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In electronic transport through mesoscopic systems, the various resonances in quantities such as
conductance and scattering cross sections are characterized by the universal Fano formula. Does
a similar formula exist for spin transport? We provide an affirmative answer by deriving a Fano
formula to characterize the resonances associated with two fundamental quantities underlying spin
transport: spin-resolved transmission and spin polarization vector. In particular, we generalize the
conventional Green’s function formalism to spin transport and use the Fisher-Lee relation to obtain
the spin resolved transmission matrix, which enables the spin polarization vector to be calculated,
leading to a universal Fano formula for spin resonances. Particularly, the theoretically obtained
resonance width depends on the nature of the classical dynamics as determined by the geometric
shape of the dot. We explicitly demonstrate this fact and argue that it can be exploited to smooth
out or even eliminate Fano spin resonances by manipulating the classical dynamics, which can be
realized by applying or withdrawing a properly designed local gate potential. Likewise, modulating
the classical dynamics in a different way can enhance the resonance. This is of particular importance
in the design of electronic switches that can control spin orientation of the electrons associated
with the output current through weakening or enhancement of a Fano resonance, which are a key
component in spintronics.

I. INTRODUCTION

The Fano formula was discovered [1] in 1961 to explain
the sharply asymmetric profile experimentally observed
in the absorption spectrum of Rydberg atoms [2]. A gen-
eral form of the formula describing the resonance profile
can be written as

σ =
(ǫ+ q)2

1 + ǫ2
, (1)

where σ is a measurable quantity such as the spectral in-
tensity, the scattering cross section, or the conductance,
etc., ǫ is the amount of the normalized energy deviated
from the center of the resonance defined to be ǫ = 0, and
q is a parameter characterizing the degree of asymmetry
of the resonance which is essential to experimental fitting
of the resonance profile. Especially, for q 6= 1, the res-
onance profile is asymmetric because the quantity σ at-
tains a maximum value at ǫ = 1/q and a minimum value
at ε = −q. Fano resonances arise in scattering and trans-
port processes and the validity of the formula has been es-
tablished in a variety of two-dimensional (2D) electronic
transport processes in mesoscopic systems [2–11], e.g.,
quantum dots [12, 13], and Anderson impurity systems
[14]. In terms of quantum information, the Fano peaks
correspond to the so-called “einselection” states [15–17].
For electronic transport through a quantum dot struc-

ture, the geometric shape of the dot (or scattering) re-
gion determines the particular type of classical dynamics,
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e.g., integrable, mixed (nonhyperbolic), or chaotic, and
can affect the resonance profile [18]. In particular, for
integrable or nonhyperbolic dynamics, there are stable
periodic orbits in the dot region, in which a classical tra-
jectory can be trapped indefinitely, i.e., with an infinite
lifetime. In the corresponding quantum system, if the
energy (or wave number) of the electron is such that the
geometric distance along a stable periodic orbit is an inte-
ger multiple of the wavelength, constructive interference
arises, leading to a quantum resonance at the particular
energy value. Since the classical lifetime along a resonant
stable periodic orbit is infinite, in principle the quantum
resonance will be infinitely sharp which, however, cannot
occur due to the effect of wave dispersion. Nonetheless,
the resonance can be sharp. Because of the existence of
various stable periodic orbits in the system with different
orbital length, sharp resonances can occur at a discrete
set of energy values [19], corresponding to the “einselec-
tion” states [7, 15, 17]. Due to the long dwelling time near
a stable periodic orbit, associated with the resonance is
degradation of wave coherence [20–22]. In contrast, for
fully developed chaotic classical dynamics within the dot
region, all periodic orbits are unstable, reducing signif-
icantly the quantum dwelling time and broadening the
corresponding resonance profile. From a different per-
spective, the resonance peak and width, e.g., in an elec-
tronic transport system, can be exploited to detect and
distinguish the corresponding classical dynamics [18] and
to analyze wave coherence [20–22]. In fact, there were
previous studies on characterizing or controlling quan-
tum coherence through Fano resonance [3, 6, 23–25].

