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We report a first-principles study of the driven-dissipative dynamics for Kerr oscillators in the
mesoscopic regime. This regime is characterized by large Kerr nonlinearity, realized here using the
nonlinear kinetic inductance of a large array of Josephson junctions. The experimentally measured
nonlinear resonance lineshapes of the junction array modes show significant deviations from steady-
state numerical predictions, and necessitate time-dependent numerical simulations indicative of
strong measurement-induced dephasing in the system arising from the large cross-Kerr effect between
array modes. Analytical and numerical calculations of switching rate corroborate this by showing
the emergence of a slow time scale, that is much longer than the linear decay rate and is set by
fluctuation-induced switching times in the bistable regime. Furthermore, our analysis shows that the
usual quantum-activated escape treatment is inadequate for prediction of the switching rates at large
frequency shifts caused by strong nonlinearities, necessitating a quantum treatment that utilizes the
full system Liouvillian. Based on our analysis, we identify a universal crossover parameter that
delineates the regimes of validity of semi-classical and quantum descriptions respectively. Our work
shows how dynamical switching effects in strongly nonlinear systems provide a unique platform to
study quantum-to-classical transitions.

Nonlinear optics spans a broad class of phenomena that
involve light-induced variation of optical properties of a
system. Interestingly, the nonlinearity in optical systems
often originates from an inherently quantum mechanical
process, but the description of the resulting output can
be either classical or quantum, depending on the sys-
tem under consideration and intensity of the light fields.
For instance, nonlinear crystals implementing frequency
mixing and stimulated scattering [1] are described using
classical descriptions rooted in average nonlinear material
susceptibilities. On the other hand, a new class of effects
and non-classical states emerge on quantizing the light
fields, which are dealt with in the framework of quantum
optics [2]. In order to distinguish between these two de-
scriptions, it is important to understand the transition
from quantum to classical dynamics, especially given the
burgeoning presence of nonlinear systems in applications
triggered by quantum information processing [3, 4].

An example of a nonlinear phenomenon that is of im-
portance in both quantum and classical optics is the Kerr
effect, which changes the optical properties in proportion
to the intensity of the incident field. Under a coherent
drive and single photon loss, the Hamiltonian of the kth
mode of a physical system subject to the Kerr effect is
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given by (~ = 1)

Hk = ωk a
†
kak −Kk (a†kak)2 + εk(t) a†k + ε∗k(t) ak, (1)

and the dynamics of the mode, under the assumption of
Markovian decay, is described by the master equation

ρ̇ = −i[Hk, ρ] + κk

[
akρa

†
k −

1

2
(a†kakρ+ ρa†kak)

]
. (2)

Here, ωk is the bare resonance frequency mode, Kk is
the Kerr coefficient responsible for shifting the mode fre-
quency, εk(t) = εke

−iωdt is the amplitude of a coherent
drive with angular frequency ωd and κk is the single-
photon decay rate of the mode. We note that the Hamil-
tonian above assumes that all nonlinear modes are in-
dependent; in principle, there can be additional cross-
Kerr coupling between different k modes of the system.
This driven-dissipative Kerr resonator is ubiquitous in
physical systems spanning fiber optics [5], superconduct-
ing quantum circuits with Josephson junctions (JJs) [6–
12], optomechanical systems [13, 14] and atomic ensem-
bles [15].

In particular, JJ-based superconducting circuits nat-
urally realize strong Kerr nonlinearities at the single
photon level, which have been extensively utilized both
for fundamental quantum optical studies [16, 17] and
quantum information-inspired applications [18–20]. This
breadth of applications is enabled by the highly flexi-
ble nature of the nonlinearity realized in superconduct-
ing circuits, which can be tuned either in-situ through the
flux-tunable SQUID-based designs [21] or ex-situ through
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FIG. 1. Different regimes of Kerr resonator as a function
of relative anharmonicity Kk/ωk which is inversely related to
the number of levels in the potential well, and the quality fac-
tor ωk/κk. The lower left corner corresponds to parametric
and bifurcation amplifiers while the upper right corner corre-
sponds to the transmon regime. Each of these regimes is ac-
companied by a sketch of the average steady-state population
of the oscillator, |αk|2, in response to a drive amplitude εk de-
tuned from resonance by ∆k = ωk−ωd [see Appendix B]. The
central region is the intermediate “mesoscopic” regime that
is explored theoretically and experimentally in this work.

appropriate selection of junction parameters; the latter
is usually accomplished by designing junctions with dif-
ferent ratios of Josephson energy and charging energy or,
alternatively, by using arrays of junctions [11, 22, 23].

Figure 1 maps the different nonlinearity regimes read-
ily accessible with JJ circuits. For nonlinearities much
smaller than the mode linewidth (Kk � κk), the dynam-
ics can be entirely captured by that of a driven classical
Duffing oscillator [24]. This is the domain of the Joseph-
son parametric amplifiers (JPA) [25–27] and Josephson
bifurcation amplifiers (JBA) [28, 29] that are routinely
employed for quantum-limited measurements [30, 31]. Of
particular interest in this regime is the bistable behavior
occurring when a lossy Kerr resonator is strongly driven.
In this bistable regime, the Kerr resonator may switch
between two stable states corresponding, respectively, to
small and large photon populations of the driven res-
onator [32]. For weak nonlinearity, this switching behav-
ior is well-described by a semi-classical quantum activa-
tion theory [24, 29, 33]. On the other hand, for large
nonlinearity (Kk � κk), the system enters the photon
blockade regime in which the nonlinearity-induced fre-
quency shift limits the number of photons in the oscillator
under a drive of fixed frequency. The nonlinear oscillator
then becomes an effective two- or ‘few’-level system; this
is the so-called transmon regime [34]. In contrast to the
semi-classical picture, oscillators in this regime do not
exhibit any bistability or hysteresis and a full quantum
description is necessary to describe their dynamics.

A thorough understanding of fluctuation-induced
switching rates in the cross-over region is important
for understanding and optimizing Kerr oscillators, both
from fundamental physics and application points of view.
For instance, nonlinear oscillators exhibit scale invari-
ant behavior near bistability; also, the time needed to
switch from one metastable state to the other limits
the qubit measurement time in JBAs [28, 29]. How-
ever, the crossover of driven-dissipative dynamics from
(semi)-classical to the quantum regime remains poorly
understood. In this work, we perform a detailed inves-
tigation of this intermediate mesoscopic regime between
semi-classical bistability and the transmon regimes for
driven Kerr oscillators. The workhorse of our studies
is a Kerr oscillator in the strongly nonlinear mesoscopic
regime, based on a superinductance formed from an ar-
ray of Josephson junctions [35]. The eigenmodes of the
array form highly nonlinear oscillator modes, where the
nonlinear shift per photon is larger than the natural oscil-
lator linewidths. Specifically, we use the time scale, here
labelled τ , associated with decay into the steady state
of the Kerr resonator as a benchmark to delineate semi-
classical and quantum dynamics. We report the results of
an experiment with a nonlinear resonator realized with a
superconducting quantum circuit. The results are simu-
lated using a stochastic master equation and we find sig-
natures of oscillator relaxation time τ much longer than
the intrinsic decay time 1/κ, which motivates further the-
oretical investigations. We go beyond a linear treatment
and present both numerical and analytical calculations of
switching rates in this system, considering the situation
where the oscillation amplitude is locked in one of the two
metastable dynamical states in the presence of a strong
drive. Our theoretical studies indicate a breakdown of
usual semi-classical treatments that describe oscillator
decay primarily as quantum activation in a metapoten-
tial or, alternatively, by thermal activation. Instead, in
the mesoscopic regime, a quantum treatment is essen-
tial to capture the relaxation timsescale of the oscillator.
We characterize this transition from a semi-classical to
quantum description by introducing a crossover param-
eter, ξ = Tγ/Tκ, as a ratio of a temperature associated
with tunneling-induced escape Tγ and effective temper-
ature associated with fluctuations seen by the oscillator
Tκ. When ξ > 1, quantum effects introduce a new decay
channel and fluctuation-induced activation is inadequate
to describe the switching dynamics in this regime.

