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Frequency-dependent linear permittivity measurements are commonplace in the literature, provid-
ing key insights into the structure of dielectric materials. These measurements describe a material’s
dynamic response to a small applied electric field. In contrast, nonlinear dielectric materials are
widely used for their responses to large applied fields, including switching in ferroelectric materials,
and field-tuning of the permittivity in paraelectric materials. These behaviors are described by
nonlinear permittivity. Nonlinear permittivity measurements are fraught with technical challenges
because of the complex electrical coupling between a sample and its environment. Here, we describe
a technique for measuring the complex nonlinear permittivity that circumvents many of the diffi-
culties associated with other approaches. We validate this technique by measuring a the nonlinear
permittivity of a tunable Ba0.5Sr0.5TiO3 thin film up to 40 GHz and comparing our results with
a phenomenological model. These measurements provide insight into the dynamics of nonlinear
dielectric materials down to picosecond timescales.

I. OVERVIEW

Ferroelectric and related materials have many applications that rely on a nonlinear relationship between the electric
field and the polarization [1]. For example, the switching of the built-in polarization leads to both non-volatile memory
and novel transistor designs that utilize switching dynamics to increase power efficiency [2–8]. In microwave electronics,
tunability of the permittivity with applied electric field enables components such as filters and phase shifters to be
reconfigured by applying a dc voltage [9–12]. These switching and tuning processes can have complex time dependence
that is difficult to measure at microwave frequencies.

In nonlinear dielectric materials, meso-scale structure, including domain walls and polar nano-regions (PNRs), [13–
20]) strongly influences the dynamics of nonlinear dielectric materials under an applied electric field. For example,
PNRs in BaxSr1−xTiO3 thin films affect microwave-frequency dielectric loss and dispersion. Several reports also
attribute the broad temperature dependence of the ferroelectric-paraelectric phase transition to PNRs [17–19, 21–
26]. While a great deal of previous research focused on understanding the effects of nano-structure on dielectric
properties, in recent years researchers are making rapid progress in designing specific nano-structures in dielectrics to
induce specific properties. Examples include low-loss tunable Ruddlesden-Popper (RP) superlattices [27], superlattices
with polar vortices [28, 29], and nanoparticles with vortex domains [30, 31]. In all of these cases, theoretical tools
(mesoscale theory and density functional theory) could predict the static dielectric properties [27–30]), but the dynamic
properties remain more difficult to describe. Notably, even though reducing dielectric loss was a main motivation for
the development of RP dielectrics, the current physical picture of loss mechanisms in those materials is qualitative,
rather than predictive [20, 27]. Experimentally, their characterization focused on linear permittivity and static tuning.
The addition of nonlinear permittivity measurements would provide additional information that could aid in the
development and validation of dynamic models.

Figure 1 schematically shows two approaches to nonlinear measurements. At low frequencies, the interpretation
of time-domain measurements is straightforward (Figure 1a). One applies a step-like voltage pulse to a capacitor,
and measures the current that flows as the capacitor charges [32–35]. The current is proportional to the time-
derivative of the polarization. At short timescales (10s of ps), this approach becomes more difficult because it
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FIG. 1. Schematic picture of nonlinear measurements of thin films. a) In time-domain measurements, tuning dynamics are
characterized by applying a voltage pulse Vp(t) to a capacitor and measuring the current I(t) = V (t)/Zin that flows as the
capacitor charges. This current is related to the change of the polarization with respect to time. b) We characterize tuning
dynamics by exciting a waveguide patterned on a nonlinear material with two microwave frequencies ω1 and ω2, and measuring
the waves generated by nonlinear mixing. The complex amplitudes â and b̂ correspond to the forward (towards the sample)
and backward (from the sample) traveling waves, respectively. This method can be extended to much higher frequencies than
time-domain measurements.

becomes increasingly hard to account for all of the sources of signal distortion in the experiment [34, 35]. Time-
domain calibrations are possible in principle, but require specialized instrumentation and would add a great deal of
complexity to a measurement system [36]. We are unaware of any attempts to use time-domain calibrations in this
context. Instead, references [34, 35] relied on a circuit model that described the coupling between pulse width, the
linear capacitor charging time, and the switching dynamics of the material they measured. As a consequence, the
physical interpretation of their measurements depended on their model.

In principle, frequency-domain measurements (Figure 1b) can circumvent these obstacles because one can correct
for signal distortion (Section III A). Frequency-domain measurements quantify switching dynamics in terms of har-
monics and frequency mixing products generated by nonlinear processes within a material. Most frequency mixing
measurements use either low-frequency ( < 1 GHz) [25, 26, 37], or optical [1, 21, 38] techniques. These frequency
ranges allow for useful approximations that simplify nonlinear permittivity measurements. At low frequencies, one
can use lumped-element circuit analysis; while at optical frequencies one can use the slowly-varying envelope approx-
imation. In the microwave regime, lumped element models are increasingly difficult to apply at high frequencies.
Larger test devices can show distributed effects. These effects can be mitigated by using smaller devices, but then
the calibration is more sensitive to the difficult-to-model electromagnetic fields near the probes. At the same time,
the slowly-varying amplitude approximation is not viable due to sample size and dielectric loss.

Another challenge of microwave-frequency measurements is that the phase of the mixing products relative to the
incident signals carries vital information about the dynamics. While the relative phase of two microwave signals at the
same frequency can be measured by mixing the two signals, cross-frequency phase relationships are much harder to
establish. These phase relationships are important because they are necessary to describe the shape of a time-domain
waveform influenced by nonlinear processes. For example, the phase of the mixing products distinguishes between
nonlinear gain and loss, and between increases and decreases in phase velocity.