A vast majority of the previous work on Fano reso-
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nance in mesoscopic transport systems focused on elec-
tronic properties such as conductance, with spin largely
ignored. In spintronics applications [26, 27], the spin de-
gree of freedom of electrons plays a fundamental role.
An issue of applied value is whether Fano resonances can
arise in spin transport in 2D mesoscopic systems. In this
regard, there were previous studies on spin-dependent
Fano effect or resonance in electronic transport charac-
teristics such as conductance [21, 23, 28–38]. In par-
ticular, the feasibility of performing single-spin readout
in a quantum dot based on Fano resonance in conduc-
tance was studied [28], the interplay between Fano ef-
fect and Rashba spin-orbit interaction in an Aharanov-
Bohm ring coupled with quantum dot systems was inves-
tigated [23, 29–31], and Fano-like backscattering lead-
ing to dips in the channel conductance was exploited
for spin filtering [32]. In addition, spin filtering based
on Fano resonances in open quantum dot systems was
suggested [33]. It was also found that inelastic spin de-
pendent electron scattering by a magnetic impurity and
a spin dimer leading to spin flip can induce Fano reso-
nances in the transport characteristics [34]. Spin interfer-
ence and Fano effect in electron transport through meso-
scopic ring side-coupled with a quantum dot [35] and
spin-dependent Fano resonance induced by a conduct-
ing chiral helimagnet in a quasi-one-dimensional electron
waveguide [36] were investigated. Spin filters and Fano
antiresonances in conductance in a polymer device were
studied using the nonequilibrium Green’s function ap-
proach [37]. Spin-dependent Fano effect in a T-shaped
double quantum dot was exploited to achieve perfect spin
polarization [38]. We note that all previous efforts in
this area concerned about the effect of spin on Fano res-
onances in conductance, i.e., spin-dependent Fano effect.
Our focus is on Fano resonances in quantities directly

characterizing spin, not on how different spin orienta-
tions affect Fano resonances in electronic properties such
as conductance. A pertinent open question is whether
a universal formula as Eq. (1) exists to characterize the
Fano resonances in spin transport. To our knowledge, a
systematic and mechanistic understanding of Fano reso-
nances in physical quantities defined directly in terms of
spin is lacking, and the goal of our paper is to develop
such an understanding. Quantitatively, we analyze two
fundamental quantities underlying spin transport: spin-
resolved transmission and the spin polarization vector,
and derive a Fano formula for both.

Concretely, we concentrate on spin transport through
2D quantum dot systems with Rashba spin-orbit inter-
action and preserved time-reversal symmetry. To be as
general as possible, we choose the dot geometry such
that the classical dynamics are of the mixed type [39–
44], where the phase space contains both Kolmogorov-
Arnold-Moser (KAM) tori and chaotic regions. Since
the system is open, classically there is transient chaos
or chaotic scattering of the nonhyperbolic nature [45].
Technically, our program to derive a Fano formula for
spin transport is as follows. We first generalize the con-

ventional Green’s function to spin transport. We then
exploit the Fisher-Lee relation [4, 24] to obtain the spin-
resolved transmission matrix, which enables the spin po-
larization vector to be calculated. The end result of the
calculation is a Fano-like formula in terms of the spin
polarization vector. Finally, we study the effect of the
geometric shape of the dot (or the nature of classical dy-
namics) on spin transport and articulate a spin control
scheme. Prior to our work, a Fano-like formula for spin
transport did not exist and, as we will demonstrate, our
study has pertinent applied values in spintronics in terms
of controlling/manipulating spin transport.

II. NONHYPERBOLIC QUANTUM DOT

SYSTEM AND SPIN POLARIZATION VECTOR
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FIG. 1. A schematic illustration of the bow shaped dot ge-
ometry and the phase space structure on the Poincaré sur-
face of section. (a) Geometry of the quantum dot: a bow
shaped open cavity with two leads, one attached to the left
and another to the right end. Geometric parameters are ra-
dius R = 0.6µm and cut width w = 0.7R. The height of the
lead is h = 0.2R, which permitsN = 12 transverse modes. (b)
Poincaré surface of section of the corresponding closed cav-
ity system in terms of the Birkhoff coordinates. The classical
dynamics are mixed or nonhyperbolic.

