of a square cavity (Nx = Ny = 9), when the input signal is sent from Port P1 or Port P2, respectively. The excited
cavity magnetic fields and electric fields are orthogonal. Near circular polarization is observed, and the chirality is reversed upon swapping the
input and output ports. hx (hy) represent x (y) components of the microwave magnetic field for the cavity resonance.

difference, which is achieved using a special port design. Two
coupling ports of the cavity are engineered by removing two
vias near the corners of two neighboring walls, imposing the
π
2 phase offset. This design ensures the degeneracy of the two
cavity modes necessary to create a chiral state. As shown in
Figs. 1e & f, two standing wave cavity modes have a nearly
perfect π

2 phase difference when excited from a single port:
the maximum magnetic field of one mode corresponds to the
maximum electric field of the other one, and vice versa. Con-
sequently, the ports can excite nearly-circular modes with op-
posite chiralities. As a result, the selectivity of the interaction
between magnons and chiral photon modes described above,
imprints non-reciprocity onto the signal transmission in the
system. To couple traveling input/output signals to/from the
cavity system, a microstrip waveguide is fed to each port with
a tapered region for optimized mode matching. Such a SIW
design of the cavity circuit system allows for an easy integra-
tion with planar structures.

Our magnon resonator is a highly polished single-crystal

YIG sphere with the diameter 400 µm. The fundamental
magnon mode, i.e., the ferromagnetic resonance (FMR), is
selected because its uniform mode profile couples most ef-
ficiently with the cavity fields. A small hole is drilled at
the cavity center to host the YIG sphere, so that maximum
magnetic-field mode overlap can be achieved to enhance the
magnon-photon coupling. Moreover, the implementation of
large-dielectric-constant PCB substrate allows to significantly
reduce the volume of the cavity, which further boosts the inter-
action. The magnon-photon coupling strength can be tuned by
moving the YIG sphere along the z direction, see Fig. 1c, us-
ing a translational stage. As the sphere is moved deeper into
the hole, the coupling strength increases. The magnon fre-
quency is defined as ωm = γH, where γ = 2π × 2.8 MHz/Oe
is the gyromagnetic ratio, and can be tuned by an external
static magnetic field H. Since both cavity modes have their
microwave magnetic fields along in the xy-plane, the external
static magnetic field is applied in the out-of-plane direction,
i.e., along the z-axis, to ensure the simultaneous interaction
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between the magnon mode and both cavity modes.

B. Theoretical model

In the most general case, the two cavity modes under con-
sideration can be non-degenerate and have different resonant
frequencies and coupling strengths with the magnon mode.
The system Hamiltonian is

H = ~

ωa − i κa
2 0 −ga

0 ωb − i κb
2 −gb

−ga −gb ωm − i κm
2

 , (1)

where ωx and κx (x = a, b,m) are the resonant frequencies
and total dissipation rates of the two microwave modes, a and
b, and the magnon mode m, respectively, and ga,b are the cou-
pling strength between the magnon mode and each microwave
mode.

The equation of motion for the composite intra-cavity field,
u = (a, b,m)T , can be written as

d
dt

u =
H
i~

u + Bsin , (2)

where sin = (sin1, sin2)T describes input fields from ports P1
and P2, and B is a 3-by-2 matrix of coupling constants of the
ports, given by

B =


√
κae1

√
κae2eiα

√
κbe1eiβ √κbe2ei(α+β+π)

0 0

 . (3)

Here, κae(1,2) and κbe(1,2) are the external coupling rates be-
tween the microwave modes and the two ports, α is the rel-
ative phase difference of one cavity mode when it is excited
from the two different ports, while β describes the phase dif-
ference between the two modes when they are excited from
the same port. Note that the last row in B is zero because we
assume no direct excitation of magnons from the ports.

In the general non-degenerate case, modes a and b indices
correspond to the two standing-wave modes in our cavity sys-
tem as shown in Fig. 1d. Since for standing waves the cavity
field at different position is always in phase, we have α ≈ 0.
As discussed above, in our configuration, β ≈ π

2 , which leads
to circular states inside the cavity when the two linearly po-
larized standing-wave modes are similar in amplitude. Using
the input-output relation, one finds the scattering matrix of the
system, see Appendix for details.