Here, we describe a frequency-domain technique that resolves the frequency-dependent complex nonlinear permittiv-
ity. Specifically, we use a large-signal network analyzer (LSNA) to demonstrate nonlinear permittivity measurements
from 0 GHz to 40 GHz with cross-frequency phase resolution and absolute power calibration. In our experiments, we
fabricate waveguides on a nonlinear Ba0.5Sr0.5TiO3 (BST) thin film, and measure the waves generated by nonlinear
mixing within the waveguide. The key contributions are cross-phase calibration, power calibration, and our ability to
interpret our results as fundamental materials properties rather than as ad hoc circuit parameterizations [39–41].

This paper is organized as follows. Section II describes how to relate nonlinear permittivity to experimentally-
accessible currents and voltages. Section III describes how we performed calibrated nonlinear microwave measurements
of lithographically-fabricated waveguide structures, and how these measurements can determine linear and nonlinear
permittivity. Section IV then describes how we expect the measurements to look on the basis of phenomenological
theory, and finally in Section V, we compare the results of a preliminary set of measurements to these theoretical
expectations.
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FIG. 2. Illustration of the Volterra representation of dynamics. a) the time-varying nonlinear relationship between the dis-
placement field D(t) and the electric field E(t) superimposed with the dc D-E curve. b) a two-tone input signal E(t). c) The

first order (d(1)(t), teal line) and second order (d(2)(t), magenta line) contributions to the output signal. d) Comparison of

the first-order approximation D(1)(t) (teal line), second-order approximation D(2)(t) (purple line), and a solution obtained by

direct numerical solution of the equation of motion D(∞)(t) (cyan line).

II. NONLINEAR CIRCUIT THEORY

Figure 2 illustrates how the nonlinear behavior of a dielectric leads to small-signal frequency mixing and harmonic
generation. The model we use here is given explicitly in Section IV [42], but in this section we focus on its qualitative
behavior. To reflect the basic features of our experimental data (Section V), we chose a model that does not show
any hysteresis but is nonlinear in the sense that the permittivity changes in response to a large applied electric field.
Equivalently, this changing permittivity can also be expressed as a nonlinear relationship between D and E (Figure
2a). When a field is applied, the material will take some time to relax to a new configuration. The relaxation dynamics
lead to a difference between the response to a time-varying field (the cyan line in Figure 2a) and the response to a dc
field (the black line). While the model does not include hysteresis, the time lag between the response of the material
and the applied field leads to loops in the D-E plot.

In our experiment, we characterized the dynamic nonlinear behavior using small sinusoidal electric fields. For
reference, the amplitude of the sinusoidal signals was below 0.03 Vµm−1 root-mean-square, while the field necessary
to change the permittivity by about 33 % is 8 Vµm−1. At lower frequencies it is possible to reconstruct a full D(E)
curve by applying a large, time-varying electric field and measuring harmonics of the input signal [43]. However, at
microwave frequencies, small signals are convenient for several reasons. First, dielectric loss increases with frequency,
and a microwave-frequency signal large enough to significantly change the dielectric properties of a will also change
the sample through heating. Another difficulty is that the nonlinear behavior in the measurement equipment can
obscure the nonlinear response of the sample. While the nonlinearity of the measurement equipment can be mitigated,
this is typically only possible in a narrow frequency range [44, 45]. At the power levels we employ, we only detected
the leading-order nonlinear response, the 2nd-order mixing products. We measured these mixing products in the
presences of a large applied dc field, because without this field, the 2nd order mixing products we seek to measure
are suppressed by symmetry.

In Figure 2, we show a simulation analogous to our experiment: a superposition of a dc field and two sinusoidal
signals at different frequencies ω1 and ω2 (Figure 2b) is applied to the material. Conceptually, one sinusoidal signal
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will alter the permittivity of the material, and the second signal probes this change in permittivity. The response
of the material will be include a linear response, d(1), which consists of the Fourier components with frequencies
ω1 and ω2, as well as a second-order nonlinear response d(2) with Fourier components ω1 + ω2, ω1 − ω2, 2ω1, 2ω2,
and dc. In Figure 2c, we plot d(1) and d(2). Figure 2d compares three models of the response of the material: a
linear approximation D(1) = Ddc + d(1), the second order nonlinear approximation D(2) = Ddc + d(1) + d(2), and a
solution obtained by Euler integration D(∞). We see that the amplitude of the higher-frequency oscillations in D(∞)

is larger when E(t) is smaller. This asymmetry arises because the permittivity of the material is higher with a smaller
applied field. The second-order correction, d(2), restores this asymmetry (tuning) that the linear approximation fails
to capture. Note that the relative phase of the linear response d(1) and the nonlinear response d(2) determines whether
the nonlinearity enhances the amplitude of D(t) or diminishes it.

Formally, we model the behavior of a material by a Volterra-series expansion, which expresses a nonlinear process
by a power-series expansion of the response of a system in powers of the stimulus [46]. The nth term in the expansion,
d(n)(t), is proportional to the nth power of e(t). The relationship between these variables can be expressed in either
the frequency domain or the time domain. The terms in the frequency-domain Volterra series can be written:

d̂
(1)
k (ω) = ε0ε̂

(1)
jk (ω)êj(ω), (1)

d̂
(2)
l (ω) = ε0

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)ε̂

(2)
jkl(ω1, ω2)êj(ω1)êk(ω2). (2)

d̂
(n)
kn+1

(ω) = ε0

∫
dω δ(ω − Σω)ε̂

(n)
k1...kn+1

(ω)

n∏
j=1

êkj (ωj), (3)

where δ is the Dirac delta function, and ε̂(n)(ω) is the nth order permittivity. Equation (3) states that when the
material is stimulated by n sinusoidal signals whose frequencies sum to ω, the amplitude of the mixing product

d̂(n)(ω) is proportional to the nth order permittivity ε̂(n)(ω). To express the model more compactly, we have defined
ω = (ω1, ω2, ..., ωn) and Σω = ω1 + ω2 + ...+ ωn.