This paper is organized as follows: Section I introduces
our experimental implementation of a Kerr resonator in
the mesoscopic regime realized by an array of Joseph-
son junctions [22]. In Sec. II, we present the theoretical
model describing the ground state properties and Kerr
coupling between the distributed modes of the array. By
doing a first principle quantization of the array, we con-
firm that the Kerr coefficients for its distributed modes
lie in the regime of interest, Kk/κk ≈ 2 − 5. We then
describe how stochastic master equation simulations ac-
curately predict the experimentally observed nonlinear
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FIG. 2. (a) Schematic of the experimental set up comprising
an array of Josephson junctions coupled to a transmisson line.
The capacitance Cs is the coupling capacitance between the
array and the tranmission line and Cg, Ce represent the ca-
pacitances to ground at the two ends of the array. (b) Linear
lumped element circuit model for the array. Each junction
is represented as an LC-circuit with capacitance CJ , induc-
tance LJ and an extra parasitic capacitance to ground C0.
(c) Rotated SEM image of the junction array.

resonance lineshape for an eigenmode of the array in the
presence of an external drive. In Secs. III and IV, we
perform detailed numerical and analytical investigations
of fluctuation-induced switching rates in order to under-
stand the nonlinear effects observed in the experiment.
Sec. V concludes the paper with a discussion of the main
results and provides an outlook for future theoretical and
experimental studies. Additional numerical and analyti-
cal results are included in Appendicies A and B.

I. EXPERIMENT WITH JOSEPHSON
JUNCTION ARRAYS

Figure 2 depicts the experimental system realizing a
mesoscopic Kerr oscillator, which consists of an array of
80 Josephson junctions capacitively coupled to a trans-
mission line in a hanger geometry [22]. The sample is
mounted inside a copper box in a dilution fridge at a tem-
perature of 15 mK. Both coherent driving and measure-
ment of the resonator are performed through the trans-
mission line. The transmission signal at the output port 2
is amplified by a HEMT amplifier before being demodu-
lated and recorded.

The resonator has a fundamental frequency of ω0/2π =
4.357 GHz, with an internal quality factor of 37,000 and
external quality factor of 5,000. Larger internal qual-
ity factors were observed for other samples [22] but, in
all cases, the quality factor was dominated by the ex-
ternal coupling. The experimental setup is constrained
by circulators and a low-pass filter to measure signals
with frequencies < 12 GHz. As a result, only the fun-
damental mode of the Kerr resonator can be directly
probed. Leveraging the nonlinearity-induced mode-mode
coupling, it is however possible to probe higher frequency
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FIG. 3. Frequency shift of the fundamental mode frequency
as a function of pump drive detuning and for different pump
drive powers. The dots represent the experimental data
while the lines represent the numerical simulations. The
legend indicates the power, P , of the drive applied both
in the experiment and in the simulations, normalized to
0 dB for the weakest drive display here. For the numer-
ics we have used power proportional to the experimentally
applied power, parametrized such that εr ≡ ε1/ε0dB with
ε0dB/(2π) = 1.83 MHz. The solid lines are a full stochas-
tic two-mode simulation, while the dashed lines are the fre-
quency shifts calculated from an one-mode steady-state as-
sumption using Eqs. (2) and (4). For the simulation we
have used K1/(2π) = 5.7 MHz, κ1/(2π) = 2.9 MHz and
κ0/(2π) = 1.0 MHz. For both experiments and simulations,
the frequency shift is obtained by sweeping the probe detun-
ing ∆0.

modes. Indeed, a continuous drive applied to the array at
the frequencies of its higher modes leads to a shift of the
fundamental mode frequency. This shift arises due to the
cross-Kerr coupling represented by the interaction term∑
k 6=l−Kkla

†
kaka

†
l al where Kkl is the cross-Kerr coupling

between array modes k and l while a
(†)
k destroys (creates)

an excitation in mode k. This mode-mode interaction
leads to a dispersive readout mechanism for the modes
that are above the experimental frequency cutoff (see Ap-
pendix A). This technique was already used in Ref. [22] to
map the full dispersion relation of the distributed modes
of the array. In this way, the first mode was identified to
be at ω1/2π = 11.9 GHz.

To probe the photon number in this first mode as a
function of the drive detuning, a continuous pump tone
is applied close to ω1. Simultaneously, the transmission
spectrum of the fundamental mode is measured by sweep-
ing the frequency of a weak continuous probe tone. The
frequency at which the probe is maximally reflected indi-
cates the resonance of the fundamental mode. Figure 3
shows the experimentally measured frequency shift (dots)
obtained using this method for different pump powers
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and as a function of the detuning of the pump drive. The
driven-dissipative Kerr resonator always shows a single
resonance peak. Similarly, we note that the measured
frequency shifts show abrupt changes between a low and
a high value, with no values in between the two. The
lack of intermediate values for the frequency shift in-
dicates that no switching occurs between two bistable
states during the time of the experiment set by the the
measurement time-scale, tm = 1µs and averaged 1000
times. We present a detailed theoretical description of
the experimentally observed resonance lineshapes in the
next section.

II. THEORETICAL MODEL

Since only the fundamental mode is directly measur-
able experimentally, the Kerr coefficients are inferred
from a theoretical model of the distributed junction ar-
ray. To this end, we write the Lagrangian for the linear
part of the array in terms of the system capacitances and
Josephson inductance (LJ), as shown in Fig. 2(c) [36].
Following a quantization of these modes, we pertur-
batively include the nonlinear contributions from the
Josephson junctions (see Appendix A for details) [9, 23].
From room-temperature resistance measurements, we in-
fer an inductance per junction of LJ = 1.9 nH and
an effective array plasma frequency (highest mode fre-
quency) of 18.2 GHz. The effective array plasma fre-
quency is not equal to the single junction plasma fre-
quency ωp = 1/

√
CJLJ , as would be the case if the junc-

tions were purely linear elements. We moreover infer
that the system capacitances illustrated in to have val-
ues C0 = 0.066 fF, CJ = 26.54 fF, Cg = 10.4 fF, Cs = 3
fF and Ce = 10.84 fF close to the design parameters
found by simulations [22]. With these parameters, we es-
timate the self-Kerr coefficient of the fundamental mode
to be K0/2π = 0.5 MHz, and that for the first mode to
be K1/2π = 5.7 MHz. The latter is almost a factor of
two bigger than the corresponding linewidth κ1/2π = 2.9
MHz, and hence lies in the intermediate (or mesoscopic)
regime identified in Fig. 1.