C. Non-reciprocity and photon chirality

We begin with the non-reciprocal effect in a non-degenerate
cavity in the set up where microwave modes have different fre-
quencies. When Nx = 10 and Ny = 9, the two orthogonal cav-
ity modes resonate at ωa

2π = 10.285 GHz and ωb
2π = 11.142 GHz.

The transmission spectra recorded using a Vector Network

Analyzer (VNA) are plotted in Fig. 2a. The two broad trans-
mission peaks correspond to TE120 and TE210 modes, respec-
tively. The magnon resonances show up as the sharp fea-
tures in the dashed boxes. To investigate the influence of the
photon chirality on the magnon-photon interaction, we tune
the magnon resonance by changing the bias magnetic field.
Three conditions are plotted: H = 3673.2 Oe, 3823.2 Oe, and
3979.3 Oe, corresponding to ωm

2π = 10.285 GHz, 10.705 GHz,
and 11.142 GHz, respectively. Zoomed-in plots are shown
in Fig. 2b to reveal details. The polarization of cavity pho-
tons is determined by the relative strength of the two linearly
polarized modes. As a result, the circularity of the photon po-
larization varies at different frequencies, leading to different
non-reciprocal effects.

In the middle of the two cavity resonances, photons exhibit
nearly perfect circular polarization, since the contributions
from the two linear modes are close to each other. When the
magnon mode is properly tuned, non-reciprocity is observed
and the magnon resonance manifests as a peak in |S 21| and as
a dip in |S 12| (see the middle panel in Fig. 2b). The phases of
S 12 and S 21 also show a distinct changes in the opposite di-
rections as seen in Fig. 2c when plotting in the complex plane.

On the contrary, the non-reciprocity becomes much weaker
when the magnon is in the resonance with the cavity mode
at H = 3673.2 Oe or 3979.3 Oe, where the cavity photons
are dominated by a single linear polarization. Under these
conditions, the magnon resonance appears as a dip for both
S 21 and S 12, and their phase changes are alike, which in the
ideal system would cancel the non-reciprocity. It still remains
finite due to a finite cavity linewidths, providing a non-zero
contribution from the orthogonal polarization. In the polar
plot, the two magnon resonances are in-phase with only slight
differences in the amplitude.

The behaviour of the non-reciprocity is quantitatively
summarized in Fig. 2d, where it is defined as NR =

|(S 12 − S 21) /S 0|, with S 0 being the cavity transmission in the
absence of the magnon mode. Note that S 12, S 21, and S 0 are
all complex numbers, and, therefore, not only the amplitude
but also the phase is included in the non-reciprocity. It is evi-
dent that non-reciprocity reaches its maximum at H = 3823.2
Oe. Figure 2e shows the relative phase, dφ = ∠(S 12 − S 0) −
∠(S 21 − S 0), as a function of the bias magnetic field. The rel-
ative phase has a nearly linear dependence on the bias field,
changing from 0 to 2π as the magnon frequency moves from
one cavity mode to the other, with the maximum phase differ-
ence of π reached half way through.

D. Non-reciprocal strong coupling

To further enhance the non-reciprocal effect, we design a
square cavity (Nx = Ny = 9) with degenerate TE210 and TE120
modes (ωa

2π =
ωb
2π = 11.30 GHz). Because of their identical fre-

quency, both modes can be simultaneously excited by either of
the two coupling ports. Due to the symmetric cavity geometry,
we have κa = κb and ga = gb. As a result, the two linear modes
form nearly perfect circular polarizations (Figs. 1e & f), with
chirality determined by the excitation port. In a circular mode
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FIG. 2. Non-reciprocal magnon-microwave photon interaction. a. Measured amplitude and phase of S 12 (red) and S 21 (blue) spectra from
the rectangular cavity (Nx = 10 and Ny = 9) at three selected bias magnetic fields: H = 3673.2 Oe, 3823.2 Oe, and 3979.3 Oe, respectively.
b. Zoomed-in spectra of the magnon resonances (as indicated by the dashed boxes in a) at the three selected bias conditions. c. Polar plot
of the magnon resonances. Dots are measurement results, and solid lines are theoretical calculations. d & e. Summery of the extracted non-
reciprocity NR and phase differences dφ. Maximum non-reciprocity and a π phase difference is observed around H = 3823 Oe. The amplitude,
real part, and imaginary part of the transmission, as well as the non-reciprocity NR, are all dimensionless.

basis, the system’s Hamiltonian can be rewritten as

Hcir = ~

 ωa − i κa
2 0 −

√
2ga

0 ωa − i κa
2 0

−
√

2ga 0 ωm − i κm
2

 , (4)

demonstrating the selection rule for polarization: only one
circularly polarized cavity mode interacts with the magnon
mode, while the other cavity mode is decoupled.