Using a Volterra-series approach, we develop an equivalent circuit theory to describe how a nonlinear dielectric
perturbs a waveguide mode. We follow the logic of Reference [47], which derives the well-known Telegraphers Equations

from Maxwell’s equations in a single-mode waveguide. Reference [47] defines a voltage V̂ and a current Î that are

proportional to the transverse electric field êT and the transverse magnetic field ĥT, respectively:

ĥT =
Î(z)

I0
Ĥ(x, y) (4)

êT =
V̂ (z)

V0
Ê(x, y) (5)

Here, Ĥ and Ê are normalized transverse fields that do not depend on z. According to Reference [47], there is not a
universally-accepted way to determine the normalization constants I0 and V0. However, they are partially determined
by a power-based normalization convention: in the situation where there is a wave propagating in one direction, the
power travelling down the waveguide is given by V I∗.

We make an additional simplifying assumption, which is that our waveguide supports a transverse electric - magnetic
(TEM) mode whose electric and magnetic fields are in the plane perpendicular to the propagation direction. This
approximation is good so long as the gap width W is much less than the wavelength of the guided mode [48]. To

model the nonlinear material properties, we include the first two terms in the Volterra-series expansion of d̂, and
assume the materials involved have a linear magnetic response. From energy-based arguments, in direct analogy with
Reference [47], we obtain a generalized form of the Telegrapher’s equations:

d
dz V̂ (ω, z) = −Ẑ(ω)Î(ω, z) (6)

d
dz Î(ω, z) = −Ŷ (1)(ω)V̂ (ω, z)− N̂(ω, z) (7)

N̂(ω, z) =
∫
dω δ(ω − Σω)Ŷ (2)(ω)

2∏
j=1

V̂ (ωj , z) (8)

These equations are parameterized by a distributed admittance Ŷ (1)(ω), nonlinear admittance Ŷ (2)(ω), and impedance
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Ẑ(ω). These coefficients are given by expressions involving surface integrals over the x-y plane:

Ẑ(ω) = iω
|I0|2

∫
dS

[
µ̂jk(ω)Ĥ∗j (ω)Ĥk(ω)

]
(9)

Ŷ (1)(ω) = iω
|V0|2

∫
dS

[
ε̂
(1)
jk (ω)Ê∗j (ω)Êk(ω)

]
(10)

Ŷ (2) (ω1, ω2) = i(ω1+ω2)
|V0|2V0

×∫
dS

[
ε̂
(2)
jkl(ω1, ω2)Ê∗j (ω1 + ω2)Êk(ω1)Êl(ω2)

]
(11)

Equations (9-10) agree with the expressions given in Reference [47] in the special case that there are no electric or
magnetic fields in the propagation direction. Reference [47] did not consider the case of nonlinear materials and

did not offer any expression for Ŷ (2). Similar expressions to Equation (11) can be derived for nonlinear magnetic
materials, or materials with a higher-order dielectric nonlinearity.

A. Solution of the nonlinear telegraphers equations

To a good approximation, we can solve Equations (6-8) perturbatively, treating Ŷ (2) as a small parameter [49]. In
our experiment, the microwave-frequency electric fields in the waveguide were much smaller than the electric field
required to change the permittivity of the nonlinear dielectric film by a substantial amount. We assume a solution
of the form V̂ (ω, z) = V̂ (1)(ω, z) + V̂ (2)(ω, z), Î(ω, z) = Î(1)(ω, z) + Î(2)(ω, z), where Î(1) � Î(2) and V̂ (1) � V̂ (2).

The second order voltage and current V̂ (2) and Î(2) model the waves generated by nonlinear mixing in the dielectric
material. To lowest order, we set Ŷ (2) = 0, and Equations (6-8) reduce to the well-known Telegrapher’s equations.
These equations admit travelling wave solutions:

V̂ (1)(z) = V +e−γz + V −eγz (12)

Î(1)(z) =
V +

Z0
e−γz − V −

Z0
eγz (13)

Here, γ =
√
ẐŶ (1) is the propagation constant and Z0 =

√
Ẑ/Ŷ (1) is the characteristic impedance. The unknown co-

efficients V + and V − are determined by boundary conditions. Once these coefficients are determined, we approximate
the nonlinear term in Equation (8) by:

N̂(ω) ≈
∫
dω δ(ω − Σω)Ŷ (2)(ω)

2∏
j=1

V̂ (1)(ωj) (14)

With this approximation, Equations (6-8) can be solved by a Green’s function approach. To construct a solution, we
seek functions GV and GI that satisfy the following differential equations:

dGV (z, z′)

dz
= −Ẑ(ω)GI(z, z

′). (15)

dGI(z, z
′)

dz
= −Ŷ (1)(ω)GV (z, z′) + δ(z − z′) (16)

Here, δ(z − z′) is the Dirac δ function and models a point-like current source at position z′. Once GI(z, z
′) and

GV (z, z′) have been computed, the voltage and current may be determined by integrating the contributions of waves

generated by the nonlinear current source N̂(ω, z′) at each position along the transmission line (with length l).

V̂ (2)(ω, z) = −
∫ l

0

dz′ GV (z, z′)N̂(ω, z′) (17)

Î(2)(ω, z) = −
∫ l

0

dz′ GI(z, z
′)N̂(ω, z′) (18)

B. Boundary conditions

We use boundary conditions based on the experimentally-accessible quantities â and b̂ to solve for both the first-

order solution, V (1) and I(1), and for the form of the Green’s function. The wave parameters â and b̂ are defined with
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respect to an arbitrary, real, reference impedance Zref in terms of the current Î and voltage V̂ [47].