Reintroducing the junction nonlinearity in the anal-
ysis, we find that the mode frequencies get shifted by
self-Kerr and cross-Kerr couplings. The kth mode’s fre-
quency, ωk, is shifted such that the new effective fre-
quency becomes

ωk → ωk −
∑
l

Kkl, (3)

where Kkl is the cross-Kerr contribution between modes
k and l (see Appendix A). Although each Kkl is a fac-
tor of 102–103 smaller than ωk (on the order of a few
MHz), the cumulative effect of all the modes results in
significant shifts of the eigenfrequencies of the array by
up to a GHz compared to the bare mode frequencies.
Moreover, as a result of the cross-Kerr couplings, when
driving the Kerr-resonator, the average photon number,

〈a†1a1〉, increases leading to a measurable frequency shift
of the fundamental mode.

As a first, simple, approach to reproducing the data

of Fig. 3, the steady-state photon number, 〈a†1a1〉s =

Tr(ρsa
†
1a1), is numerically computed using the single-

mode master equation Eq. (2). From this, the frequency
shift of the fundamental mode due to photon population
in the first mode is then estimated to be

∆0 = −K01〈a†1a1〉s, (4)

where K01 = 4
√
K0K1 denotes the cross-Kerr coupling

between the two modes [9]. The result of this calcula-
tion corresponds to the dashed lines in Fig. 3. Evidently,
this steady-state result does not match the experimental
data (dots). Indeed only some features of the experiment
are captured by this single-mode steady-state calculation.
For instance, the detunings are approximately correct.
On the other hand, the shape of the frequency shift as
a function of the detuning is very poorly reproduced. In
particular, the shoulders to the left of the maxima of the
shift are not observed experimentally.

In order to theoretically reproduce the data, we now
turn to an approach that resembles the experimental
situation more closely. First, rather than computing
the steady-state photon population, we compute the full
time-dependent response of the transmitted power along
the transmission line coupled to the array. As in the
experiment, this response is integrated over a finite mea-
surement time tm and averaged over 1000 realizations.
Any dynamics that occur on a time-scale much slower
than tm, such as slow switching between two bistable
states, are therefore neither resolved in the measure-
ment nor in the simulations. Second, while the cross-
Kerr interaction was used in computing the expected
frequency shift in Eq. (4), we now add this interac-
tion directly to the system Hamiltonian. This allows
for capturing the measurement-backaction in the form
of measurement-induced dephasing of the first mode by
the probe tone. The addition of measurement-induced
dephasing increases the effective linewidth of the nonlin-
ear mode, thereby leading to a reduction in the number
of photons in the mode and, consequently, to a smaller
observed frequency shift.

In order to obtain a description as close to the ac-
tual experiment, we numerically solve the full two-mode
Hamiltonian including both the mesoscopic Kerr mode
(a1) and probe mode (a0) with the stochastic master
equation,

dρZ = −idt [H1 +H0 +Hc, ρZ ]

+ dt κ1
[
a1ρZa

†
1 −

1

2
(a†1aρZ + ρZa

†
1a1)

]
+ dt κ0

[
a0ρZa

†
0 −

1

2
(a†0a0ρZ + ρZa

†
0a0)

]
+
√
κ0

[
dZa0ρZ + dZ∗ρZa

†
0

− Tr(dZa0ρZ + dZ∗ρZa
†
0) ρZ

]
(5)
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valid for heterodyne detection of the fundamental mode
a0 [37]. In this expression, Hk is Hamiltonian given by
Eq. (1), while

Hc = −K01 a
†
1a1 a

†
0a0 (6)

is the relevant cross-Kerr interaction. In Eq. (5), the
density matrix ρZ is conditioned on the result of a het-
erodyne measurement where dZ = dWa + idWb, with
dWi a stochastic Wiener processes with 〈dWi〉 = 0 and
〈dW 2

i 〉 = dt1. The last term of Eq. (5) is associated to the
homodyne measurement record which is used to update
our description of the state of the system ρZ . From the
numerical integration of Eq. (5), the transmitted power
can then be calculated as

JT (t) =
1

2

{√
κ0 Tr[ρZ(a0 + a†0)] + dWa/dt

}2

+
1

2

{
i
√
κ0 Tr[ρZ(a0 − a†0)] + dWb/dt

}2

, (7)

which, averaged over time tm, yields the measured signal.
The value ∆0 corresponding to the maximum transmis-
sion signal, JT , gives the frequency shift plotted in Fig. 3.
The simulation were performed using standard numeri-
cal integration for the deterministic part of the equation
and after each integration step, δt, a random number is
drawn from a Gaussian distribution with variance δt for
each stochastic term dWi such that the stochastic part
of dρZ can be readily calculated.

In Fig. 3, the numerical simulations using the parame-
ters of the experiment are presented as solid lines, which
are in excellent agreement with the experimental data.
The difference between the steady-state values used in
Eq. (4) and the stochastic master equation simulations
is mainly due to the facts that the latter (i) includes the
full two-mode interaction and, as a result, the measure-
ment backaction, and (ii) explicitly takes into account
the finite measurement time tm. Therefore, dynamics on
time-scales much longer than the characteristic measure-
ment time, which are not probed by the experiment, are
also not observed in the stochastic master equation simu-
lation. The most predominant feature observed from the
stochastic simulations, and not the simpler single-mode
steady-state calculations, is the lack of intermediate val-
ues in the abrupt transition from low photon number
to high photon number state when changing the drive
detuning, i.e., the “shoulders” in the steady-state pho-
ton number. For strong Kerr nonlinearities the energy
levels of a Kerr oscillator are ωk −Kkn and can be well-
resolved. The “shoulders” at large detunings are, thus,
signatures of switching events at corresponding photon-
number-selective transitions. These intermediate values
are not resolved in the experiment due to the finite mea-
surement time and this fact indicates a time-scale of po-
tential switching dynamics much longer than the mea-
surement time tm and comparably or even longer than

1 The subscripts of dWi indicates solely that these are different
independent Wiener processes.

the total experimental time of tm times the number of
averages. To fully capture the dynamics of the exper-
iment, a two-mode model is needed, however, the con-
tributions from the two-mode interaction do not signif-
icantly contribute to the switching time-scale. Rather,
the effects of the cross-Kerr interaction is to account for
the measurement-induced backaction. This backaction
affects the detuning and drive strength for which the in-
creased time-scales appear. Thus, the physics of the long
time-scales can be understood from only a single mode
model. In the next two sections, we confirm this by per-
forming a detailed investigation of the switching rates
for a single mode Kerr resonator with parameters in the
mesoscopic regime, and explicitly comparing the predic-
tions from semi-classical and quantum treatments.

III. NUMERICAL TREATMENT OF THE
SWITCHING RATES

Since both the experiment and stochastic master equa-
tion simulations show a qualitatively different behavior
than the single-mode steady-state master equation, a
more complete quantum description is necessary to quan-
titatively understand the switching dynamics of Kerr res-
onator in large-nonlinearity regimes. In particular, as ev-
ident from Fig. 3, the lack of intermediate photon number
values in the bistable regime indicates that there is no dy-
namical switching between the two bistable states within
the time-scale of the experiment. In this section, we per-
form numerical simulations of the steady-state photon
number and switching rates of the Kerr oscillator in-
troduced in the previous section. Specifically, in order
to identify the appropriate description for the nonlinear
oscillator in mesoscopic regime, we compare the results
obtained from semi-classical simulations with that from
quantum master equation simulations.