The combination of the polarization selectivity and the
port-dependent chirality enables the on-resonance non-
reciprocal magnon-photon coupling. Based on our model, the
transmissions for both directions are calculated as:

S 12,21 = ±
ig2

aκa

( κa
2 − i∆a)

[
2g2

a + ( κa
2 − i∆a)( κm

2 − i∆m)
] , (5)

where ∆a,m ≡ ω − ωa,m.
The cavity transmission is measured at different positions z

of the YIG sphere, as shown in Fig. 3. The calculated results
are in an excellent agreement with the complex values of the
measured spectra over the range of positions z. At large z, the
sphere is far away from the center, z = 0, and the overlap be-
tween the cavity photon modes and the magnon mode is small,
leading to a small magnon-photon coupling strength g. The
non-reciprocity similar to what seen in the non-degenerate

case is observed: the magnon resonance results in a peak in
S 12 and in a dip in S 21, see Fig. 3a. Because of the small cou-
pling strength, the peaks and dips are relatively narrow.

As the sphere moves closer to the center, the coupling
strength grows with increasing overlap between the magnon
and photon modes. This modifies the resonance line shapes in
transmission spectra. At z = 0.9 mm, the dip in S 21 reaches
zero, leading to the infinitely large isolation ratio between the
forward and backward propagation. At z = 0.8 mm, the dip
almost disappears from S 21, causing magnon invisibility [26].
As z is decreased further, the dip in S 21 turns into a peak. On
the contrary, the magnon resonance always appears as a peak
in S 12. The magnon-photon interaction increases significantly
with the coupling strength g and becomes dominant over the
overall device transmission when the YIG sphere is close to
the cavity center. At the same time, the linewidth of the trans-
mission peak also becomes significantly larger.

The transmission amplitude spectra show that at smaller z,
i.e., larger g, the difference between S 12 and S 21 becomes
smaller. Nonetheless, the polar plots in Fig. 3b reveal that
the magnon resonances measured in the two opposite direc-
tions always have a π phase difference, regardless of the cou-
pling strength. At larger z (smaller g) values, the magnon
resonance is comparable with the crosstalk signal in ampli-
tude, and, therefore, their interference effect is large, giving
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transmission, as well as the non-reciprocity NR, are all dimensionless.

rise to highly direction-dependent transmission amplitude. At
smaller z (larger g) values, the magnon resonance is dominant,
while the crosstalk signal is negligible, resulting in weaker in-
terference effects in the transmission amplitude. Both ampli-
tude and phase play an important role for coherent information
processing and, therefore, both are essential for quantifying
non-reciprocity. The increasing coupling strength enhances
non-reciprocity as shown in Fig. 3c.

In addition to enhancing the non-reciprocity, the larger
magnon-photon coupling strength is crucial for increasing the
range of frequencies at which strong non-reciprocity is ob-
served. In our system, although the measured non-reciprocity
stays at the relatively unchanging level when g

2π > 30 MHz,
the bandwidth of the non-reciprocal interaction keeps increas-
ing with the coupling strength, as plotted in the bottom panel
of Fig. 3c. When the coupling strength is small, Eq. (5) indi-
cates that the bandwidth of the non-reciprocity is limited by
the magnon linewidth (BW ≈

κm
2 ). In the opposite limit of

the large coupling strength (g � κm
2 ,

κa
2 ), the non-reciprocity

bandwidth becomes BW ≈
κa
2 , according to Eq. (5), indicat-

ing that the magnon-induced non-reciprocity can take place
throughout the whole cavity linewidth. Interestingly, when the
coupling strength g is comparable with κa

2 , the non-reciprocity
bandwidth can be even larger because of the complicated

transmission lineshape. In our experiments, a maximum band-
width of 482 MHz is recorded, which is more than two or-
ders of magnitude larger than in the non-degenerate case or
previous demonstrations which are limited by the magnon
linewidth.