We study quantum dot systems with a bow-shaped
type of scattering region, as shown in Fig. 1(a). In the
mesoscopic regime, representative parameter values are:
radius R = 0.6µm and the cut width w = 0.7R (so the

chord length is l = 2d = 2
√
R2 − w2), and s is the arc

length of the upper circular section. We attach two iden-
tical leads of height h = 0.2R: one to the left and another
to the right end of the open cavity. In the lead, there are
N = 12 transverse modes at most. Rashba spin-orbit
interaction exists in the shaded region [46] with an elec-
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trical field E applied perpendicular to the cavity plane.
Figure 1(b) illustrates the structure of the classical phase
space on the Poincaré surface of section in terms of the
Birkhoff coordinates [47] of the corresponding closed bil-
liard system. There is a mixture of KAM tori and chaotic
sea [48], signifying nonhyperbolic dynamics [45].
An effective approach to modulating spin transport is

to create a large KAM island in the classical phase space
so as to generate strong quantum localized states that
lead to sharp Fano resonances, which can be broken by
tuning an externally controllable parameter. Here, we
test the scenario to generate a circular forbidden region
in the quantum dot structure by applying a locally re-
pulsive potential and demonstrate that this configura-
tion is effective at harnessing spin transport. However,
we choose to study this model only for simplicity and it
is not special in the sense that there are many alternative
configurations that can be exploited for controlling spin
transport.
The Hamiltonian of the 2D spin transport system is

Ĥ =
~
2

2m
(k̂2x + k̂2y)σ0 + α(σ̂xk̂y − σ̂y k̂x) . (2)

where σ0 is the 2 × 2 identity matrix, σ̂x and σ̂y are
Pauli matrices. To solve the Schrödinger equation, we
discretize the cavity into 3888 lattice cells. We set the
energy in units of t0 = ~

2/(2ma2), where a is the lattice
constant, and fix the strength of spin-orbit coupling to
be α = 0.1t0. Consider an electron entering the quantum
dot system from the left lead. We denote the state in the
lead as |n〉 and, to be specific, we assume that the electron
is in the spin-↑ state. With respect to the dot region, the
incoming and the outgoing states, respectively, can be
written as [49–51]

|in〉 = |n〉 ⊗ |σ =↑〉 , (3)

|out〉 =
∑

n′,σ′

tn′n,σ′↑ |n′〉 ⊗ |σ′〉 . (4)

where tn′n,σ′↑ is the transition amplitude from the in-
coming state |n〉 with spin-↑ to the outgoing state |n′〉
with spin-σ. The spin density matrix ρ̂s carries com-
plete information about the spin state over the orbital
degree of freedom. Let ρ̂ be the density matrix charac-
terizing the full state of the system. We can write [50, 51]
ρ̂s = Trorbit ρ̂, which can be expressed in terms of the spin
polarization vector defined as the quantum average of the
Pauli spin operator vector [49–51]:

P = 〈ψ|σ̂|ψ〉, (5)

which contains the information about spin-orbit entan-
glement or spin decoherence [50, 52, 53]. The spin density
matrix can then be written as [50, 51, 54],

ρ̂s =
1

∑

σ Tr(tσ↑t
†
σ↑)





Tr(t↑↑t
†
↑↑) Tr(t↓↑t

†
↑↑)

Tr(t↑↑t
†
↓↑) Tr(t↓↑t

†
↓↑)





=
1

2

(

1 + Pz Px − iPy

Px + iPy 1− Pz

)

. (6)

where tσ↑ (σ =↑, ↓) is the spin resolved transmission ma-
trix for incoming electrons with spin-↑ and outgoing elec-
trons with spin-σ. The three components of the polar-
ization vector P are [18, 51]

Px =
2Re[Tr(t↓↑t

†
↑↑)]

Tr(t↑↑t
†
↑↑) + Tr(t↓↑t

†
↓↑)

,

Py =
2 Im[Tr(t↓↑t

†
↑↑)]

Tr(t↑↑t
†
↑↑) + Tr(t↓↑t

†
↓↑)

, (7)

Pz =
Tr(t↑↑t

†
↑↑)− Tr(t↓↑t

†
↓↑)

Tr(t↑↑t
†
↑↑) + Tr(t↓↑t

†
↓↑)

.

Equation (7) indicates that the polarization vector can
be expressed solely in terms of the spin-resolved matrix
governing the transmission properties. Figure 2 shows
the spin-resolved transmission and spin polarization vec-
tor versus Fermi energy. An example of Fano resonance
in spin-resolved transmission is shown in Fig. 3. Sev-
eral examples of Fano resonance in the spin polarization
vector is shown in Fig. 4.
In the following, we will show analytically that the

spin-resolved transmission and the spin polarization vec-
tor P possess Fano resonances characterizable by a for-
mula similar to Eq. (1) for electronic conductance.

III. FANO RESONANCES IN SPIN

TRANSPORT AND FANO FORMULA

A. Green’s function

For 2D mesoscopic electronic transport systems, there
were previous studies of Fano resonances [2, 3, 5–7] based
on the Green’s function, where the spin degree of free-
dom was ignored. Here we generalize the approach of
Green’s function to spin transport systems with Rashba
spin-orbit interaction.