ân ≡
V̂ + Zref Î

2
(19)

b̂n ≡
V̂ − Zref Î

2
(20)

The subscript n refer to ports 1 and 2, which we define to be the left and right edges of the waveguide. Note that

the current is defined as flowing away from the port, so for â2 and b̂2, Î has the opposite sign as in Equations (13).

The LSNA calibration that we describe in Section III allows us to measure the â and b̂ waves at the edge of our
waveguides. In our analysis, we solve for the coefficients V + and V − assuming that the â wave at each end of the
waveguide is given by its measured value.

We employ slightly different boundary conditions for the Green’s function than the first-order solution. Green’s
functions have homogeneous boundary conditions [50], and so we set the â wave to 0, rather than its measured value.

In principle, we should also account for an inhomogeneous (proportional to â) contribution to the b̂ waves at the
frequencies of the mixing products. In our case, we found that the â waves at these frequencies were negligible. We
expected the â waves to be small because the LSNA was not sourcing any power at the frequencies of the mixing
products, and we did not employ any highly reflective components in our setup. We found that including measured â
waves in our analysis seemed to add noise to our results, because in our experiment these waves were near the limit
of detection.

If the left side of a waveguide is connected to a probe, we can assume as a boundary condition that â wave at z = 0
has the value â1. We arrive at the following relationship:

V̂ (0) + Zref Î(0) = 2â1 (21)

Meanwhile, if the right side of a waveguide is connected to a probe, we can assume as a boundary condition that â
wave at z = l has the value â2.

V̂ (l)− Zref Î(l) = 2â2 (22)

In our measurements, we employ both two-port transmission lines, and one-port terminated transmission lines.
One end of the terminated waveguide is connected to the probe, and the other is terminated by an open cirucit with
a small capacitance compared to the rest of the transmission line. In terms of the impedance associated with this
termination, Ẑl, the boundary condition on the right end of the terminated waveguide is

V̂ (l) = ẐlÎ(l). (23)

The equations given in Section II A, with the boundary conditions in this section, allowed us to extract the nonlinear
admittance from the measured wave parameters. In Section III, we discuss how to calibrate our measurements so
that these boundary conditions can be applied.

III. EXPERIMENTAL APPROACH

A. Nonlinear calibration

To interpret LSNA measurements of our on-wafer waveguides, we need to characterize the relationship between ârn
and b̂rn, the raw signals measured by the receivers of an LSNA, and ân and b̂n, the forward and backward waves at
the edges of an on-wafer device. This relationship (calibration) accounts for signal distortion by all of the circuitry
between the receivers of the LSNA and the sample, including the internal circuitry of the LSNA, the coaxial cables
connecting the test ports of the LSNA to the probes, the bias tees and the wafer probes. We used a linear model to
account for this distortion.

Figure 3 schematically shows the error model that we employed. We defined three reference planes: the raw
measurements, a coaxial reference plane at the connector to the wafer probes, and an on-wafer reference plane. As we
will discuss, this two-tiered structure is necessary for phase and amplitude calibrations. The 2 × 2 complex-valued

matrices X1, Y1, X2 and Y2 are in T-parameter form, and describe how the â and b̂ waves change between reference
planes.

The LSNA calibration is a generalization of a traditional linear network analyzer calibration that also allows for
phase and power calibrations. We model the relationship between the measured T-parameters of a linear device (M)
and their true values (T) by M = X T Y. In our two-tiered calibration model, X = X1X2 and Y = Y2Y1. By measuring
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FIG. 3. Error model. a) The physical location of the reference planes. The raw wave parameters, ârn and b̂rn, are measured

by the detectors of the LSNA. The wave parameters at the coaxial plane, âcn and b̂cn are measured at the ends of the coaxial
connectors that attach to the wafer probes. The wave parameters of the device under test (DUT), ân and b̂n, are measured at
the wafer probe tips. b) Schematic representation of the error model relating the wave parameters at the different reference
planes. The error model has 16 parameters defined independently at each frequency point: X1, Y1, X2 and Y2, are all 2 × 2
complex valued matrices.

a set of linear passive devices with known T-parameters, we determined seven of the eight complex numbers in X
and Y [51]. The remaining ambiguity is a feature of any linear error model determined solely from measurements of
passive devices [52]. One way to resolve this ambiguity is to assume that either X or Y represents a reciprocal network
[51]. However, the first-tier error parameters X1 and Y1 include the LSNA, and the signals measured by its receivers
are subject to an unknown, and potentially non-reciprocal, scaling in magnitude and frequency. To determine the

phase and amplitude of the â and b̂ waves, one must measure these quantities directly at some reference plane by use
of a power meter [52].

We determined the phase and amplitude by measuring these quantities at the coaxial reference plane immediately
before the wafer probes. This reference plane was necessary because we lacked on-wafer phase and power standards.
Apart from an overall phase and amplitude, we used a short-open-load-thru (SOLT) calibration to determine the
parameters in X1 and Y1 up to 40 GHz [53]. To establish the cross-frequency phase, we used a comb generator that
produces periodic pulses in the time domain. The comb generator had a repetition rate of 10 MHz, and its Fourier
spectrum consisted of evenly-spaced harmonics from 10 MHz up to 40 GHz. We attached a comb generator to port 3
of the LSNA for the duration of the experiment to serve as a phase reference. Thus, the phase of any signal at ports
1 or 2 could be determined by comparing to the phase of the reference at port 3, as long as all of the frequencies
involved were multiples of 10 MHz. We also needed to account for the fixed phase relationship between the phase
reference and the signals measured at ports 1 and 2, and this relationship was determined by measuring an second

comb generator attached to coaxial port 1. To calibrate the power of the â and b̂ waves, we measured the power
sourced by the LSNA at port 1 at the coaxial reference plane.