Importantly, the interacting magnon-photon system in our
experiment achieves a strong coupling regime. In particu-
lar, when the sphere is moved to the center, z = 0, the cou-
pling strength of 115 MHz is reached, which exceeds the dis-
sipation rate of individual cavity mode (110 MHz) and the
magnon mode (1 MHz). The strong coupling regime is con-
firmed by the avoided crossing observed in the cavity reflec-
tion coefficients, shown in Fig. 4a, as well as by the clearly
resolved normal mode splitting in Fig. 4b. The transmission
spectra, Fig. 4a (middle and right column), reveal the non-
reciprocity. When the magnon frequencies are tuned away
from the cavity resonance (e.g., at H = 3.5 kOe), the S 12
and S 21 spectra are almost identical, as indicated by the dot-
ted lines in Fig. 4b. However, when the magnon mode is
on resonance with the cavity photon modes, the S 12 and S 21
spectra become distinctly different. Note the enhanced on-
resonance transmission is mediated by the strong coupling be-
tween magnons and microwave photons. The non-reciprocity
is even more prominent in the phase map. At H = 3.5 kOe
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when magnon is off-resonance, the phase response of S 12 and
S 21 are nearly identical (dashed lines), with a 2π-phase change
across the cavity resonance. When the magnon is in reso-
nance, the phase response in S 12 is only slightly different from
the off-resonant one, while in S 21 it changes drastically, with
a 4π phase change across the resonance frequency. The 4π
phase change is a result of the superimposition of the 2π phase
change induced by the magnon resonance on the original 2π
phase change induced by the cavity resonance. Here the phase
is plotted in an expanded range (beyond the 2π limitation) to
better illustrate the phase change across the resonance. This
behavior is visualized separately in Figs. 4c & d, clearly il-
lustrating the non-reciprocity. Note there are two high-order
magnon modes visible at higher bias fields, which appear as
two narrow lines in the amplitude but induce large changes in
phase.

III. DISCUSSION

The observed chirality-based non-reciprocal transmission
based on the strong magnon-photon coupling significantly in-
creased the operating frequency range by two orders of mag-
nitude, opening route for the broadband non-reciprocal coher-
ent information processing. The observed non-reciprocity is
reflected in both the amplitude and phase of the cavity trans-
mission spectra. The phase non-reciprocity is equally impor-
tant because it can be converted to amplitude non-reciprocities
using interferometric geometries such as Mach-Zehnder in-
terferometers. A large magnon-microwave photon coupling
strength is preferred to achieve non-reciprocities in a broader
frequency range. Furthermore, the original construction of our
cavity provided exceptional controllability where the band-
width is tuned by the position of the YIG sphere inside the
cavity and the operation frequency is tuned by the bias mag-
netic field. Thus, our findings point to a promising direction
for an emergent class of non-reciprocal devices for coherent
information transmission. The next forthcoming step is its
application in the quantum regime where unidirectional sig-
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nal propagation is critical for mitigating detrimental effects of
noise and fluctuations.
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Appendix A: Cavity design and preparation

1. Symmetry of the cavity modes

In the degenerate case, the square-shaped microwave cavity
has D4h point-group symmetry, namely, 4-fold rotational sym-
metry about z axis, 2-fold rotational symmetry about x and y
axes, and reflection symmetry with respect to the xy-plane.
The eigen-wavefunctions of the electromagnetic field in this
cavity necessarily factorize according to(
E

H

)
=

(
Eν(r, φ, z)
Hν(r, φ, z)

)
eiνφ , with

Eν

(
r, φ+ π

2 , z
)

Hν

(
r, φ+ π

2 , z
)=

(
Eν(r, φ, z)
Hν(r, φ, z)

)
,

(A1)
where ν = 0,±1, 2 is the quasi-angular momentum Jz (we
omit the Plank constant ~ here). The Jz = 0 mode is a
monopolar mode. The Jz = ±1 are dipolar modes and trans-
form to each other under time reversal. The Jz = 2 mode is a
quadruple mode. In principle, we can define a Jz = −2 mode,
which however is identical to the Jz = +2 mode, since they
both lie at the Brillouin zone boundary of angular momen-
tum. In this system, only the Jz = +1 and Jz = −1 modes
have definitive, right and left chirality with respect to the z-
axis. They degenerate with each other before time reversal
breaking.