1. Spin-resolved Green’s function

For a typical 2D transport system, the Hamiltonian
(2) can be decomposed into two parts: Ĥc = Ĥo + Ĥso,

where Ĥo is the original spinless Hamiltonian while Ĥso

is the Hamiltonian for the spin-orbit interaction. The
spin-resolved self energy in the leads can be expressed as
ΣR = ΣR

0 σ0 under the assumption that the self energies
of the spin-↑ and spin-↓ states are equal. The effective
Hamiltonian of the whole system, taking into account
the lead self energies, can be written as Ĥs = Ĥc + ΣR.
The Hamiltonian preserves the time reversal symmetry
because the time-reversal operator [55] Θ̂ of the single
particle spin-1/2 system commutes with the Hamilto-

nian: [Θ̂, Ĥs] = 0. The time reversal symmetry leads to
Kramers degeneracy: if state |n〉 is an eigenstate of the

system Ĥ , then its time reversed state |Θ̂n〉 is also an
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FIG. 2. Spin-resolved transmission and spin polarization vector versus Fermi energy. (a) Variations of the spin-resolved
transmission Tσ and the spin polarization vector P versus E (in units of the hopping energy t0) in the entire energy interval
considered. (b,c) Magnification of the behavior of Tσ and the three components of P as well as its magnitude, respectively, in
an arbitrarily chosen energy interval enclosed by the dark red dash-dotted box in (a). The dark red dash-dotted box covering
a resonance peak in (b) is fitted by the theoretical prediction in Fig. 3. The other three dark red dash-dotted boxes labeled as
(i), (ii) and (iii) covering three peaks in (c) are fitted by the theoretical results in Fig. 4. The curves from bottom up in (b)
correspond to T↑ and T↓, while those in (c) are for Px, Py, Pz and |P|. For visualization, a vertical shift has been applied in
the amount of 1.0 for T↓ and 0.3, 0.6, 0.9 for Py , Pz and |P|, respectively.

eigenstate with the same energy, where 〈n|Θ̂n〉 = 0 and
the degree of degeneracy is 2j+1 with j being the angular
momentum quantum number of the system [54, 55].

Because of the inclusion of the self energies, the sys-
tem described by the Hamiltonian Ĥs is non-Hermitian
with complex eigenvalues and non-identical left and right
eigenstates. The eigenequations distinguishing the left
and right eigenstates are

Ĥs|ψα,µ〉 = εα|ψα,µ〉, (8)

〈Φα,µ|Ĥs = 〈Φα,µ|εα. (9)

where µ = 1, 2 denotes the two Kramer’s degenerate
eigenstates. The eigenstates |ψα,µ〉 and |Φα,µ〉 constitute
a bi-orthonormal basis set [4] under the renormalization

|Φα,µ〉 = |ϕα,µ〉/〈ϕα,µ|ψβ,ν〉,

where the left vector 〈ϕα,µ| satisfies 〈ϕα,µ|Ĥs = 〈ϕα,µ|εα.

The bi-orthonormal conditions are

〈Φα,µ|ψβ,ν〉 = 〈ψα,µ|Φβ,ν〉 = δαβδµν , (10)
∑

µ

∑

α

|ψα,µ〉〈Φα,µ| =
∑

µ

∑

α

|Φα,µ〉〈ψα,µ| = 1. (11)

For an isolated dot system without any self energy, the
Hamiltonian is Hermitian. In this case, we have

Ĥc|ψα,µ〉 = εα,0|ψα,µ〉, (12)

with the orthonormal condition:

〈ψα,µ|ψβ,ν〉 = δαβδµν . (13)

Making use of Eq. (10), we can derive the Green’s func-
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FIG. 3. Illustration of a Fano resonance in spin-resolved transmission. A comparison of (a) T↑ and (b) T↓ for the peak covered
by the dash-dotted box in Fig. 2(b) with Eq. (26). The dark red pluses are theoretical prediction and the black curves (mostly
beneath the dark red pluses) represent numerical results.

tion for the central dot region as

GR(r, r′) = 〈r| 1

E − Ĥs

|r′〉

=
∑

α,µ

∑

β,ν

〈r|ψα,µ〉〈Φα,µ|
1

E − Ĥs

|ψβ,ν〉〈Φβ,ν |r′〉

=
∑

α,µ

∑

β,ν

ψα,µ(r)
1

E − εβ
δαβδµνΦ

†
β,ν(r

′)

=
∑

µ

∑

α

ψα,µ(r)Φ
†
α,µ(r

′)

E − εα

=





GR
↑↑(r, r

′) GR
↑↓(r, r

′)

GR
↓↑(r, r

′) GR
↓↓(r, r

′)



 . (14)

The spin-resolved Green’s function can be written as

GR
σσ′ (r, r′) =

∑

µ=1,2

∑

α

ψσ
α,µ(r)Φ

σ′†
α,µ(r

′)

E − εα
, σ, σ′ =↑, ↓ .