B. On-wafer calibration

In order to interpret our mixing products in physical terms, we need to understand the relationship between the

measured â and b̂ waves, and the guided modes of on-wafer waveguides. This involves measuring waveguides with
well-understood properties, and constructing an error model from these measurements. Our on-wafer calibration
standards were shorts, loads, and transmission lines, allowing for a Multiline Thru-Reflect-Line (MTRL) calibration
[51]. The on-wafer calibration standards had an identical cross-sectional geometry to the test devices on the BST
chip, but were patterned directly on the (001) surface of LaAlO3 (LAO) substrate. We chose this substrate because
unlike BST, LAO has negligible dielectric dispersion at microwave frequencies (tan(δ) < 0.005). It also has a similar
relative permittivity (εr ≈ 24) to LSAT (εr ≈ 22). We did not need any phase or power calibration to construct our
second-tier error parameters, X2 and Y2. These matrices represent wave propagation through the wafer probes, which
are made of reciprocal materials. This reciprocity removes any ambiguity in X2 and Y2.
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Transmission lines make good calibration standards because their scattering parameters can be derived from fun-
damental electromagnetic theory. If one chooses Zref = Z0, then the T-parameter model of a transmission line is
described by one unknown parameter, γ. Let M1 and M2 be T-parameter measurements of two transmission lines
with lengths l1 and l2 = l1 +∆l. Reference [51] showed that the eigenvalues of matrix M1(M−12 ) are exp(±γ∆l). This
relationship means that, without any calibration, we can determine the propagation constant γ from measurements
of two transmission lines with different lengths. By measuring a reflect standard and set of transmission lines, we can
determine the error matrices X and Y [51, 54].

In practice, it is more convenient to set the reference impedance Zref to 50 Ω than Z0. The coaxial cables and
probes leading up to the sample are designed to have a characteristic impedance near 50 Ω, hence it is a natural
choice for many measurements. To set the reference impedance, we make use of the fact that Z0 = γ/Ŷ . Our
calibration transmission lines are fabricated on a substrate with little to no dielectric dispersion. In this case, we
made the approximation Ŷ1 = iωC0, where C0 is a frequency-independent capacitance per unit length. This model
of the admittance is justified by Equation (10) under the assumption that the mode is TEM, and therefore the
electric field is frequency-independent. To estimate the capacitance per unit length C0, we used the method described
in Reference [55]. We then modified the error matrices X and Y to set the reference impedance to 50 Ω [56]. By
insisting that the capacitance is frequency-independent, we implicitly determine the constant V0 in Equation (10). The
power normalization condition determines the product I∗0V0, so the waveguide current and voltage are unambiguously
defined in terms of the guided mode electric and magnetic fields by the MTRL calibration.

In principle, there is some error in the calibration because the transmission lines on the BST test chip had a
higher capacitance per unit length than the calibration standards by a factor of about 3/2 [56]. The systematic error
introduced by this discrepancy should not influence our linear permittivity estimates because our estimator of γ is
based on the eigenvalues of measurements of pairs of transmission lines, and is therefore independent of the calibration
[51]. To assess the magnitude of this uncertainty in our nonlinear measurements, we modelled the effect of a small
parasitic capacitance to our analysis. As expected, this added error did not change our linear permittivity estimates.
Our nonlinear permittivity estimates changed by less than the error bars. So, we conclude that the difference in
distributed capacitance between our test structures and our calibration standards does not significantly degrade the
quality of our data. We caution that for thicker films, or films with higher permittivity, some modifications to this
calibration approach may be necessary to account for this effect.

C. Measurement configurations

(a)

(b)

�1 �2

Vdc

+

-

�1����2

Coplanar
waveguide

�1

�2
Vdc

+

-

�1����2

Offset open

b1

b1a1 a2b2

a1

FIG. 4. Measurement configurations. a) For broadband measurements, we used coplanar waveguides, and excited the waveguide
from both edges. b) For narrow-band measurements, we used a one-port configuration, with waveguides terminated by a gap
to ground. This allowed us to use filters to minimize spurious signals generated within the LSNA.

In our nonlinear measurements, we encountered a trade-off between dynamic range and bandwidth. The dominant
source of error in our nonlinear measurements was the nonlinearity of the sources and receivers in the LSNA, which
generated their own mixing products at exactly the frequencies of interest. Consequently, in our frequency-swept
measurements, we had about 10 dB of dynamic range even though the nonlinear signals from our sample were about
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40 dB above the noise floor. In our voltage-swept measurements, we improved the dynamic range by fixing the source
frequencies, using one-port devices, and employing filters to suppress spurious signals from the LSNA.

In the one-port measurements of the terminated transmission lines, we used a low-pass filter to remove signal
content at 2ω1, 2ω2, and ω1 + ω2 generated by the sources. Likewise, high-pass filters placed in front of the receivers
attenuated the signals at ω1 and ω2 and prevented mixing in the receivers. With these filters, the dynamic range
increased to about 30 dB for the frequencies under test in a narrow band around 7.8 GHz.

D. Sample preparation

(b)

(c)

(a)

0.5 mm

0.5 mm 
0.5 mm 

FIG. 5. Our BST sample. a) A photograph of the BST chip with the waveguide structures fabricated on it. Because the chip
is larger than the microscope’s field of view, this photograph is stitched together from many smaller images. b) An example
of a two-port device, a coplanar waveguide transmission line (CPW) with a length of 0.880 mm. c) An example of a one-port
device, a coplanar waveguide offset open with a length of 1.100 mm.