Our main interest lies in the low-energy TEmn0 like modes,
in which case Ez, Hx and Hy are the only nonzero field com-
ponents and are invariant along z. Furthermore, Ez is the gov-
erning component, since Hx and Hy can be deduced from Ez
via derivatives. Hence we can write

Ez = Ez,ν(r, φ)eiνφ with Ez,ν

(
r, φ +

π

2

)
= Eν (r, φ) . (A2)

The lowest-energy ν = 0 and ν = 2 mode, respectively, is the
conventional TE110 mode and TE220 mode (see Fig. 5). The
lowest-energy ν = ±1 modes are linear combinations of the

conventional TE210 mode and TE120 mode with ± π2 phase dif-
ference,

|ν = ±1〉 =
1
√

2
(|TE210〉 ± i|TE120〉) . (A3)

The angular momentum Jz = ν = ±1 corresponds to the right-
and left-chirality. These two modes have the strongest mag-
netic field at the center r = 0. This is crucial for realizing
strong magnon-photon coupling. The magnetic field rotates
in the counterclockwise and clockwise direction; only one of
them can couple with the magnon mode of the same chirality.

Figure 5 displays all the profiles of field amplitude Ez and
intensity |Ez|

2.

2. Device design and fabrication

Substrate integrated waveguide (SIW) is a unique technique
typically used in integrated microwave circuits which can pro-
vide improved mode confinement and loss. Because of the
planar nature, they can be easily integrated with printed cir-
cuit boards (PCBs). In a SIW, the electromagnetic waves are
confined inside the substrate by the top and bottom metal lay-
ers. The lateral confinement is achieved by arrays of metal
plated via. When the via spacing is smaller than half of the
wavelength, their arrays function as metal walls.

The cavity design is carried out using finite element sim-
ulations. Because the modes we choose (TE120 and TE210)
have uniform mode distributions along z direction, the struc-
ture can be simplified to two-dimensional (2D) for the simula-
tion to speed up the simulation and improve the mesh density.
Both eigenmode and driven response are simulated. Eigen-
mode simulation allows us to find out the resonance frequency
of the eigenmodes (standing waves), while driven response al-
lows direct observation of the circular excitation in the cavity.

Angular 
Momentum

Jz = 0

TE210 TE120 TE220TE110

|Jz| = 1 |Jz| = 2

|TE210|2 |TE120|2 |TE220|2|TE110|2

Electric 
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Field 

Intensity

Right 
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Chirality

Jz = +1 Jz = -1

1

2
TE210 + 𝑖TE120

2
1

2
TE210− 𝑖TE120

2

+1

0

-1

1

0

FIG. 5. Mode analysis. Classification of cavity photon modes ac-
cording to the quasi-angular momentum, and the formation of right-
and left-chiral modes by linear combinations of TE210 and TE120

modes.
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FIG. 6. Port configuration and mode degeneracy. a–c. Simulated
eigenmode distributions with different port configurations. Top and
bottom rows correspond to the two orthogonal modes, respectively.
d. Summary of the eigenmode frequencies of the two modes and
their differences.

In our device, a Rogers TMM10i substrate with a thick-
ness of 1.27 mm is used. Because of the large dielectric con-
stant of the substrate (10), the cavity volume is significantly
reduced compared with air-filled metal cavities. For further
reducing the cavity volume and enhancing the magnon-photon
coupling, relatively high resonance frequencies in the range of
10–12 GHz are chosen. The corresponding wavelength inside
the dielectric is around 10 mm. As a comparison via spac-
ing of 1.2 mm is used in our device, which is much smaller
than half of the wavelength, ensuring the good confinement of
the via arrays. In our experiments, the number of holes along
each direction is 9 or 10, corresponding to a lateral dimension
of 10.8 or 12 mm. The via diameter is 0.8 mm, which is not
very critical in the design. The vias are effectively plated by
filling them with silver epoxy, which electrically connects the
top and bottom copper planes. The relatively high loss of the
silver epoxy limits the quality factor of our cavity.

At the center of the cavity, a hole with a diameter of 1 mm is
drill to host the YIG sphere which has a diameter of 400 µm.
The sphere is highly polished to ensure good device perfor-
mance. It is glued on a ceramic rod as a mechanical support
for handling convenience.

3. Port configuration

According to the main text, the port configuration plays an
critical rule in achieving the non-reciprocity. Therefore, ef-
forts are taken to optimize the port design. The ports for a
SIW cavity are usually formed by missing vias, where the
confined electromagnetic waves can leak in and out. In our
design, because of the relatively large cavity dissipation rage
(around 100 MHz), the port coupling rate needs to be high to
obtain good extinction ratio when measuring the cavity reflec-
tion or transmission. As a result, two adjacent vias (instead of
one) are removed to form a coupling port.