(15)
Because of the spin-orbit interaction, the eigenfunctions
are spinors:

Φα,µ(r
′) =

(

Φ↑
α,µ(r

′)
Φ↓

α,µ(r
′)

)

,

ψα,µ(r) =

(

ψ↑
α,µ(r)
ψ↓
α,µ(r)

)

.

Treating the self energy ΣR as a perturbation [4, 11], we
can use the perturbation theory to expand the eigenen-

ergies and the eigenstates as

εα = ε0,α − δα − iγα , (16)

|ψα,µ〉 = |ψ0α,µ〉 − |ψrα,µ〉 − i|ψiα,µ〉. (17)

Substituting Eqs. (16) and (17) into Eq. (9), we get
(

Ĥc +ΣR
)

(|ψ0α,µ〉 − |ψrα,µ〉 − i|ψiα,µ〉) =
(ε0,α − δα − iγα)(|ψ0α,µ〉 − |ψrα,µ〉 − i|ψiα,µ〉).

Substituting Eq. (12) into the above, neglecting second-
order terms on both sides, and left-multiplying both sides
with 〈ψ0α,µ|, we obtain [4, 11]

δα + iγα ≃ −
∑

µ

〈ψ0α,µ|ΣR|ψ0α,µ〉

= −
∑

µ,σ

〈ψσ
0α,µ|ΣR

0 |ψσ
0α,µ〉, (18)

where the spin components of the eigenstates and the
relation ΣR = ΣR

0 σ0 have been used. Equation (16) can
be rewritten as

εα ≃ εα,0 −
∑

µ,σ

〈ψσ
0α,µ|ΣR

0 |ψσ
0α,µ〉. (19)

The resonance width γα can be obtained from Eq. (18)
as [4, 11]

γα = −Im

(

∑

µ,σ

〈ψσ
0α,µ|ΣR

0 |ψσ
0α,µ〉

)

=
∑

µ,σ

〈ψσ
0α,µ|

[

−Im(ΣR
0 )
]

|ψσ
0α,µ〉. (20)

This expression will be validated by comparing it with
the exact value in Eq. (16) (c.f., Fig. 5).
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FIG. 4. Illustration of Fano resonances in spin polarization vector. For P in Eq. (29), panels (i-iii) in each column correspond
to the three peaks covered by the dashed black box in Fig. 2(c), and panels (1-4) of each row show the numerical (black curve)
and theoretical (plus symbols) results for Px, Py , Pz, and |P|, respectively.

2. Fisher-Lee relation

The Fisher-Lee relation connects the S-matrix with the
Green’s function [4, 24]. For a two-terminal system with
left and right leads, the spin-resolved Fisher-Lee relation
can be expressed as

sσσ
′

nm = −δmnδ
σσ′

+ i~
√
vmvn

∫

χn(yq)G
R
σσ′χm(yp)dypdyq

= −δmnδ
σσ′

+ i
√

~vn ·Rσσ′

nm ·
√

~vm , (21)

where m and n belong to lead p and q, respectively; and

Rσσ′

nm =
∑

µ=1,2

∑

α

ψσ
αn,µ(xq)Φ

σ′†
αm,µ(xp)

E − εα
,

ψσ
αn,µ(xq) =

∫

χn(yq)ψ
σ
αn,µ(xq, yq)dyq,

Φαm,µ(xp) =

∫

χm(yp)Φ
σ
αm,µ(xp, yp)dyp,

Vp/q = diag{~v1, ~v2, · · · , ~vNp/q
}.

For p and q corresponding to different leads, sσσ
′

nm is a
transmission matrix, while for p = q = left lead, it is a
reflection matrix. The spin-resolved transmission matrix
can be expressed in the following concise form:

tσσ′ = i
√

Vq · Rσσ′ ·
√

Vp. (22)

For convenience, we let p and q specify the left and right
lead, respectively. With the spin-resolved transmission
matrix, we can calculate the spin-resolved transmission
and the spin polarization vector in Eq. (7).

