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The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively
time-consuming procedure inherently impractical for scaling up and applications. In this work,
we report on the in situ implementation of a recently proposed auto-tuning protocol that combines
machine learning (ML) with an optimization routine to navigate the parameter space. In particular,
we show that a ML algorithm trained using exclusively simulated data to quantitatively classify the
state of double QD device can be used to replace human heuristics in tuning of gate voltages in real
devices. We demonstrate active feedback of a functional double dot device operated at millikelvin
temperatures and discuss success rates as a function of initial conditions and device performance.
Modifications to the training network, fitness function, and optimizer are discussed as a path towards
further improvement in the success rate when starting both near and far detuned from the target
double dot range.

I. INTRODUCTION

Arrays of quantum dots (QDs) are one of many candi-
date systems to realize qubits—the fundamental building
blocks of quantum computers—and to provide a platform
for quantum computing [1–3]. Due to the ease of control
of the relevant parameters [4–7], fast measurement of the
spin and charge states [8], long decoherence times [9–11],
and recent demonstration of two qubit gates and algo-
rithms [12–14], QDs are gaining popularity as candidate
building blocks for solid-state quantum devices. In semi-
conductor quantum computing, devices now have tens
of individual gate voltages that must be carefully set to
isolate the system to the single electron regime and to
realize good qubit performance. At the same time, even
tuning a double QD constitutes a nontrivial task, with
each dot being controlled by at least three metallic gates,
each of which influences the number of electrons in the
dot, the tunnel coupling to the adjacent lead, and the
interdot tunnel coupling. The background potential en-
ergy, which is disordered by defects and variations in the
local composition of the heterostructure, further impedes
this process. In order to reach a stable, few electron
configuration, current experiments set the input voltages
heuristically. However, such an approach does not scale
well with growing array sizes, is prone to random errors,
and may result in only an acceptable rather than an op-
timal state. Moreover, with an increasing number of QD
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qubits, the relevant parameter space grows exponentially,
making heuristic control even more challenging.

Given the recent progress in the physical construction
of larger arrays of quantum dots in both one and two
dimensions [15, 16], it is imperative to have a reliable
automated protocol to find a stable, desirable electron
configuration in the dot array, i.e., to automate finding
a set of voltages that yield the desired confinement re-
gions (dots) at the intended positions and with the cor-
rect number of electrons and couplings, and to do it ef-
ficiently. There have been a number of recent propos-
als on how to achieve these tasks, including computer-
supported, algorithmic gate voltage control and pattern
matching for tuning [17–21] and machine learning guided
protocol aimed at reducing the total number of measure-
ments [22]. However, while these tuning approaches to
a lesser or greater extent eliminate the need for human
intervention, they are tailored to a particular device’s
design and need to be adjusted if used on a different
one. Moreover, most of these approaches focus on fine-
tuning to the single-electron regime, assuming some level
of knowledge about the parameter ranges that lead to a
well-controlled qubit system.

Typically, the process of tuning QD devices into qubits
involves identifying the global state of the device (e.g.,
single dot or double dot) from a series of measurements,
followed by an adjustment of parameters (gate voltages)
based on the observed outcomes. The classification of
outcomes can be determined by a trained researcher,
identifying the location of QDs based on the relative ac-
tion of gates and the assembly of multiple QDs based on
the relative capacitive shifts. In recent years, machine
learning (ML) algorithms, and specifically convolutional
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FIG. 1. Visualization of the auto-tuning loop. In Step 1, we show a false-color scanning electron micrograph of a Si/SiGe
quadruple dot device identical to the one measured. The double dot used in the experiment is highlighted by the inset, which
shows a cross-section through the device along the dashed white line and a schematic of the electric potential of a tuned double
dot. Bi (i = 1, 2, 3) and Pj (j = 1, 2) are the barrier and plunger gates, respectively, used to form dots, while SB1, SB2, and
SP are gates (two barriers and a plunger, respectively) used to control the sensing dot. In Step 2, to assure compatibility with
the CNN, the raw data is processed and (if necessary) downsized to (30×30) pixel size. The processed image VR is analyzed by
the CNN (Step 3), resulting in a probability vector p(VR) quantifying the current state of the device. In the optimization phase
(Step 4), the algorithm decides whether the state is sufficiently close to the desired one (termination) or whether additional
tuning steps are necessary. If the latter, the optimizer returns the position of the consecutive scan (Step 5).

neural networks (CNNs), have emerged as a “go to” tech-
nique for automated image classification, giving reliable
output when trained on a representative and comprehen-
sive dataset [23]. Recently, Kalantre et al. have proposed
a new paradigm for fully automated experimental device
control – QFlow – that combines CNNs with optimization
techniques to establish a closed-loop control system [24].
Here, we report on the performance of this auto-tuning
protocol when implemented in situ on an active quan-
tum dot device to tune from a single dot to a double
dot regime. We also discuss further modifications to this
protocol to improve overall performance.