During the eigenmode simulation, the ports are included in
the geometry to evaluate their effects on the eigenfrequency.
Based on the analysis in the main text, it is critical to have
the two ports positioned with a π

2 phase difference. While

YIG sphere

FIG. 7. Schematics of the measurement setup.

maintaining such a phase relation, different port positions are
tested, and the results are summarized in Fig. 6. The relative
port position is indicated by the number of holes Nc between
the port and the corner. As the port moves away from the cor-
ner (Nc increases), the eigenfrequencies of both modes reduce.
However, this also causes larger mode non-degeneracy. When
Nc = 3, the frequency difference between the two modes is 58
MHz, while it is only 10 MHz when Nc = 1. Therefore, in our
experiments, the Nc = 1 design is selected when measuring
the non-reciprocity to ensure good degeneracy.

4. Device characterization

The device is characterized using a vector network analyzer
(VNA), as plotted in Fig. 7. Both reflection and transmission
measurements are performed and all the four S parameters are
obtained: S 11, S 22, S 21, S 12. The YIG sphere is mounted on
a translational stage to move along z direction. Another set
of translational stages are used to align it precisely along the
x–y direction with the hole at the cavity center. The bias mag-
netic field is applied along z direction by a permanent mag-
net. The magnet is also mounted on a translations stage that
moves along z direction, which tunes the bias magnetic field to
the YIG sphere by varying the distances between the magnet
and the sphere. During the measurement, a low VNA output
power of -5 dBm is used to prevent any magnon nonlinearity
effects.

Appendix B: Theory derivation

1. Equation of Motion

In our system, the equation of motion of the intra-cavity
field a can be generally written as

ȧ = Aa + Bsin (B1)

with input-output relation

sout = Csin + Da. (B2)

Here a =

 a
b
m

, input sin =

(
sin1
sin2

)
, and output sout =

(
sout1
sout2

)
.

a, b, and m denote the annihilation operators of the two mi-
crowave modes and the magnon mode with respective reso-
nant frequency ωa, ωb, and ωm.
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A, B,C,D are matrices that determined by the mode in-
teractions and port couplings; once they are given, one can
calculate the scattering matrix S [ω], defined by sout[ω] =

S [ω]sin[ω], by solving Eq. (B1) and (B2) in the frequency do-
main

S [ω] = C + D [−iωI − A]−1 B. (B3)

Based on this equation, the system non-reciprocity can be
studied by solving S 12 and S 21, which correspond to the trans-
mission spectra measured in experiment.

To obtain the general forms of A, B,C,D, several restric-
tions have to be taken into consideration. Because of en-

ergy conservation, we have D†D = BB† =

(
κae 0
0 κbe

)
and

−C†D = B† with C being unitary C†C = I. Meanwhile, C
should be symmetric since the port response should be recip-
rocal when not coupled to the cavity system. Under these re-
strictions, the general forms of these matrices can be given
as

A =

 −iωa −
κa
2 0 iga

0 −iωb −
κb
2 igb

iga igb −iωm −
κm
2

 ,

B =


√
ηκae

√
(1 − η)κaeeiα√

(1 − η)κbeeiβ √ηκbeei(α+β+π)

0 0

 ,

C =

( √
1 − ξ i

√
ξ

i
√
ξ

√
1 − ξ

)
,

D = −CB†.

where ga and gb are the coupling rates between the magnon
mode and the two orthogonal microwave modes, κa, κb, and κm

are the total dissipation rates of the three modes, and κae, κbe
as the total external coupling rates of the microwave modes.
0 ≤ ξ ≤ 1 represents the cross talk between the two ports with
ξ = 0 meaning no cross talk while ξ = 1 meaning maximum
cross talk. In our analysis, the cross talk is treated as a con-
stant value that does not change with the sphere position for
simplicity. 0 ≤ η ≤ 1 represents the portion of each individ-
ual port coupling rate over the total external coupling rate κae
(κbe) for a single cavity mode. 0 ≤ (α, β) < 2π represent the
coupling phase.

In general, non-reciprocity can be achieved by engineering
different modes to have different properties when propagating
in different directions. This can be done by, for example, ex-
ploiting different couplings between a magnon mode and mi-
crowave modes with different chiralities. Furthermore, proper
relative excitation phases (α and β in B) need be carefully de-
signed.