B. Fano resonances in spin-resolved transmission

and spin polarization vector

We derive Fano resonance formulas for spin-resolved
transmission and the spin polarization vector P. Say we
select E0 as the energy of interest. If E0 approaches an
eigenenergy of the closed dot system, a pole will arise
in Rσσ′,nm, corresponding to a specific state labeled by,
e.g., α. We can then separate state α from the sum
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in Rσσ′,nm to get two terms: one slowly varying (with
energy) and another rapidly changing term, where the
former acts effectively as the background while the lat-
ter varies rapidly in the small energy interval containing
state α [11, 20, 22, 24]. Specifically, we have

Rσσ′

nm = R0,σσ′

nm +R1,σσ′

nm

=
∑

µ=1,2

∑

β 6=α

ψσ
βn,µ(xr)Φ

σ′†
βm,µ(xl)

E − εβ

+
∑

µ=1,2

ψσ
αn,µ(xr)Φ

σ′†
αm,µ(xl)

E − εα
. (23)

The spin-resolved transmission matrix in Eq. (22) can be
rewritten as the sum of the slowly varying background
term and the fast changing resonance term. For incoming
spin-↑ state, we have,

tσ↑ = t
0
σ↑ + t

1
σ↑, (24)

where the first and second terms represent the slow and
fast terms, respectively. The spin-resolved transmission

Tσ = Tr[tσ↑t
†
σ↑]

can be obtained, from which the Fano resonance formulas
for Tσ and P can be derived.

1. Fano formula for spin-resolved transmission Tσ

Substituting Eq. (24) into the definition of the spin-
resolved transmission Tσ, we have

Tσ = Tr[tσ↑t
†
σ↑]

= Tr[(t0σ↑ + t
1
σ↑)(t

0
σ↑ + t

1
σ↑)

†]

= Tr[t0σ↑t
0†
σ↑] + Tr[t0σ↑t

1†
σ↑] + Tr[t1σ↑t

0†
σ↑] + Tr[t1σ↑t

1†
σ↑]

= T00
σ +T01

σ +T10
σ +T11

σ ,

where T00
σ (E) ≃ T00

σ (E0) is approximately a constant [11]
in the small energy interval containing the specific energy
value Eα. Letting ǫ ≡ (E − Eα)/γα and ǫ0 ≡ (E0 −
Eα)/γα, we have

T01
σ (E) = T01

σ (E0)
E0 − Eα − iγα
E − Eα − iγα

= T01
σ (E0)

ǫ0 − i

ǫ− i
,

T10
σ (E) = T10

σ (E0)
E0 − Eα + iγα
E − Eα + iγα

= T10
σ (E0)

ǫ0 + i

ǫ+ i
,

T11
σ (E) = T11

σ (E0)
(E0 − Eα)

2 + γ2α
(E − Eα)2 + γ2α

= T11
σ (E0)

ǫ20 + 1

ǫ2 + 1
.

For E0 = Eα, we have ǫ0 = 0. Denoting

∆Tσ = T01
σ (E0) + T10

σ (E0) + T11
σ (E0), (25a)

qσ =
i

2

T10
σ (E0)− T01

σ (E0)

∆Tσ(E0)
, (25b)

we obtain an explicit expression for Tσ,sum:

Tσ,sum = T00
σ +T01

σ +T10
σ +T11

σ

= T00
σ +

1 + 2qσǫ

1 + ǫ2
∆Tσ

= |tbgσ |2 |ǫ+ q′σ|2
ǫ2 + 1

(26)

with the relation

|tbgσ |2 = T00
σ ,

Re(q′σ) = ∆Tσqσ/T
00
σ ,

Im(q′σ) =
√

1 + ∆Tσ/T00
σ − q2σ(∆Tσ/T00

σ )2.

Equation (26) presents the Fano resonance form [11, 20]
with the complex profile parameter q′σ that depends on
qσ, T

00
σ , and ∆Tσ. Fano resonances in the spin-resolved

transmission can thus be characterized by a formula
similar in form to that for the spinless conductance in
Refs. [24,11].

2. Fano resonance formula for spin polarization vector

The components of P in Eq. (7) depend on Tσ and the
cross term of the spin density matrix denoted as

Tc = Tr(t↓↑t
†
↑↑).