To facilitate our measurements, we fabricated coplanar waveguide transmission line (CPW) structures and coplanar
waveguide offset open structures on the film (Figure 5). We prepared our sample through standard deposition and
lithography techniques. The BST film was grown to a thickness of 200 nm by pulsed laser deposition on the (001)
surface of an (LaAlO3)0.3(SrTaAlO6)0.7 (LSAT) substrate heated to 760 ◦C. The KrF ablation laser produced an
incident laser fluence of 0.4 J/cm2 at a repetition rate of 5 Hz. The film growth occurred under a background oxygen
pressure (PO2

) of 40 Pa (30 mTorr). We patterned the test structures by photolithography, followed by electron beam
deposition of a 500 nm thick gold layer with a 10 nm thick titanium adhesion layer.

Photographs of the BST chip are shown in Figure 5. The test devices on the BST thin film consisted of a collection
of CPW structures and offset open structures of varying lengths: l = {0.420, 0.660, 0.880, 1.340, 2.240, 4.020, and
7.500} mm for the CPWs, and l = {0.720, 1.100, 1.620, 2.260, 4.700, and 6.240} mm for the offset opens. The CPWs
had 20 µm wide center conductors, 200 µm wide ground planes, and a 5 µm gaps between the center conductor and the
ground planes. The offset open structures had the same cross-sectional geometry as the CPWs, but were terminated
at one end with a 40 µm gap to the ground plane.

E. Analysis overview

After performing the two-tiered calibration described in Section (III), we performed both a linear and nonlinear
characterization of our BST film to determine the permittivities ε̂(1) and ε̂(2) from the measured wave parameters. We
treated these permittivities as complex frequency-dependent scalars because we do not have enough information to
independently determine the all of the tensor elements. Because of the linear relationships between the admittances
Ŷ (1) and Ŷ (2) and the permittivities ε̂(1) and ε̂(2), our strategy is to determine Ŷ (1) and Ŷ (2) from measurements,
and then use simulations to relate these quantities to ε̂(1) and ε̂(2).

The first step is a linear characterization to determine the circuit parameters Ŷ (1) and Ẑ as a function of dc bias
voltage and frequency. To do this, we measure a collection of transmission lines fabricated on the materials we wish
to characterize, and make use of the fact that, if M1 and M2 are T-matrix measurements of two transmission lines
whose lengths differ by ∆l, the eigenvalues of M1(M−12 ) are exp(±γ∆l) (Section III B). On our BST thin film sample,
we fabricated seven CPWs, leading to 21 different measurements (six independent measurements) of the quantity

γ∆l, and used linear regression against ∆l to estimate γ. The linear admittance Ŷ (1), is related to the propagation
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FIG. 6. Example of the nonlinear admittance estimation from measurements. a) The measured mixing product, b̂(ω1 + ω2) of

a CPW of length 1.340 mm. ω2 = 2π × 5 GHz. b) b̂model(ω1 + ω2), the hypothetical value of the mixing product under the

condition Ŷ (2)(ω1, ω2) = 1. The estimated uncertainty in panel b from uncertainty in Ŷ (1) is smaller than the width of the

line. c). Ŷ (2)(ω1, ω2) estimated by Ŷ (2)(ω1, ω2) = b̂(ω1 + ω2)/b̂model(ω1 + ω2). The error bars in panels a and c represent a 95

% confidence interval estimated from the distribution of Ŷ (2) estimates from CPWs of different lengths. We omit error bars on
individual data points for visual clarity.

constant by γ =
√
ẐŶ (1). Under the assumption of single-mode TEM propagation, Ẑ depends only on the CPW

geometry and metal conductivity [47, 57]. We estimated the value of Ẑ with the model described in Reference [57].

From the theoretical Ẑ and measured γ, we can compute Ŷ1. We use these linear circuit parameters in the nonlinear
analysis.

Figure 6 illustrates our process for estimating Ŷ (2) from mixing product measurements. To measure the mixing
products, we applied microwave power from both ends of the CPW as shown in Figure 1b. The incident power from
port 2 was about -4 dBm, and the incident power from port 1 varied with frequency between -10 dBm and -23 dBm.
According to Equations (6 - 8), a waveguide excited by signals at ω1 and ω2 generates voltage and current waves at
ω1 + ω2. The key insight from Section II that enables our nonlinear analysis is that the amplitudes of these mixing
products are directly proportional to Ŷ (2)(ω1, ω2). In other words, the complex amplitude of the measured mixing

products, b̂(ω1 + ω2), is given by

b̂(ω1 + ω2) = b̂model(ω1 + ω2)Ŷ (2)(ω1, ω2), (24)

where b̂model(ω) is the hypothetical strength of the mixing products under the condition that Ŷ (2) = 1. To estimate

Ŷ2(ω), we measured the mixing product b̂2(ω) at ω1 + ω2 for our seven transmission lines, and used linear regression

against b̂model(ω1 +ω2) to determine Ŷ2(ω). We also measured Ŷ2 at the other 2nd order mixing frequencies: |ω1−ω2|,
2ω1, and 2ω2, but we focus on ω1 + ω2 for brevity.

The quantity b̂model is fully determined by the linear characterization. The first step to calculating b̂model is to
reconstruct the spatial variation of the incident voltage waves from the measured values â1(ω1), â2(ω1), â1(ω2), and
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â2(ω2). Using the boundary conditions from Section II B, we can determine the travelling wave amplitudes V + and
V −. From those amplitudes, and Equation (12), we can estimate the spatial shape of the nonlinear current source

density N̂(z) through Equation (8). At this point, we solve for b̂model using a Green’s function approach. The Green’s
function is given in Section (II A), and the unknown coefficients in the Green’s function are determined from Equations
(15-16) with the boundary conditions from Section II B. With the Green’s function known, and the nonlinear current

density N̂(z) known, the currents and voltages at the frequencies of the mixing products are determined through

Equations (17-18). These currents and voltages in turn can be used to determine b̂model.