The paper is organized as follows: In Section II, we de-
scribe the experimental setup. The characteristics of the
quantum dot chip used in the experiment are described
in Section II A. An overview of the machine learning and
optimization techniques implemented in the auto-tuning
protocol is presented in Section II B and Section II C,
respectively. The in situ performance of the auto-tuner
is discussed in Section III and the “off-line” analysis in
Section IV. We conclude with a discussion of the poten-
tial modifications to further improve the proposed auto-
tuning technique in Section V.

II. EXPERIMENTAL SETUP

We define “auto-tuning” as a process of finding a range
of gate voltages where the device is in a particular “global
configuration” (i.e., no dot, single dot, or double dot

regime). The main steps of the experimental implemen-
tation of the auto-tuner are presented in Fig. 1, with each
step discussed in detail in the following sections.
Step 0: Preparation. Before the machine learning
systems are engaged, the device is cooled down and
gates are manually checked for response and pinch-off
voltages. Furthermore, the charge sensor and the barrier
gates are also tuned using traditional techniques.
Step 1: Measurement. A 2D measurement of the
charge sensor response over a fixed range of gate volt-
ages. The position for the initial measurement (given as
a center and a size of the scan in mV) is provided by a
user.
Step 2: Data processing. Re-sizing of the measured
2D scan VR and filtering of the noise (if necessary) to
assure compatibility with the neural network.
Step 3: Network analysis. Analysis of the processed
data. The CNN identifies the state of the device for VR
and returns a probability vector p(VR), see Eq. (1).
Step 4: Optimization. An optimization of the fitness
function δ(ptarget,p(VR)), given in Eq. (2), resulting
either in a position of the consecutive 2D scan or decision
to terminate the auto-tuning.
Step 5: Gate voltages adjustment. An adjustment
of the gate voltages as suggested by the optimizer. The
position of the consecutive scan is given as a center of
the scan (in mV).

The Preparation Step results in a range of acceptable
voltages for gates, which allows “sandboxing” by limit-
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ing the two plunger voltages controlled by auto-tuning
protocol within these ranges to prevent device damage,
as well as in establishing the appropriate voltage level at
which the barrier gates are fixed throughout the test runs
(pre-calibration). The charge sensing dot is also tuned
manually at this stage. The sandbox also helps define
the size of the regions used for state recognition. Proper
scaling of the measurement scans is crucial for meaning-
ful network analysis: Scans that are too small may not
contain enough features necessary for state classification
while scans that are too large may result in probability
vectors that are not useful in the optimization phase.

Steps one through five are repeated until the desired
global state is reached. In other words, we formulate the
auto-tuning as an optimization problem over the state
of the device in the space of gate voltages, where the
function to be optimized is a fitness function δ between
probability vectors of the current and the desired mea-
surement outcomes. The auto-tuning is considered suc-
cessful if the optimizer converges to a voltage range that
gives the expected dot configuration.