We check and find that Tc exhibits Fano resonances that
can be described by the same formula as for Tσ. Partic-
ularly, we have

Tc,sum = T00
c +T01

c +T10
c +T11

c

= T00
c +

1 + 2qcǫ

1 + ǫ2
∆Tc

= |tbgc |2 |ǫ+ q′c|2
ǫ2 + 1

, (27)

where the coefficients are given by

∆Tc = T01
c (E0) + T10

c (E0) + T11
c (E0) , (28a)

qc =
i

2

T10
c (E0)− T01

c (E0)

∆Tc(E0)
, (28b)

with the relations

|tbgc |2 = T00
c ,

Re(q′c) = ∆Tcqc/T
00
c ,

Im(q′c) =
√

1 + ∆Tc/T00
c − q2c (∆Tc/T00

c )2.

To obtain a Fano formula for the spin polarization vector,
we need to substitute the quantity Tσ in Eq. (26) and Tc

in Eq. (27) into Eq. (7). Note that the components of
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P are fractions with both numerator and denominator
expressed by the trace of the spin-resolved transmission
matrix. After some algebraic manipulations, we obtain

Pi = Pi,0 +
1 + 2QΞ

1 + Ξ2
∆Pi

= |pbgi |2 |Q
′ + Ξ|2

1 + Ξ2
, (29)

where i = x, y, z denote the three components of the spin
polarization vector and the renormalized energy is

Ξ =
√
S

[

ǫ+

∑

σ(qσ∆Tσ)
∑

σ T
00
σ

]

=
E −

[

Re(εα)− γα
∑

σ(qσ∆Tσ)∑
σ T00

σ

]

γα/
√
S

. (30)

With the coefficients in Eq. (29), we can combine
Eqs. (25a) and (28a) to get

P0 =
ÔT00

s
∑

σ T
00
σ

,

∆P =
Ô∆Ts − P0

∑

σ ∆Tσ − 2[Ô(qs∆Ts)− P0

∑

σ(qσ∆Tσ)]
∑

σ(qσ∆Tσ)∑
σ T00

σ

(
∑

σ T
00
σ +

∑

σ ∆Tσ)− [
∑

σ(qσ∆Tσ)]2∑
σ T00

σ

,

Q =
1√
S

Ô(qs∆Ts)− P0

∑

σ(qσ∆Tσ)

Ô∆Ts − P0

∑

σ ∆Tσ − 2[Ô(qs∆Ts)− P0

∑

σ(qσ∆Tσ)]
∑

σ(qσ∆Tσ)∑
σ T00

σ

,

S =

∑

σ T
00
σ

(
∑

σ T
00
σ +

∑

σ ∆Tσ)− [
∑

σ(qσ∆Tσ)]2∑
σ T00

σ

,

where Ô is an operator acting as, for example, for Ts and
s = {c, σ}, ÔTs = {2Re(Tc), 2Im(Tc), ⊖Tσ}, where
⊖Tσ = T↑ − T↓. The three components correspond
to {Px,Py,Pz}, respectively. The relations among the

quantities pbgi , Q′, Pi,0, ∆Pi, and Q are

|pbgi |2 = Pi,0,

Re(Q′) = ∆PiQ/Pi,0,

Im(Q′) =
√

1 + ∆Pi/Pi,0 −Q2(∆Pi/Pi,0)2,

where the parameter Q′ governs the shape of the Fano
resonance profile [1, 2, 11, 20]. In addition, Eq. (30) gives
corrections of the peak position and of the width for the
spin polarization vector [Eq. (29)] in comparison with
those in Tσ and Tc. In particular, the new position and
width are, respectively,

E′
α = Re(εα)− γα

∑

σ(qσ∆Tσ)
∑

σ T
00
σ

, (31)

γ′α = γα/
√
S. (32)

These corrections are typically insignificant. To demon-
strate this point, we compare [56, 57] the peak posi-
tions and widths of various resonances by plotting the
logarithm of the width, ln γα, versus Re(ǫα) for T↑,

Pz, and |P| as shown in Fig. 5. There are five reso-
nance peaks, whose numerically obtained locations from
Eq. (16) (marked by ×) can be compared with the theo-
retical predictions (marked by �) from Eq. (20). For the
same resonance peaks of P, the corrected results from
Eq. (32) for both the numerical [from Eq. (16), marked
by +] and the theoretical [from Eq. (20), marked by ©]
values are also included. It can be seen that the three
types of results agree with each other well. Overall, these
results represent strong evidence that both the spin po-
larization vectorP and the spin-resolved transmission Tσ

follow the Fano resonance profile.