We begin with a generic description of the steady-state
response of a nonlinear oscillator. It is convenient to de-
lineate the time-averaged response into three regions, as
sketched in Fig. 4 for an oscillator with K = κ (this cor-
responds to the mesoscopic regime depicted as the blue
region in Fig. 1). The thick full line is a representative
curve obtained using a master equation simulation, while
the narrow dashed line is obtained from a semi-classical
analysis with the same parameters. In region I, the res-
onator relaxes to a state with a low photon number on
a time scale of Tκ = 1/κ. There may be two stable clas-
sical solutions in this region, as indicated by the dashed
line in Fig. 4, but the fluctuations associated with the
low photon-number state are not sufficient to bring the
system to the high photon number state. For the lower
branch solution of this region, the semi-classical and the
full quantum treatment give identical results for both the
relaxation time into the steady-state and for the steady-
state photon number. Indeed, in this regime, only few
photons are present and, as a consequence, the nonlinear
effects play only a minor role. Region III is conceptually
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FIG. 4. Representative curves showing numerical calculations
of steady-state photon number as a function of the drive de-
tuning for K = κ and ε = 6κ (as the red curves in Fig. 5
but with smaller nonlinearity, i.e., closer to the semi-classical
regime). The solid black line shows the results calculated us-
ing the master equation, while the dotted lines show the re-
sults ontained using a semi-classical equation of motion (see
Eq. (9) and Appendix B). In regions I and III, the resonator
relaxes to its steady state on an average time scale Tκ = κ−1.
Region II corresponds to the switching region where the os-
cillator dynamics slow down considerably.

comparable to region I, except that the system relaxes
into a high photon number state. In region II, the dynam-
ics are such that the photon number initially latches to a
low photon-number state, but after some time it jumps
to, and continues to fluctuate around, a high photon-
number state [38, 39]. This switching between the high
and low photon number states continues and we refer to
the time-scale of this dynamics as the switching time,
τ . We henceforth focus on region II, and study switch-
ing times as a function of the ratio K/κ1. In particular
we are interested in quantifying the difference between a
weakly nonlinearly Kerr resonator, which we expect to
behave classically, and a highly nonlinear Kerr resonator
where quantum fluctuations are expected to play a larger
role.

We first consider a semi-classical description which we
obtain from the Heisenberg-Langevin equation satisfied
by the first mode,

ȧ1 = −i
[
a1 , H1

]
− κ1

2
a1 +

√
κ1a

in
1 (t), (8)

where H1 is given by Eq. (1). Here the input field, ain1 (t),

satisfying the commutation relation [aink (t), ain†k′ (t′)] =
δkk′δ(t− t′), accounts only for the quantum fluctuations
induced by the environment. The driven-dissipative Kerr
resonator is most conveniently treated in a frame rotat-
ing at the drive frequency, ωd, such that we make the
replacements ε1(t) → ε1 and ω1 → ∆1 = ω1 − ωd in the
Hamiltonian.

We first attempt to solve the time-evolution using a
semi-classical trajectory approach [40], which replaces
the system field operators with complex numbers, 〈a〉 →
α. This replacements reduces Eq. (8) to an equation
of motion for the phase-space variable α (see also Ap-
pendix B for a deterministic classical treatment). How-
ever, when replacing the input field with a stochastic

variable to account for the quantum noise associated
with ain1 (t), this approach becomes only approximate in
the presence of nonlinear mixing terms in the Hamilto-
nian, since it does not account for up/down-converted
quantum noise due to mode mixing. The resulting semi-
classical stochastic equation of motion can then be writ-
ten as,

α̇ = −i∆α+ 2iK|α|2α− iε− κ

2
α+
√
κ ζ(t), (9)

corresponding to an equation for the coherent state am-
plitude of the system, and where ζ(t) is stochastic Wiener
process that models the quantum vacuum noise 2. Here,
we have suppressed the subscript 1 both for brevity and
to underscore the generality of this treatment. A partic-
ular realisation of ζ(t) is referred to as a semi-classical
trajectory. In the bistable regime of the oscillator, a tra-
jectory initially latches to a low photon-number state,
and after some time jumps to a high photon-number state
[38, 39]. As the switching continues with a waiting time
between the successive switches approximately Poisson
distributed, we use an exponential function to fit the av-
erage over many trajectories to extract the time scale to
reach steady-state.

To understand the quantum effects that arise in the
switching dynamics of the Kerr resonator, we next per-
form numerical master simulations, Eq. (2), of the driven
system with the Hamiltonian, Eq. (1), and analyze the
relaxation towards the steady-state. From these simula-
tions, we observe an oscillatory behavior of the photon
number that relaxes on a time scale Tκ followed by an
exponential relaxation towards the steady state. The re-
laxation time scale, τ , can therefore be readily extracted
from the exponent of exponential decay obtained using
master equation simulations.

In Fig. 5, we compare the results obtained from both
simulations described above, for a strongly nonlinear
Kerr oscillator with K = 2κ (solid lines) and for a weakly
nonlinear Kerr oscillator with K = 0.2κ (dashed lines).
The results of the master equation simulation are shown
in the main panel, while those of the semi-classical trajec-
tories are shown in the inset. In both cases, the relaxation
time is shown in blue (left axis) and the average photon
number in red (right axis). First, it is clear from both
the classical and quantum numerical treatments that the
switching time (blue lines) can significantly exceed the
linear decay time Tκ = 1/κ near the bistability. Fur-
ther, for weak nonlinearity K = 0.2κ, both the quantum
and the semi-classical approaches show a sharp rise in τ
close to the detuning where the steady state maximum
photon number reaches its maximum (compare dashed

2 Here, ζ(t) = (dWa(t)/dt+ i dWb(t)/dt)/
√

2 represents a stochas-
tic Wiener process with 〈dWi〉 = 0 and 〈dW 2

i 〉 = dt that, on
average, corresponds to the input field being the quantum vac-
uum state.



7

0

4

8

12

16

20

24

−20 −15 −10 −5
0

25

50

75

100

125

150

175

0

4

8

12

16

20

24

−20 −15 −10 −5
0

25

50

75

100

125

150

175

(a) Master equation simulations

(b) Semi-classical simulations

P
h
ot
on

n
u
m
b
er

in
st
ea
d
y
st
at
e

Detuning of drive −∆
κ

R
el
ax

at
io
n
ti
m
e
τ
κ

P
h
ot
on

n
u
m
b
er

in
st
ea
d
y
st
at
e

Detuning of drive −∆
κ

R
el
ax

at
io
n
ti
m
e
τ
κ

K/κ = 2

K/κ = 0.2

K/κ = 2

K/κ = 0.2

FIG. 5. Comparison of steady-state photon number and the
relaxation time scale τ (in units of 1/κ) as a function of the
drive detuning ∆/κ, obtained from quantum master equation
simulations (a) and the semi-classical simulations averaged
over 200 semi-classical trajectories (b). The red lines repre-
sent steady-state photon numbers (right axis), while the blue
lines are the time scales obtained from an exponential fit to
the time evolution of the photon number (left axis). The solid
lines are simulation results for K = 2κ, while the dashed lines
show the results for K = 0.2κ. The blue lines indicating the
relaxation times τ associated with the switching dynamics are
only plotted in the bistable regime. In all cases, the resonator
is initialized in the vacuum state and a drive of amplitude
ε = 6κ is used.

lines between the main figure and the inset). This be-
havior is a generic feature of weakly nonlinear systems.
Semi-classically, it can be understood as being caused by
the switching rates between two stable states becoming
equal.