A. Device layout and characteristics

QDs are defined by electrostatically confining electrons
using voltages on metallic gates applied above a two-
dimensional electron gas (2DEG) present at the interface
of a semiconductor heterostructure. Realization of good
qubit performance is achieved via precise electrostatic
confinement, band-gap engineering, and dynamically ad-
justed voltages on nearby electrical gates. A false-color
scanning electron micrograph of a Si/SiGe quadruple dot
device identical to the one measured is shown in Fig. 1,
Step 1. The device is an overlapping, accumulation
style design [25] consisting of three layers of aluminum
surface gates, electrically isolated from the heterostruc-
ture surface by a deposited aluminum oxide. The lay-
ers are isolated from each other by the self-oxidation of
the aluminum. The inset in Fig. 1 shows a schematic
cross-section of the device showing where QDs are ex-
pected to form and a modeled potential profile along a
one-dimensional (1D) channel formed in the 2DEG. The
2DEG, with an electron mobility of 40 000 cm2/(Vs) at
4.0× 1011 cm−2 as measured in a Hall bar, is formed ap-
proximately 33 nm below the surface at the upper inter-
face of the silicon quantum well. Applying appropriate
voltages to the gates defines the QDs by selectively ac-
cumulating and depleting regions within the 2DEG. In
particular, depletion ‘screening’ gates (shown in red in
Fig. 1) are used to define a 1D transport channel in the
2DEG; reservoir gates (shown in purple in Fig. 1) ac-
cumulate electrons into leads with stable chemical po-
tential; plunger gates (shown in blue and labeled Pj ,
j = 1, 2, in Fig. 1) accumulate electrons into quantum
dots and shift the chemical potential in the dots rela-
tive to the chemical potential of the leads; finally, bar-
rier gates (shown in green and labeled Bi, i = 1, 2, 3, in

Fig. 1) separate the defined quantum dots and control
the tunnel rates between dots and to the leads. In other
words, the choice of gate voltages determines the number
of dots, their position, their coupling, and the number of
electrons present in each dot. Across the central screen-
ing gate, opposing the main channel of four linear dots,
larger quantum dots are formed to act as sensitive charge
sensors capable of detecting single electron transitions of
the main channel quantum dots. The measurements are
taken in a dilution refrigerator with a base temperature
< 50 mK and in the absence of an applied magnetic field.

B. Quantitative classification

To automate the tuning process and eliminate the need
for human intervention, we incorporate machine learning
techniques into the software controlling the experimen-
tal apparatus. In particular, we use a pre-trained CNN
to determine the current global state of the device. To
prepare the CNN, we rely on a dataset of 1001 quantum
dot devices generated using a modified Thomas-Fermi
approximation to model a set of reference semiconductor
systems comprising of a quasi-1D nanowire with a series
of depletion gates whose voltages determine the number
of dots, the charges on each of those dots, and the con-
ductance through the wire [26, 27]. The dataset has been
constructed to be agnostic about the details of a partic-
ular geometry and material platform used for fabricating
dots. To reflect the minimum qualitative features across
a wide range of devices, a number of parameters were
varied between simulations, such as the device geome-
try, gate positions, lever arm, and screening length, to
name a few. The idea behind varying the device parame-
ters when generating training dataset was to enable using
the same pre-trained network on different experimental
devices.

The synthetic dataset contains full size simulated 2D
measurements of the charge sensor readout and the state
labels at each point as functions of plunger gate voltages
(VP1

, VP2
) (at a pixel level). For training purposes, we

generated an assembly of 10 010 random charge sensor
measurement realizations (10 samples per full size scan),
with charge sensor response data stored as (30×30) pixel
maps from the space of plunger gates (see the right col-
umn in Fig. A.6 for examples of simulated single and
double dot regions, respectively). The labels for each
measurement are assigned based on the probability of
each state within a given realization, i.e., based on the
fraction of pixels in each of the three possible states:

p(VR) = [pnone, pSD, pDD]

=

[
N − (|SD|+ |DD|)

N
,
|SD|
N

,
|DD|
N

]
(1)

where |SD| and |DD| are the numbers of pixels with a
single dot and a double dot state label, respectively, and
N is the size of the image VR in pixels. As such, p(VR)
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FIG. 2. A sample run of the auto-tuning protocol. (a) The measured raw scans in the space of plunger gates (VP1 , VP2) show
data available to the auto-tuning protocol at a given time. (b) The change of the fitness value as a function of time. (c) The
change in probability of each state over time as returned by the CNN. See Fig. 3 for an overview of the tuning path in the
space of plunger gates on a larger scan measured once the auto-tuning tests were completed.

can be thought of as a probability vector that a given
measurement captures each of the possible states (i.e.,
no dot, single dot, double dot). The resulting probabil-
ity vector for a given region VR, p(VR), is an implicit
function of the plunger gate voltages defining VR. It
is important to note that, while CNNs are traditionally
used to simply classify images into a number of prede-
fined global classes (which can be thought of as a quali-
tative classification), we use the raw probability vectors
returned by the CNN (i.e., quantitative classification).