2. Non-degenerate Microwave Cavity Modes

In the rectangular SIW cavity design (Nx = 10, Ny = 9), the
two standing microwave modes resonate at different frequen-
cies (ωa , ωb). Because the cavity aspect ratio is close to one,
the two modes have similar mode profiles, which also lead to
similar mode overlap with the magnon mode. Therefore, here
we assume gb = ga and κa = κb for simplicity. For standing-
wave modes, the excitation phase does not depend on the port
position; hence α ≈ 0. For each port, both cavity modes can
be simultaneously excited with different phases. Our simu-
lation reveals that at each port, when TE210 mode shows a
maximum electric field, TE120 shows a maximum magnetic
field, indicating a π

2 phase difference between the two modes
(β ≈ π

2 ). To simplify the analysis, we also assume each cavity
mode couples with both ports equally (η = 1/2). With these
assumptions, the calculated transmission (S 12 and S 21) for the
non-degenerate cavity can be expressed as

S i j = i
2g2

a

[
i
√
ξ κa

2 − i(
√
ξ ±

√
1 − ξ) κae

2 +
√
ξ∆a

]
−
√
ξ
[
i κa

2 − (iκae − ∆a)
]

(i κa
2 + ∆a)(i κm

2 + ∆m)

(i κa
2 + ∆a)

[
2g2

a − (i κa
2 + ∆a)(i κm

2 + ∆m)
] , (B4)

where ∆a = ω − ωa and ∆m = ω − ωm are the detuning of the
photon and magnon mode, respectively. The ± sign changes
with the signal propagation direction.

If the two modes are well separated from each other (|ωa −

ωb| � κa, κb), they can be treated as independent modes. Ob-
viously, when the magnon mode is on-resonance with one of
the microwave modes, the system is reciprocal. However,
in our experiments, due to the finite linewidth of the cavity
modes, when one mode is excited on resonance, a small por-
tion of the other mode is also excited with a phase difference

β ≈ π
2 . Effectively, the photon polarization inside the cavity

becomes slightly elliptical instead of being purely linear. As a
result, weak non-reciprocity is observed when the magnon is
on-resonance with one of the microwave modes. In the mid-
dle of the two microwave resonances (ω = (ωa +ωb)/2), both
cavity modes are excited with comparable strengths, which
when combined give circularly polarized microwave photons.
Depending on the excitation port that is used, the chirality can
be reversed. Therefore, when magnon is tuned around that
frequency, maximum non-reciprocity can manifest.
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3. Degenerate Microwave Modes

a. Linear Mode Picture

For a square cavity (Nx = Ny), the two cavity modes are
degenerate, giving ωa = ωb, κa = κb, κae = κbe, ga = gb. Here
we still assume each mode couple with both ports equally (η =
1
2 ). In the linearly polarized standing-wave basis (α = 0, β =
π
2 ), matrices A and B can be rewritten as

Alin =

 −iωa −
κa
2 0 iga

0 −iωa −
κa
2 iga

iga iga −iωm −
κm
2

 ,

Blin =

√
κae

2

 1 1
i −i
0 0

 .
Accordingly, the transmission can be calculated as

S i j = ±
ig2

aκae

( κa
2 − i∆a)

[
2g2

a + ( κa
2 − i∆a)( κm

2 − i∆m)
] , (B5)

where i, j = 1, 2 and i , j.

b. Circular Mode Picture

The non-reciprocity can be better understood if circularly
polarized modes are used as bases. Since the two cavity
modes are degenerate, different eigenmodes can be chosen
through a rotation of the eigenbases. In this particular case, a
unitary transform (U) can be performed within the microwave
subspace

U =


1
√

2
1
√

2
0

1
√

2
− 1
√

2
0

0 0 1

 .
The resulting new eigenmodes ã = 1

√
2
(a+b), b̃ = 1

√
2
(a−b) are

two circularly polarized modes. On this circular-mode basis,
matrices A and B become

Acir = UAlinU† =

 −iωa −
κa
2 0 i

√
2ga

0 −iωa −
κa
2 0

i
√

2ga 0 −iωm −
κm
2

 ,

Bcir = UBlin =

√
κae

2

 1 + i 1 − i
1 − i 1 + i

0 0

 .
Clearly in this case only one circular mode (ã) couples with

the magnon mode, which agrees with the polarization selec-
tion rule as described at the beginning of the main text.
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