For larger nonlinearity, K = 2κ, the discrepancy be-
tween the full quantum simulations and semi-classical

numerics is much more pronounced (compare solid
lines between the main figure and the inset). Specifi-
cally, a much wider distribution of time scales is pre-
dicted by the quantum treatment in the strong nonlin-
earity regime, which the semi-classical approach com-
pletely fails to capture. This observation is not sur-
prising and is reinforced by the fact that the steady-
state in this regime shows a negative Q-parameter,

Q = (〈(∆a†1a1)2〉 − 〈a†1a1〉)/〈a†1a1〉 ≈ −0.4, which indi-
cates sub-Poissonian statistics. Similarly, the steady-
state Wigner function displays negative values (not
shown), a clear sign of the non-classical nature of the
state of the system. Numerical simulations with varying
K/κ further confirm that the average behavior observed
in Fig. 5 gradually transitions from a situation where
the semi-classical treatment matches well with full quan-
tum simulation for small K, towards a larger discrepancy
when K is increased (not shown).

The numerical results presented here can now be com-
pared to the results of Fig. 3. There, the steady-state be-
havior showed intermediate values in the bistable regime,
while the experimental data was only correctly repro-
duced using a two-mode stochastic quantum analysis that
take into account the finite measurement time. This is
consistent with the emergence of a very slow time-scale,
which can be significantly longer than the linear decay
rate κ of the oscillator; since dynamics on very long time-
scales were not probed by the experiment, it invalidates
a steady-state analysis of the data. Moreover, for suf-
ficiently large nonlinearities (K > κ) as relevant to the
experiment with JJ arrays, this slow time-scale cannot
be attributed only to semi-classical switching dynamics.
In the next section, we present analytical studies high-
lighting the differences between the semi-classical picture
and the full quantum calculations of the switching rate in
the large nonlinearity regime (K/κ ≥ 1), while compar-
ing them against the numerical results obtained in this
section.

IV. ANALYTICAL TREATMENT OF THE
SWITCHING RATES

A. Quantum calculation

In the last section, we saw that the increase in the
switching time in this regime is not captured by a semi-
classical treatment. Therefore, we now consider an ana-
lytical description that takes into account the full non-
linear quantum dynamics.

To this end, we consider the Liouvillian describing the
time evolution of the driven-dissipative single-mode Kerr-
oscillator in the mesoscopic regime [Eqs. (1) and (2)]. In
a Hilbert-space of dimension N (N being the number of
Fock states included in the calculation), the Liouvillian
has N2 eigenvalues. The time-evolved density matrix can
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be expressed in terms of these eigenvalues as

ρ(t) =
∑
λ

cλe
λtρλ (10)

where ρλ are the eigenstates of the Liouvillian, L[ρλ] =
λ ρλ. In the presence of damping, all the eigenvalues
have negative real parts, with the exception of the steady
state ρs for which λ = 0. This also represents the only
physical state of the system that survives at long times.
To preserve the trace at all times, including in steady
state, ρs always appears in this decomposition with a
constant prefactor of cs = 1. Since the time evolution is
trace-preserving this implies that Tr(ρλ6=0) = 0 and that
ρλ6=0 are not valid density matrices with direct physical
significance [41].

Here, we are interested in the time-dependent fraction
of population in the steady state and therefore we re-
express the expansion as a linear combination of orthog-
onal unit-trace density matrices. To accomplish this, we
consider the eigenvalue, χ 6= 0 of the Liouvillian, L[·],
defined as the eigenvalue with the smallest real part [42].
We observe that 〈ρs, ρχ〉 6= 0, with 〈A,B〉 = Tr(A†B) re-
spresenting the matrix inner product. To ensure orthog-
onality, we use a Gram-Schmidt construction to define

ρ̃χ = ρχ−
〈ρs, ρχ〉
〈ρs, ρs〉

ρs, (11)

with 〈ρ̃χ, ρs〉 = 0. The normalized density matrix ρ̃ =
ρ̃χ/Tr(ρ̃χ) has unit trace, but it is not ensured to be pos-
itive definite. Nevertheless, we can express the density
matrix ρ(t) as

ρ(t) = β0(t)ρs + β1(t)ρ̃+ σ(t), (12)

where σ(t) only ensures the positive definiteness of the
full density matrix, while the factors βi denote the decay
rates.

In order to mimic the exponential relaxation observed
in the numerical analysis of Sec. III, we surmise that
β0(t) = (1 − β̃0e

−λet) with λe represents the “escape
rate”, thereby explicitly assuming Markovian switching
dynamics. To estimate the rate at which the density
matrix approaches the steady state in the long-time limit,
we can calculate the time scale λe by inserting Eq. (12)
into the master equation, Eq. (2), and taking the inner
product with ρs to obtain,

β̇0(t) = 〈 ρs,L[ρ(t)] 〉. (13)

The quantum-induced switching rate can now be ex-
pressed as λe = β̇0(t)/(1 − β0(t)). Since σ(t) only plays
a role in preserving positive definiteness, the dominant
time scale is not affected by it and we can omit σ(t) in the
analysis of the time scale without introducing unphysical
behavior. Without σ(t), the expression for λe only ac-
counts for the dynamics induced by the steady state and
the smallest eigenvalue of L[ρ(t)], the two dominant con-
tributions in the long time limit. While λe is explicitly

time-dependent, in the regime of interest it is approxi-
mately constant and we can therefore neglect the time
dependence and simply evaluate for t = 0 where ρ(t = 0)
is the initial vacuum state. This leads to the following
expression for λe:

λe = 〈 ρs,L[ρ(t = 0)] 〉
(

1− 〈ρs, ρ(t = 0)〉
〈ρs, ρs〉

)−1
. (14)

The solid lines in Fig. 6 (a) and (b) show the results of
the analytical calculation of the switching times λ−1e for
K/κ = 2 and K/κ = 0.2, respectively. The dashed lines
represent the time-scales extracted from the numerical
master equation simulation also shown in Fig. 5. Though
Eq. (14) predicts a larger value of τ = λ−1e than that
observed numerically, the analytical calculations qualita-
tively match the numerical results. We can understand
the larger value for τ obtained analytically from the fact
that we neglected σ(t). Indeed, in general σ(t) has con-
tributions from all eigenvalues of the Liouvillian which
includes contributions with a larger negative real part
than χ. Therefore, the dynamics associated with σ(t)
must be strictly faster than τ . In particular, the Liouvil-
lian spectrum may show a two-fold degeneracy in the real
part of the eigenvalues, which may speed up the dynam-
ics by up to a factor of two. The prolonged time-scales
observed in both experiment and in numerical simula-
tion can, therefore, directly be qualified using a simple
analytical quantum calculation.

B. Semi-classical calculation: Quantum activation

The quantum calculation based on the Liouvillian
qualitatively reproduces the dynamics of the full mas-
ter equation. However, for weak nonlinearity, we expect
a semi-classical treatment to be sufficient. Here, we com-
pare the switching rates predicted by the numerical sim-
ulations with analytical results for a fluctuation-induced
escape from a metapotential [24]. A metapotential is an
effective potential that corresponds to the same equation
of motion as the semi-classical model. In this treatment,
the fluctuations associated with the noise ζ(t) in Eq. (9)
are transformed into an effective temperature and the
switching rate τ can then be evaluated as a thermal es-
cape rate from a local minimum of the metapotential
[33, 43]. The increased time-scale in region II in this
picture corresponds to a higher effective barrier in the
metapotential.