The CNN architecture consists of two convolutional
layers (each followed by a pooling layer) and four fully
connected layers with 1024, 512, 256, and 3 units, respec-
tively. The convolutional and pooling layers are used to
reduce the size of the feature maps while extracting the
most important characteristics of the data. The fully
connected layers, on the other hand, allow for non-linear
combinations of these characteristics and classification of
the data. We use the Adam optimizer [28] with a learn-
ing rate η = 0.001, 5000 steps per training, and a batch
size of 50. The accuracy of the network on the test set is
97.7 %.

C. Optimization and auto-tuning

The optimization step of the auto-tuning process (Step
4 in Fig. 1) involves minimization of a fitness function
that quantifies how close a probability vector returned
by the CNN, p(VR), is to the desired vector, ptarget.
We use a modified version of the original fitness function
proposed in Ref. [24] to include a penalty for tuning to

single dot and no dot regions:

δ(ptarget,p(VR)) = ‖ptarget − p(VR)‖2 + γ(VR), (2)

where ‖ · ‖2 is the L2-norm and the penalty function γ is
defined as:

γ(VR) = αg(pnone) + βg(pSD), (3)

where g(x) is the arctangent shifted and scaled to assure
that the penalty is non-negative (i.e., g(x) ≥ 0) and that
the increase in penalty is more significant once a region
is classified as predominantly non-double dot (i.e., the
inflection point is at x = 0.5). Parameters α and β are
used to weight penalties coming from no-dot and single
dot, respectively.

For optimization, we use the NelderMead method [29,
30] implemented in Python [31]. The Nelder-Mead algo-
rithm works to find a minimum of an objective function
by evaluating it at initial simplex points—a triangle in
the case of the 2D gate space in this work. Depending
on the values of the objective function at the simplex
points, the subsequent points are selected to move the
overall simplex towards the function minimum. In our
case, the initial simplex is defined by the fitness value
of the starting region VR and two additional regions ob-
tained by lowering the voltage on each of the plungers
one at a time by 75 mV.

III. AUTO-TUNING THE DEVICE IN SITU

To evaluate the auto-tuner in an experimental setup, a
Si/SiGe quadruple quantum dot device (see Fig. 1, Step



5

FIG. 3. An overview of a sample run of the auto-tuning proto-
col in the space of plunger gates (VP1 , VP2). The arrows and
the intensity of the color indicate the progress of the auto-
tuner. The palette correspond to colors used in the fitness
function plot in Fig. 2.

1) was pre-calibrated into an operational mode, with one
double quantum dot and one sensing dot active. The
evaluation was carried on in the there main phases: In
the first phase, we developed a communication protocol
between the auto-tuning software [32] and the software
used to control the experimental apparatus [33]. In the
process, we collected 83 measurement scans that were
then used to refine the filtering protocol used in Step 2
(see the middle column in Fig. A.6). These scans were
also used to test the classification accuracy for the neural
network.

In the second phase, we evaluated the performance of
the trained network on hand-labeled experimental data.
The dataset includes (30×30) mV scans with 1 mV/pixel
and (60× 60) mV with 2 mV/pixel. Prior to analysis, all
scans were flattened with an automated filtering function
to assure compatibility with the neural network (see the
left column in Fig. A.6). The accuracy of the trained
network in distinguishing between single dot, double dot,
and no dot patterns is 81.9 %.

In the third phase, we performed a series of trial runs
of the auto-tuning algorithm in the (VP1 , VP2) plunger
space as shown in Fig. 2. To prevent tuning to voltages
outside of the device tolerance regime, we sandbox the
tuner by limiting the allowed plunger values to between 0
and 600 mV. Attempts to perform measurement outside
of these boundaries during a tuning run are blocked and
a fixed value of 2 (i.e., maximum fit value) is assigned to
the fitness function.