The last step in our analysis is to relate the admittances Ŷ (1) and Ŷ (2) to the permittivities ε̂(1) and ε̂(2). To
simplify this relationship, we note that the electric field of a TEM mode is frequency independent. Therefore, the
relationship between the admittances Ŷ (1) and Ŷ (2) and the permittivities ε̂(1) and ε̂(2) is also frequency independent.
In our geometry, the linear admittance and the permittivity are approximately related by Ŷ (1)(ω)/iω = c0 + c1ε̂

(1)(ω)
[47, 58, 59]. The constants c0 and c1 can be computed though quasi-static finite element methods. The nonlinear

admittance Ŷ (2)(ω) is linearly related to the strength of the dielectric nonlinearity, ε̂(2)(ω). To relate the nonlinear

permittivity ε̂(2) to the admittance, Ŷ (2), we assumed that the electric field in our waveguide (both microwave and
dc) is given by the voltage between the center conductor and ground plane, divided by the gap width, W . This

approximation leads to the relation Ŷ (2) = iω(c1/W )ε̂(2). From the agreement between our data and model (Figure
8), we estimate that the error introduced by this approximation is about 20 % in the worst-case scenario (strong dc
bias).

IV. THERMODYNAMIC MODEL

We compared our results to a physical model that predicts the nonlinear response of our BST thin film. To be
comparable with our experiment, the model needs to describe the time dependence of the polarization, describe the
change of the polarization in response to a large applied field, and be amenable to a small-signal Volterra-series
expansion. Mesoscale models meet both of our requirements, but require detailed knowledge of the nano-structure
of the material. The small-signal requirement rules out models like the Ishibashi-Orihara model, which assume the
amplitude of the time-varying field is large enough to completely pole the material [60, 61]. Many models, like the
Spherical-random-bond-random-field model, are not suitable because they do not describe the time dependence of the
material [62].

In BST thin films, the relaxation dynamics of PNRs lead to permittivity that varies over a broad range of frequencies,
often modeled by a distribution of relaxation times [17–20]. To our knowledge, there is no universally accepted first-
principles method to predict the distribution of relaxation times for a given material. Even a conceptual picture of
PNR dynamics remains a subject of current research [13, 14].

Given the complexity of a first-principles model, we take a phenomenological approach to interpreting our measure-
ments. We chose a model that uses a heuristic interpretation of PNRs dynamics and the Landau-Ginzburg-Devonshire
(LGD) free energy. This model, introduced in Reference [37], incorporates the salient features of our data: tuning
of the permittivity with an applied electric field and a distribution of relaxation times. It was used to describe the
temperature dependence and frequency dependence of the third harmonic up to 100 kHz in Pb(Mg1/3Nb2/3)O3. We
expect this model to also apply to BST in the tens of GHz because BST has qualitatively similar tuning behavior and
dispersion.

The model describes the tuning processes in terms of the Landau-Ginzburg-Devonshire (LGD) free energy. In its
simplest form, the LGD free energy U can be expressed in terms of the polarization P and the phenomenological
parameters α and β as U = (1/2)αP 2 + (1/4)βP 4. The one-dimensional model is justified because in our CPW
structures, the electric fields are mostly in-plane. The distribution of relaxation times is modeled by a function f(t).
The time evolution of the polarization is described by

P (t) = ε0∆ε

∫
dt′ f(t− t′)

[
E(t′)− βP 3(t′)

]
, (25)

where ∆ε = (ε0α)−1. Essentially, Equation (25) models the polarization of a macroscopic region as a sum many
coupled relaxation processes within identical anharmonic free energy wells.

To model the nonlinear permittivity of our sample, we developed a perturbative expansion of Equation (25) in
powers of the electric field. We begin by writing the electric field as E(t) = Edc + e(t) and the polarization as
P (t) = Pdc + p(1)(t) + p(2)(t) + p(3)(t) + .... We then substitute these series expansions into Equation (25), and
iteratively solve for p(n) in terms of p(1), ..., p(n−1). Setting e(t) = 0 and p(t) = 0, Equation (25) admits a closed-form
solution for Pdc if β > 0: Pdc = ε0∆εENLT (Edc/ENL), with T (x) = sinh

[
(1/3) sinh−1 (3 x)

]
[63, 64]. We have

introduced the parameter ENL =
(
4α3/3β

)1/2
with units of electric field to describe the strength of the nonlinearity.
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The function T (x) has a sigmoidal shape, with a slope of unity for small arguments. With the dc polarization
determined, calculating the Fourier transform of Equation (25) yields:

ε̂(1)(ω) = ε∞ + ∆εf̂E(ω), (26)

ε̂(2)(ω) =
−4Pdc

ε0(ENL)2
f̂E(Σω)f̂E(ω1)f̂E(ω2). (27)

For convenience, we define the function f̂E(ω) = f̂(ω)/
[
1 + 4T 2(Edc/ENL)f̂(ω)

]
, where f̂(ω) is the Fourier transform

of f(t) in Equation (25). We also added an additional parameter ε̂∞, which describes the high-frequency limit of
the permittivity [17, 18]. Qualitatively, both the real and imaginary parts of ε̂1(ω1) peak at Edc = 0 Vm−1. The
parameter ENL can be interpreted as a characteristic dc field strength necessary to cause appreciable tuning (about
64 % at dc). On the other hand, ε̂2(ω) vanishes at Edc = 0 Vm−1, and is antisymmetric about 0 Vm−1. Note that
the second order permittivity is inversely related to ENL, so this parameter quantifies both the width of the tuning
curve and the strength of the second order nonlinearity.