To estimate the semi-classical escape rate, we begin
by first considering the semi-classical equation, Eq. (9),
with ζ(t) = 0 (See Appendix B), and later reinstate
the effect of the noise. The general approach is to
rephrase the complex equation into a real equation for
a generalized position variable, x, that changes slowly
in time. To this end, we solve Eq. (9) with ζ(t) = 0
and denote the low-amplitude solution as α0 and the
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FIG. 6. Comparison for switching times between oscillators
with strong Kerr nonlinearity, K = 2κ, (a) and (c), and weak
Kerr nonlinearity K = 0.2κ, (b) and (d). The panels (a) and
(b) present the analytical calculation of the relaxation time
scale showed in solid lines, while the dashed lines are the
time scales extracted from numerical simulations (also shown
in Fig. 5). In (c) and (d) the switching time-scales obtained
from escape rates in a metapotential are displayed (Eq. (18)]).
The dashed lines are the time scales extracted from the semi-
classical numerical simulations. Inset: The inset in the lower-
left panel displays an example of the metapotential U(x) for
the parameters marked by the blue dot. The ticks on the
x-axis are at 0 and x0 with ticks on the y-axis showing the
corresponding values of the energy in the metapotential. For
all simulations and calculations, driver power ε = 6κ was
used.

unstable solution as αu. Next, we define a rotation an-
gle ϕ = tan−1[−Im(αu − α0)/Re(αu − α0)] such that the
quantity x0 = eiϕ(αu−α0) is a real number and the axis
on the line from 0 to x0 constitutes our position vari-
able x. In order to determine the metapotential U(x),
we make a substitution α(t) = α0 + e−iϕz(t) and rewrite
the equation of motion, Eq. (9), in the form ż = F (z),
where

F (z) =(−i∆− κ/2)(z + eiϕα0)− ieiϕε
− 2iK(z + e−iϕα∗0)(z + eiϕα0)2. (15)

represents the effective force on the particle. The com-
plex variable z can be represented in terms of two real
variables, playing the role of the coordinate and momen-
tum, z = x + ip. Since the two states α0 and αu are
steady states, it follows that F (0) = F (x0) = 0. Fur-
ther, since the imaginary part accounts for the dynamics
of the momentum p, we can write the derivative of the

metapotential U(x) as

Im[F (x) ] = ṗ = −dU(x)

dx
. (16)

Integrating this equation results in a one-dimensional
metapotential,

U(x) = −
∫

Im[F (x) ] dx, (17)

with a minimum at 0 and maximum at x0 as illustrated in
the inset of Fig. 6 (c). Following Kramer’s escape law [44,
45], the escape rate over the barrier can be written as [33,
43]

λe = γ0 exp
(
− ∆U

κ

)
, (18)

with ∆U = U(x0)− U(0) denoting the activation en-
ergy. Note that effective temperature is set by the mode
linewidth, κ, since it enters as the prefactor for ζ(t) in
Eq. (9). The rate γ0 is the attempt frequency and it is ex-
tracted from the quadratic term of the potential, which

can be expressed as
γ2
0

2κx
2. When increasing the drive

amplitude, ε, the barrier height is decreased leading to a
faster escape rate [46].

In Figs. 6 (c) and (d), we show λe obtained using this
quantum-activation approach (solid lines) and compare it
with the switching rates extracted from the semi-classical
simulations (dashed lines, also shown in the inset of
Fig. 5). We observe that, for small detunings, the simula-
tions match the escape rate calculation of Eq. (18) quite
well. However, a large discrepancy is observed for larger
detunings when the switching time dramatically increases
near the bifurcation point, where the rates between the
two stable states equilibrates as already explained in the
context of the numerical simulations. In the escape rate
calculation, we are however only calculating a one-way
rate and, thus, we do not capture the same increase in
switching time. More interestingly, and as should be ex-
pected, we observe that while the escape rate calculation
captures the behavior of the semi-classical simulations
well, it does not capture the quantum corrections rele-
vant in the strongly nonlinear regime (K/κ = 2), as ob-
served from its deviations from predictions of quantum
calculation and master equation simulations [c.f. Figs 6
(a) and (c)].

To summarize this section, we have considered the time
scales relevant for the relaxation of a Kerr-resonator to-
wards the steady state. Going back to the regions in-
troduced in Fig. 4, we noticed that, most significantly,
the time scale for relaxation towards the steady state
becomes very large in region II. This is consistent with
experimental data presented in Sec. I, where we found
a steady-state description to be inadequate due to the
finite time-scale set by the measurement rate (see also
the experiments presented in [32]). We also found that
while a semi-classical calculation adequately predicts the
dynamics of a weakly nonlinear system, it fails to capture
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FIG. 7. Crossover parameter ξ as a function of reduced de-
tuning ∆/κ for a nonlinear oscillator. For ∆/κ <

√
3/2, γ0

depends entirely on the detuning of the resonator (dashed
curve), while for ∆/κ >

√
3/2, γ0 is largely dominated by

the photon amplitude in the resonator (solid curve). This
change is captured by the rotation of the real axis of the one-
dimensional metapotential denoted by angle ϕ. The crossover
point is consistent with the region where breakdown of the
semi-classical theory was observed previously.

the structure of the time scales for relaxation, τ , seen for
large nonlinearities. The time scale for relaxation can
be accurately predicted by a simplified but fully quan-
tum model. On the other hand, an escape rate calcu-
lation matches the semi-classical trajectory simulations
only partly, and completely fails to describe the dynam-
ics for large nonlinearities.

C. Crossover parameter

The observed breakdown of the semi-classical theory
can be understood in a phenomenological manner by in-
troducing a damping-dependent crossover temperature
Tγ [47],

Tγ =
~γ0

2πkB

(√
κ2

4γ20
+ 1− κ

2γ0

)
, (19)

where γ0 is the attempt frequency in the metapotential
introduced in the semi-classical calculation. Using this
definition, we can define a crossover parameter ξ as

ξ ≡ Tγ
Tκ
, (20)

where Tκ = ~κ/kB denotes the effective temperature of
the quantum fluctuations coupled to the oscillator. The
semi-classical to quantum crossover boundary is set by
ξ = 1 [47].

Figure 7 shows ξ as a function of detuning of the os-
cillator. For ξ < 1 or Tκ > Tγ , the decay dynamics can
be described largely using the semi-classical activation

treatment. However, as the detuning of the oscillator in-
creases, and Tγ > Tκ, quantum tunneling effects can be-
come essential to describe the nonlinear decay dynamics.
We find that the attempt frequency γ0, and consequently
ξ, does not depend on the strength of the nonlinearity
explicitly. This makes ξ a universal quantity for a dis-
sipative decay of a metastable state; nonetheless, strong
nonlinearity K/κ > 1 is essential for the oscillator to bi-
furcate at large enough detunings and enter the quantum
regime as shown in Fig. 6. This intuition is consistent
with significant deviations of both numerical simulations
and Liouvillian-based analytical estimates from quantum
activation results at large nonlinearity. Nonlinear oscil-
lators with large K/κ thus access a qualitatively differ-
ent regime from that described by (thermal or quantum)
activation-based models, in which rate of escape via tun-
neling is exponentially small [46].

V. DISCUSSION AND OUTLOOK

In conclusion we have investigated the switching dy-
namics of a Kerr resonator in a combined experimen-
tal, numerical and analytical framework. We used ex-
perimental microwave spectroscopy data of a distributed
mode of a Josephson junction array with K/κ ≈ 2 and
observed that the relaxation into the quantum steady
state is not resolved in the experiment due to switching-
times much longer than the probe time. We also simu-
late the experiment using a two-mode stochastic master
equation and find that the numerical simulations match
very well with the experimental data, thus confirming
our interpretation. A recent experiment [32] has directly
measured the very slow switching dynamics in a weakly
nonlinear Kerr resonator.