We initialized 45 auto-tuning runs, out of which 7 were
terminated by the user due to technical problems (e.g.,
stability of the sensor). Of the remaining 38 completed
runs, in 13 cases the scans collected at an early stage of
the tuning process were found to be incompatible with
the CNN. In particular, while there are three possible
realizations of the single dot state (coupled strongly to
the left plunger, the right plunger, or equally coupled
forming a “central dot”), the training dataset included
predominantly realizations of the “central dot” state. As

TABLE I. Summary of the performance for the experimental
test runs (Ntot = 14). Nexp denotes the number of experimen-
tal runs initiated at position (VP1 , VP2) (mV), Nsuc indicates
the number of successful experimental runs, and P∆=75 (%),
P∆=100 (%), and P∆=f(δ0) (%) are the success rates for the 81
test runs with optimization parameters resembling the exper-
imental configuration (fixed simplex size ∆ = 75 mV), with
the initial simplex size increased to 100 mV, and with initial
simplex size dynamically adjusted based on the fitness value
of the first scan, respectively. All test runs were performed
using the new neural network.

(VP1 , VP2) Nexp Nsuc P∆=75 P∆=100 P∆=f(δ0)

(250,400) 1 1 85.2 100.0 93.8

(350,400) 6 6 74.1 95.1 95.1

(350,415) 1 0 75.3 86.4 96.3

(350,425) 1 1 55.6 86.4 85.2

(350,450) 3 2 3.7 18.5 34.6

(400,350) 1 1 4.9 69.1 93.8

(450,350) 1 1 17.3 1.2 23.5

a result, whenever the single left or right plunger dot was
measured, the scan was labeled incorrectly. When a se-
quence of consecutive “single plunger dot” scans was used
in the optimization step, the optimizer mis-identified the
scans as double dot and failed to tune away from this re-
gion. These runs were removed from further analysis as
with the incorrect labels, the auto-tuner each time termi-
nated in a region classified as double dot (i.e., a success
from ML perspective) which in reality was an single dot
(i.e., a failure for practical purposes). We discuss the
performance of the auto-tuner based on the remaining
25 runs.

While tuning, it has been observed that the auto-tuner
tended to fail when initiated further away from the target
double dot region. An inspection of the test runs con-
firms that whenever both plungers were set at or above
375 mV, the tuner became stuck in the plateau area of
the fitness function and did not reach the target area
(with two exceptions). Out of the 25 completed runs, 14
were initiated with at least one plunger set below 375 mV.
Out of these, 2 cases failed, both due to instability of the
charge sensor resulting in unusually noisy data that was
incorrectly label by the CNN and thus lead to an inconsis-
tent gradient direction. The overall success rate here was
85.7 % (see Table I for a summary of the performance for
each initial point from this class). When both plungers
were set at or above 375 mV, only two out of 11 runs were
successful (18.2 %), with all failing cases resulting from
“flatness” of the fit function (see Fig. C.7 for a visualiza-
tion of the fitness function over a large range of voltages
in the space of plunger gates (VP1

, VP2
)).
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FIG. 4. Visualization of the “ideal” (marked with dashed
green triangle) and the “sufficiently close” (marked with solid
magenta diamond) regions used to determine the success rate
for the off-line tuning. All considered initial regions listed in
Table I are marked with squares. The intensity of the colors
correspond to the success rate when using dynamic simplex
(darker color denotes higher success rate).

IV. “OFF-LINE” TUNING

Tuning “off-line”– tuning within a pre-measured scan
for a large range of gate voltages that captures all possi-
ble state configurations – allows for the study of how the
various parameters of the optimizer impact the function-
ing of the auto-tuner and the further investigation of the
reliability of the tuning process while not taking experi-
mental time. The scan we use spans 125 mV to 525 mV
for plunger P1 and 150 mV to 550 mV for P2, measured
in 2 mV/pixel resolution.

The deterministic nature of the CNN classification
(i.e., assigning a fixed probability to a given scan) as-
sures that the performance of the tuner will be affected
solely by changes made to the optimizer. On the other
hand, with static data, for any starting point the initial
simplex and the consecutive steps are fully deterministic,
making reliability test challenging. To address this issue,
rather than repeating a number of auto-tuning tests for
a given starting point (VP1

, VP2
), we initiate tuning runs

for points sampled from a (9 × 9) pixels region around
(VP1

, VP2
) resulting in 81 test runs for each point.

We assess the reliability of the auto-tuning protocol for
the 7 experimentally tested configurations listed in Ta-
ble I (note that for point (250, 400) mV the gate values
are adjusted when testing over the pre-measured scan to
account for changes in the screening gates). To quan-
tify the performance of the tuner, we define the tuning
success rate, P , as a fraction of runs that ended in the
“ideal” region (marked with a green triangle in Fig. 4 or
in the “sufficiently close” region (marked with a magenta
diamond in Fig. 4) with weights 1 and 0.5, respectively.