V. RESULTS AND DISCUSSION
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FIG. 7. Linear permittivity, ε̂(1) = ε′1 − iε′′1 as a function of frequency, and as a function of bias electric field at 20 GHz. An
interval of width ENL centered around Edc = 0 Vm−1 is indicated. The error bars (gray) are the 95% confidence interval from
the standard error of the mean. a) The real part, ε′1. b) The imaginary part, ε′′1 .

As we expected from the model, the real and imaginary parts of the frequency-dependent permittivity tuned with
the application of an electric field (Figure 7). As we show in Figure 1, we applied the bias voltage between the center
conductor and the ground planes. This resulted in a mostly in-plane dc and microwave electric field, which were
superimposed onto one another. To check if the BST sample had hysteresis, we swept the electric field in a cycle 0
Vµm−1 → 8 Vµm−1 → -8 Vµm−1 → 8 Vµm−1 → 0 Vµm−1. No hysteresis larger than the measurement uncertainties
was present. Both the real and imaginary parts of the permittivity have a peak near 0 Vµm−1, and decrease as the
magnitude of the bias field increases.

Equation (26) captures the basic features of the electric field- and frequency- dependence of the data. We assumed

that f̂(ω) was given by the Cole-Cole function f̂(ω) = [1 + (iωτ0)a]
−1

[19]. The parameter τ0 is a phenomenological
characteristic timescale. The parameter a describes the shape of the distribution of relaxation times, with the value
a = 1 corresponding to the the Debye model (one relaxation time), and smaller values describing wider distributions.
This parameter also describes the limiting behavior of the dielectric loss at low frequencies ε′′1 ∝ ωa. The model
illustrates the close link between the dielectric loss and the tuning. The parameters τ0 = 0.49 ps, a = 0.50, ENL = 10.7
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FIG. 8. The 2nd order nonlinear permittivity, ε̂(2) = ε′2 − iε′′2 , inferred from the ω1 + ω2 mixing product. In the frequency-
dependent measurements, we varied the angular frequency of one of the stimulus signals, ω1, while the other stimulus frequency,
ω2, was held constant at 2π× 5 GHz. In our bias-swept measurements we set ω1 = 2π× 7.84 GHz and ω2 = 2π× 7.76 GHz. To
facilitate comparison to Figure 7, we indicate an interval of width ENL centered around the Edc = 0 Vµm−1. The error bars
(gray) are the 95% confidence interval from the standard error of the mean. a) The real part, ε′2. b) The imaginary part, ε′′2 .

c) The absolute value of ε̂(2) near 0 V.

Vµm−1, ε∞ = 106, and ∆ε = 354 were estimated by a least squares fit. Equation (25) states that the polarization
relaxes to the lowest free energy by a superposition of coupled gradient descent processes. The free energy gradient
is steeper at large dc fields, so the relaxation is faster. This field-dependent relaxation speed manifests as a field-
dependent loss tangent, and the imaginary part of the permittivity tunes more strongly (66 % at 8 Vµm−1) compared
with the tuning of the real part (33 % at 8 Vµm−1).

As in the linear case, the model predicts the salient features of the dependence of ε̂(2)(ω1, ω2) on bias field and
frequency (Figure 8). Note that the black line in Figure 8 is a prediction, rather than a fit. The parameters in
Equation (27) were determined from the linear permittivity data in Figure 7. The model predicts the relaxation-like
trend of ε̂(2)(ω1, ω2) with frequency, but somewhat overestimates the value of ε̂(2)(ω1, ω2). More notably, even though
we see no hysteresis in the linear data, we see some hysteresis in the field dependence of ε̂(2). Figure 8c shows that
the absolute value of ε̂(2) takes differing values on increasing and decreasing voltage sweeps, and that this difference
is larger than the measurement uncertainties [65].

Extending this model to include spatial variation in the polarization could improve the accuracy of the model
and provide physical insight. The electric field varies over the scale of the CPW gaps, causing different regions of
the film to experience different dc bias. This large-scale inhomogeneity may impact the voltage dependence of the
linear and nonlinear admittance. The polarization also varies on the scale of nanometers to hundreds of nanometers
due to grain boundaries and PNRs. We speculate that interactions among PNRs might lead to different nonlinear
coupling (other forms of the P 3 term in Equation (25)). While we conclude that Equation (25) predicts most of the
features of our data, we cannot exclude other models of nonlinear coupling. The samples that we characterized had
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relatively low dielectric loss, leading to a fairly flat frequency dependence for ε̂(2)(ω1, ω2). In the future, we hope to
evaluate more lossy samples and extend our measurements to higher frequencies. In this report, our main finding is
that the measurement technique allows for broadband, calibrated, and model-independent measurements of material
nonlinearity.

VI. CONCLUSIONS

In conclusion, we demonstrated the ability to measure nonlinear permittivity up to 40 GHz and developed a
thermodynamic model informed by the data. We expect this technique to apply to a broad range of materials because
the measurements and analysis used to produce Figures 7 and 8 made no physical assumptions about the sample.
These nonlinear permittivity measurements provide a measurable quantity, independent of linear permittivity, that can
be used to probe the complex dynamics of ferroelectric and related materials. The dynamics of these materials arise
due to an interaction of many mechanisms including electrostatic energy, gradient energy, strain, and flexoelectricity.
Nonlinear permittivity measurements are a way to test models that include these different physical mechanisms. There
are endless possibilities for manipulating the coupling between these effects to achieve novel domain structures and
dielectric properties. For these novel materials to be used in high-speed electronics applications, it will be necessary
to understand their linear and nonlinear dynamics under an applied field.
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