To further analyze the slow switching rates observed in
the experiment we performed both semi-classical trajec-
tory simulations and quantum master-equation simula-
tions. We find that, for a range of parameters, the time
scale to relax into the steady state is increased signifi-
cantly beyond the natural decay time of the resonator,
especially for strong nonlinearity (K/κ > 1) as com-
pared to that for weak nonlinearity (K/κ � 1). We
find that a semi-classical trajectory method is able to
describe this slowdown only in the weak nonlinearity
regime, while a full quantum master equation treatment
is essential to calculate the switching rates for strongly
nonlinear oscillators. To analytically estimate the time
scales to reach the steady state, we compared a simpli-
fied quantum model and a semi-classical metapotential
model. In the semi-classical metapotential treatment, the
fluctuation-induced switching between bistable states is
modelled as an activation over barrier in a metapotential,
with the fluctuation-intensity determined by thermal or
quantum noise. We find significant deviations from this
model, especially when switching rates are small; more-
over, these deviations are especially pronounced for large
K/κ and persist even far from bifurcation. In contrast,
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we obtain good qualitative agreement between quantum
calculations and full master equation simulation in this
regime. This is not entirely surprising since thermal or
quantum activation models necessarily assume weak non-
linearity or weak driving conditions for the oscillator [46].
Our results indicate that switching dynamics in meso-
scopic oscillators i.e. when K/κ & 1 may be dominated
by some other mechanism, such as dynamical quantum
tunneling.

The conclusions drawn in this work regarding the time
scales associated with switching dynamics in nonlinear
Kerr-resonators are highly relevant for the characteri-
zation of state-of-the-art applications of Josephson de-
vices especially in the strong nonlinearity regimes where
quantum effects are more pronounced. In particular, we
describe how the interplay of switching rates and the
repetition rate of the experiment is essential to explain
the experimentally measured nonlinear response of the
superinductance presented in Fig. 3. We expect our
results to guide the design of applications that simi-
larly aim to observe non-linear spectroscopic signatures
in Kerr resonators. In addition, our results can directly
be used for assessing the performance of a bifurcation
readout scheme for superconducting qubits [28, 29]. In
such a scheme, the required measurement time has to
be a few multiples of the characteristic switching time.
Thus, Eqs. (14) and (18) can be directly used for find-
ing the required measurement time and, consequently,
the expected qubit readout fidelity. These concerns be-
come increasingly important as devices based on ar-
rays of Josephson junctions, similar to the application
in this work, continue to play an important role in ex-
periments and theory proposals including various readout
schemes [7, 48, 49], quantum controllers [50–52] and even
qubit architectures [21, 53, 54].

Furthermore, our calculations for the Kerr coefficients
for the higher distributed modes of the Josephson ar-
ray presented here (see Appendix A) indicate that these
modes should be in the ‘mesoscopic’ regime (defined as
K & κ) investigated here. This regime is also optimal for
direct observation of dissipative quantum tunneling [55],
which is usually obscured by the activation-dominated
switching observed in the JBA regime [38]. Moreover,
since the switching rate does not follow activation de-
pendence on noise intensity, this suggests that meso-
scopic Kerr oscillators can be useful platforms to test
dynamics resulting from non-Gaussian noise. More gen-
erally, our study provides a framework to explore multi-
photon quantum effects [56], quantum noise properties,
and quantum-to-classical transitions in strongly nonlin-
ear systems.
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Appendix A: Kerr-resonators with arrays of
Josephson junctions

We consider a Kerr resonator, consisting of a linear
1D array of N Josephson junctions (JJ) forming a non-
linear inductance, with first and last junctions capaci-
tively shunted to ground. We will, at first, assume that
each of these junctions are sufficiently linear such that
we can neglect the nonlinearity of each junctions. Each
junction is described by its effective inductance LJ and
capacitance CJ . Furthermore, we include a parasitic ca-
pacitance to ground for each junction, C0. This gives us
the (linearized) Lagrangian for the array:

Larray =

N∑
n=1

CJ
2

(φ̇n − φ̇n+1)2 +
C0

2
φ̇2n

− 1

2LJ
(φn − φn+1)2. (A1)

The terms in Lagrangian corresponding to the end ca-
pacitances can be written as,

Lend =
Cs
2
φ̇21 +

Cg
2
φ̇21 +

Ce
2
φ̇2N+1, (A2)

where Cs is the capacitance to the transmission line
which controls the external quality factor of the array
resonances, Cg is the shunt capacitance on the first junc-
tion, and Ce is the shunt capacitance on the last junction.
Including the terms due to shunt capacitances, the full
Lagrangian can then be witten as

L = Larray + Lend

= ~̇φT
C
2
~̇φ− ~φT L

2
~φ, (A3)

where we have introduced the symmetric matrices C and

L along with the vector φ =
{
φ1, φ2, . . . , φN+1

}T
Standing waves across the array now constitute a

set of normal modes for the array. Formally, we
find these standing mode by diagonalizing the matrix
Ω2 = C−1L−1, such that the Euler-Lagrange equations
for these modes decouple. The eigenvalues of the matrix,
Ω2 are the squares of the normal-mode frequencies of the
Kerr resonator. We can similarly define the effective ca-
pacitances and inductances for these modes as

Ck = ~v Tk C~vk, L−1k = ~v Tk L~vk, (A4)
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where ~vk are the corresponding eigenvectors of Ω2. The
eigenfrequencies are now, by construction, given by ωk =
1/
√
LkCk. Keep in mind that the actual modes are de-

scribed by the physical phase variable φ(t) =
∑
k φk(t)~vk,

where φk(t) is a function oscillating with ωk; thus, the
physical amplitude of the phase is in the φk(t) variables
and no physical quantify depends on the normalization
of ~v.

1. Quantization of the modes

Having found the normal modes we can apply a canon-
ical quantization scheme to develop a quantum model for
the JJ array [36]. This is done by first rewriting the La-
grangian into diagonal form

L =
∑
k

Ck
2
φ̇k(t)2 − 1

2Lk
φk(t)2. (A5)

This Lagrangian now yields the conjugate variables

qk = Ckφ̇
2
k, (A6)

such that we can introduce the quantum operators φ̂k
and q̂k satisfying the commutation relation [φ̂k, q̂k] = i~.
The Hamiltonian for the system is then readily obtained
as

H =
∑
k

q̂2k
2Ck

+
φ̂2k

2Lk
, (A7)

which can be recast into the form

H =
∑
k

ωka
†
kak. (A8)

by introducing the ladder operators (a†k, ak) as

φ̂k =

√
~ωkLk

2
(a†k + ak), (A9a)

q̂k = i

√
~ωkCk

2
(a†k − ak). (A9b)

The real physical phase variable is now described by the

quantum variables, φ̂ =
∑
k φ̂k

~φk and we confirm that for
a given wave-function of the system the phase-variable is

independent of the normalization of ~φk.