FIG. 5. A heat map of the probability of success when tuning
off-line over a set of N = 4 pre-measured devices. The inten-
sity of the colors corresponds to the success rate with darker
color denoting higher success rate.

Moreover, in the Network analysis step, we use a neu-
ral network with the same architecture as discussed in
Sec. II B but trained on a new dataset that includes all
three realizations of the SD state. When using optimiza-
tion parameters resembling those implemented in the lab
(i.e., fixed simplex size ∆ = 75 mV) and a new neural
network, the overall success rate is 45.2 % with standard
deviation (st.dev.) of 35.5 %. The summary of the per-
formance for each point is presented in Table I (see Ta-
ble B.II for a comparison of the tuning time and number
of iterations between points). Increasing the initial sim-
plex size by 25 mV significantly improves the success rate
for all but two points (see column P∆=100 in Table I),
with the overall success rate of 65.2 % (st.dev. = 39.4 %).
Column P∆=f(δ0) in Table I shows success rate for tuning
when the initial simplex size is scaled based on the fitness
value of the initial step, δ0 such that tuning from points
further away from the target area will use a larger simplex
than those initiated relatively close to the “ideal” region.
The overall success rate here is 74.6 % (st.dev. = 31.5 %).

Finally, to assess the performance of the auto-tuning
protocol for a wider range of initial configurations, we
perform off-line tuning over a set of pre-measured scans.
Using four scans spanning 100 mV to 500 mV for
plunger P1 and 150 mV to 550 mV for P2, measured
in 2 mV/pixel resolution, we initiate N = 784 test runs
per scan, sampling every 10 mV and leaving a margin
big enough to assure that the initial simplex is within
the full scan boundaries. A heat map representing the
performance of the auto-tuner is presented in Fig. 5. As
can be seen, the auto-tuner is most likely to fail when ini-
tiated with both plunger gates set to either high (above
400 mV) or low (below 300 mV) voltage. While in both
cases the “flatness” of the fitness function contributes to
the tuning failure, the fixed direction of the initial sim-
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plex further contributes to this issue. Adding rotation to
the simplex, i.e., varying both plunger gates when deter-
mining the second and third step in the optimization (see
B and C in Fig. 3), may help with the latter problem.

V. SUMMARY AND OUTLOOK

While a standardized, fully automated approach to
tuning quantum dot devices is essential for their scal-
ability, present day tuning approaches rely heavily on
human heuristic and algorithmic protocols that are spe-
cific to a particular device and cannot be used across de-
vices without fine re-adjustments. To address this issue,
we are developing a tuning paradigm that combines syn-
thetic data from a physical model with machine learning
and optimization techniques to establish an automated
closed-loop system of experimental device control. Here,
we reported on the performance of the proposed auto-
tuner when tested in situ.

In particular, we have verified that, within certain con-
straints, the proposed approach can automatically tune
a QD device to a desired double dot configuration. In
the process, we have confirmed that a ML algorithm,
trained using exclusively synthetic, noiseless data, can
be used to successfully classify images coming from ex-
periment, where noise and imperfections typical for real
measurements are present.This work has also enabled us
to identify areas where further work is necessary to im-
prove the overall reliability of the auto-tuning system.
A new training dataset was necessary to account for all
three possible single dot states. The size of the initial
simplex also seems to contribute to the mobility of the
tuner out of the SD plateau. For comparison, in Table I
we present the performance of a tuner using the new
network and a bigger simplex size for the experimentally
tested starting points. In terms of the length of the tun-
ing runs, at present, the bottleneck of the protocol is the
time it takes to perform scans (about 5 min/scan) and
the repeated iterations toward the termination of the cy-
cle (i.e., repeated scans of the same region). This can
be improved by orders of magnitude by using faster volt-
age sources and readout techniques and by developing a

custom optimization algorithm. Regardless, the power
of this new technique lies in its automation, allowing a
skilled researcher to spend time elsewhere.

These results serve as a baseline for future investiga-
tion of fine-grain device control (i.e., tuning to desired
charge configuration) and of “cold start” auto-tuning
(i.e., a complete tuning without any pre-calibration of
the device). Finally, our work paves the way for simi-
lar approaches applied to a wide range of experiments in
physics.

To use QD qubits in quantum computers, it is neces-
sary to develop a reliable automated approach to control
QD devices, independent of human heuristics and inter-
vention. Working with experimental devices with high-
dimensional parameter spaces poses many challenges,
from performing reliable measurements to identifying the
device state to tuning into a desirable configuration. By
combining theoretical, computational, and experimental
efforts, this interdisciplinary research sheds new light on
how modern ML techniques can assist experiments.
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Appendix A: Data processing

The model used to simulate the QD devices [27] does
not account for noise present in a real measurement. As
a result, data used to train the CNN classifier obtained
by taking a numerical gradient of the sensor data leads to
very clean data, with the background uniformly flattened
and charge transition lines clearly visible (see the first col-
umn in Fig. A.6). To assure compatibility with the CNN
classifier, the acquired experimental scans need to be pro-
cessed before the probability vector can be assigned to it.
Here, the data processing consist of three steps: the nu-

https://catalog.data.gov/dataset/quantum-dot-data-for-machine-learning
https://catalog.data.gov/dataset/quantum-dot-data-for-machine-learning
http://github.com/jpzwolak/QFlow-lite
http://github.com/jpzwolak/QFlow-lite
http://labber.org
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FIG. A.6. Relationship between simulated, raw, and pro-
cessed data. The top row consists of sample scans with single
dot regions and the bottom row of scans with double dot
regions. The left column shows the simulated data, the mid-
dle columns shows the raw acquired experimental data, and
the right column shows the processed experimental data (as
“seen” by the CNN classifier).

merical derivative followed by thresholding and re-sizing.
To minimize noise, the derivative is taken in the direction
of measurement. The gradient data is also tested against
unexpected charge sensor flipping and, if necessary, re-
verted to assure positive values at the charge transition
lines. An automated protocol is implemented to normal-
ize the data and to remove the background noise. Finally,
the data is re-sized to (30 × 30) pixels resolution. Sec-
ond and third column in Fig. A.6 show sample raw and
processed data, respectively, for a single and double dot
image.

Appendix B: Effect of simplex size on off-line tuning

While varying the simplex size significantly affects the
performance of the auto-tuner, leading to an increase in
the overall accuracy for the tested points by nearly 40 %
(see Table I for details), it did not affect the number

TABLE B.II. Average (standard deviation in parentheses)
number of iteration when tuning off-line for varying config-
uration of the initial simplex ∆. In all cases, the average is
taken over N = 81 test runs for points sampled within 10 mV
around each experimentally tested point given by (VP1, VP2).

∆ = 75 mV ∆ = 100 mV ∆ = f(δ0)

(250,400) 12.7 (2.5) 12.2 (2.0) 12.6 (2.2)

(350,400) 14.0 (2.4) 13.6 (2.2) 13.5 (2.3)

(350,415) 13.2 (2.3) 14.1 (2.1) 13.4 (2.1)

(350,425) 12.9 (2.3) 13.9 (2.1) 13.6 (2.2)

(350,450) 11.6 (2.7) 13.3 (2.4) 13.9 (2.5)

(400,350) 13.9 (2.3) 14.0 (2.2) 13.3 (1.8)

(450,350) 14.5 (2.6) 15.0 (2.6) 15.0 (2.5)

FIG. C.7. Fitness function over a sample device shown in
Fig. 4.

of iterations of the optimizer. In particular, the overall
average number of iterations for the three tested sim-
plex sizes was: 13.3 (pooled st.dev. = 2.5), 13.7 (pooled
st.dev. = 2.3), and 13.6 (pooled st.dev. = 2.3) for tuin-
ing with initial size of ∆ = 75 mV, ∆ = 100 mV, and
∆ = f(δ0), respectively. Table B.II shows the average
number of iterations executed by the optimizer for each
tested point.

Appendix C: Fitness function

We plot the fitness value for tuning to a double dot
regime as a function of plunger gate voltages for a scan
with experimental data. In particular, for each point in
the voltage space, as presented in Fig. 4, we calculate
the fitness value for a region centered at this point. This
allows to represents the landscape over which the auto-
tuning optimization runs (a 171 pixels map). One can see
the double dot state forming a minimum near the center
of Fig. C.7 which represents the target area for tuning.
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