2. Reintroduction of the nonlinearity

The potential energy quadratic in phase variables, as
used in Eq. (A1) implicitly assumes small phase excur-
sions φ � ϕ0 (with ϕ0 = ~/(2e)) for which Joseph-
son junction potential −EJ cos(φ/ϕ0) is approximated
as cosx ≈ 1−x2. To study the effect of nonlinear contri-
butions of the junctions in the array, we include the next

FIG. 8. Calculated self-Kerr shifts per photon Kll for different
modes of the Josephson junction array described in Sec. I.

term in the expansion that gives rise to a nonlinear term
in the potential, Unl, seen by the phase φ

Unl = − 1

24LJϕ2
0

N∑
n=0

(
φn − φn+1

)4
. (A10)

Introducing the variable

∆φk(n) = vk[n]− vk[n+ 1], (A11)

where vk[n] denotes the nth entry in the vector ~vk, we
can rewrite the potential in terms of the quantum mode
operators as,

Unl = −
∑

k1,k2,k3,k4

∏4
j=1 φ̂kj

24LJϕ2
0

N∑
n=1

4∏
j=1

∆φkj (n). (A12)

Generally, such a term will lead to Kerr terms as well as
beam-splitter term. The beam-splitter terms are, how-
ever, only important between modes with small frequency
difference, or if the system is strongly pumped by some
external field of appropriate frequency that makes these
terms resonant. Since we are primarily interested in the
few photon regime of the lowest modes, which are all
well-separated in frequency, we only consider the self-
Kerr and the cross-Kerr terms. These can be expressed
with the Hamiltonian

Hnl = −
∑
kl

Kkla
†
kaka

†
l al , (A13)

where the Kerr-coefficients are found by inserting
Eq. (A9) into Eq. (A12) and rearranging the terms such
that we obtain Eq. (A13) as

Kkl =
2− δkl
4LJϕ2

0

~ωkLk
2

~ωlLl
2

N∑
n=1

∆φk(n)2∆φl(n)2,

(A14)
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with δkl being the Kronecker-delta. Figure 8 shows the
Kerr shifts for the first eight array modes, calculated us-
ing the parameters for the array presented in Sec. I. We
note that the presence of end capacitances loads the ar-
ray and decreases the mode frequencies significantly [22].
As evident from Eq. (A14), the mode frequencies and
concomitant Kerr shifts per photon can be much larger
for an unloaded Josephson array.

As a last important detail, we should mention that
the nonlinear coupling between the modes also drags the
eigenfrequencies down such that the real mode frequen-
cies become

ω′k = ωk −
∑
l

Kkl. (A15)

This extra contribution is very important as this can shift
the frequency of each mode by as much as 2 GHz for pa-
rameters similar to the experiment of Sec. I. The Hamil-
tonian for the array is, therefore, expressed as

H =
∑
k

ω′ka
†
kak −

∑
kl

Kkla
†
kaka

†
l al . (A16)

Appendix B: Classical solution for Kerr oscillator

We adopt a simple classical description of the driven-
dissipative Kerr resonator by replacing the quantum op-
erator a with the classical complex variable α and ignore
vacuum fluctuations. This yields the equation of motion
(for convenience we change the phase of the drive)

α̇ = −i∆α+ 2iK |α|2α− κ

2
α+ ε. (B1)

In steady state, this leads to the following expression for
n = |α|2,

ε2 = ∆2n− 4∆Kn2 + 4K2n3 +
κ2

4
n, (B2)

which can be used to find the drive power needed for a
given target photon number. We may take the inverse
to obtain n(ε), however, we are not ensured that this
function will be single-valued. As a matter of fact, there
will always be a set of parameters, ∆ and K, for a given
κ where n(ε) is multivalued and we can write the highest
and lowest n’s in this bistable regime as

nc,± = − ∆

3K

[
1∓

√
1− 3

4

(
1 +

κ2

4∆2

) ]
. (B3)

This expression for nc,± can now be inserted into
Eq. (B2) to get the critical drive power to be in the
bistable regime. An alternative approach would be to
numerically propagate the dynamical equation, Eq. (B1)
until the steady state is reached. In contrast to the multi-
valued solution of Eq. (B2), this would only give a single
value, but if the parameters are chosen to be in bistable

(a)

0

10

20

30

40

〈a
† a
〉

√
30 −

√
30

0 ∆→ −∆

(b)

0 1 2
0

10

20

30

40

Time (2π/κ)

|α
|2

(c)

Tr(ρ2) = 0.36

0

0.1

P
(n
)

(d)
Tr(ρ2) = 0.81

0 20 40
0

0.2

n

P
(n
)

FIG. 9. The classically bistable regime with K = κ/20,
∆ = 2.5κ and ε = 4κ. In (a) we see a master equation sim-
ulation for an initial coherent state of amplitude α(0) =

√
30

and with a different phase, α(0) = −
√

30. Furthermore we
have a simulation starting from vacuum and a simulation from
vacuum for two different signs of the detuning. We do the
same simulation in (b), but using the classical equation of
Eq. (B1). Panels on the right show the photon number distri-
butions obtained for the final state, where P (n) is the proba-
bility to be in the n-Fock state, for two different initial states:
(c) α(0) = −

√
30 and (d) α(0) = 0 (vacuum).

regime the steady state will depend on the initial con-
dition. Experimentally this appears as hysteresis in the
system, where, say, a continuous adiabatic change of ∆
will yield different results for increasing or decreasing ∆.

It is worth noting that when κ � K, the dissipation
in the resonator dominates the dynamics, destroying all
the quantum coherent effects. In this respect, for a Kerr-
resonator with K/κ� 1 a classical description of dynam-
ics should suffice. To investigate this further, we com-
pared the results of master equation and classical field
equation simulations, shown in Fig. 9. The first thing
that we observe in Fig. 9 is that for an initial coherent
state, α(0) =

√
30, which is very close to the steady state,

we have initially a small amount of oscillations in both
the quantum [Fig. 9 (a)] and classical [Fig. 9 (b)] simula-
tions before both converge to the same steady state value
for the photon number. Interestingly, the initial phase of
the oscillations is very different between the classical and
quantum simulations.

The second observation is that if we change the ini-
tial phase of the coherent state to α(0) = −

√
30, the

difference between the quantum and the classical sim-
ulation becomes pronounced. The quantum simulation
shows a small drop in photon number followed by a con-
vergence towards a steady state value different from the
one with opposite phase. The classical simulation shows
oscillations, since we are far away from the steady state,
but eventually the photon number converges to the same
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steady-state value that we found for the simulation with
opposite sign on α(0). Now one might be tempted to
interpret this behavior as the mean photon number be-
ing very different in the classical case and in the quan-
tum case. Nonetheless, on taking a closer look at the
steady state photon number distribution obtained from
the quantum simulation [Fig. 9(c)-(d)], we find that this
is not the case. We see that the origin of the intermediate
photon number comes from a dual-peaked photon num-
ber distribution; this can be interpreted as the steady
state being a mixed state between the two peaks, each
very close to a Poissonian distribution. The classical sim-
ulation is only single-valued, so it always selects only one
of the solutions, depending on the size of the initial coher-

ent state. We observe a similar behavior, when we start
in the vacuum state. Here, there is always a very few
number of photons, so the nonlinearity plays a smaller
role. The quantum and the classical simulations are very
similar, but, due to the quantum fluctuations, there is a
small probability for the oscillator to end up in the high
photon number state even when it starts in vacuum [see
Fig. 9 (d)].

Finally, we see that if we change the sign of the detun-
ing, ∆, the quantum and classical simulation are identi-
cal. This is because the sign change moves us away from
the bistable regime. So in both cases, the dynamics is
deterministic and, since we are always at a low photon
number, the nonlinearity again plays a small role.
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