C. Effect of dot geometry on Fano resonances in

spin transmission and polarization

In general, in 2D spin transport, spin-resolved trans-
mission and spin polarization depend on the dot structure
[51], and the Fano resonance peaks arise due to the cou-
pling between the quantum states in the lead and in the
dot region. For example, when the Fermi energy is close
to that of a bounded state in the corresponding closed dot
region, the interaction between the propagating mode in
the lead and the remnant of the bounded states in the
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FIG. 5. Comparison of Fano resonance widths obtained through numerics and theory for spin resolved transmission and spin
polarization vector. (a) Spin resolved transmission T↑, the z-component and magnitude of the polarization vector, Pz and |P|,
respectively, versus E in units of t0. (b) Quantity ln (γα/t0) for T↑ and Pz or |P| versus Re(εα). The symbols × and � denote
the quantity ln (γα/t0), respectively, from Eqs. (16) and (20) for T↑. The symbols + and © represent ln (γα/t0) in Eqs. (16)
and (20), respectively, both being corrected by Eq. (32) for Pz or |P|. The point E0 = 1.22t0 is marked as a red triangle H on
the horizontal axis of (b). For visualization purpose, the curve of Pz has been shifted up by 0.6 while others are unshifted.
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FIG. 6. Shape dependence of spin transport. (a) Spin-resolved transmission T↑ and the magnitude of the spin polarization
vector |P| versus E in units of t0 for a bow-shaped dot region are depicted - the lower curves. There are four peaks with
their corresponding energy values marked by different symbols labeled as (1-4). The upper curves [shifted upward by 0.3 for
both T↑ and |P|] correspond to the same quantities but for a modified geometry of the dot region: there is a hard circle of
radius r = 0.2R located at the center of the original bow-shaped dot, into which waves are unable to penetrate. The original
sharp Fano resonances have been smoothed out by alteration of the geometrical structure of the dot. (b,c) 2D maps of the
density of states associated with the four peaks in (a) for the original bow-shaped dot and the modified dot structure with a
central circular forbidden region, respectively. Associated with the original sharp resonances are strongly localized states in
(b), whereas such states no longer exist for the modified dot.

open dot region will be strengthened, leading to a Fano
resonance peak [2]. If we modify the geometric structure
of the dot region, the original bound state at this energy
will in general disappear, so will the Fano resonance. We

expect this “washing out” effect or disappearance of reso-
nances to occur for quantities underlying spin transport,
especially spin-resolved transmission and the polarization
vector.
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FIG. 7. A scheme of electronic switch for spin transport. (a) A schematic illustration of the proposed electronic switch device
exploiting a spin Fano resonance. The device is a semiconductor heterostructure (e.g, InxGa1−xAs/InyAl1−yAs) [58]. Terminal-
S is a ferromagnetic source that emits spin-↑ polarized electrons only, while terminal-D possesses two independent ferromagnetic
drains that are able to detect either spin-↑ or -↓ polarized electrons. The back gate with Vb can be used to produce the Rashba
electrical field. The circular gate inside the structure with Vg < 0 repels electrons, producing an effective circular forbidden
region. (b) Spin-dependent transmission and T↓ T↑ versus E in units of t0 in an interval covering a specific Fano resonance
peak. For each quantity, two cases are plotted with either the switch on or off. (c) Spin polarization Pz versus E in the same
range as in (b), which demonstrates the working of the switch: for E/t0 = 0.1293 as marked by the symbols in (b) and (c),
when the switch is on, T↑ is close to zero and Pz ≈ −1, so the output current is almost purely associated with spin-down
electrons. When the switch is off, T↓ = 0 and Pz = 1, so that the output current constitutes purely spin-up electrons.

To demonstrate the effect of variations in the dot geom-
etry on Fano resonances in spin transmission and polar-
ization, we modify the dot structure by adding a hard cir-
cular disk at the center of the dot region. Figure 6 shows
representative results. Especially, Fig. 6(a) shows the
curves of T↑ (upper panel) and |P| (lower panel) for two
cases: (i) unmodified dot structure of radius R = 0.6µm,
cut-width w = 0.7R, lead with h = 0.2R (N = 12 modes)
- the lower blue curves, and (ii) modified dot structure
with a central circular region removed (equivalent to a
circular hard disk for electron waves and can be realized
by applying a local gate potential draining out the elec-
trons) - the upper orange curves. It can be seen that the
four Fano resonance peaks labeled as (1-4) on the lower
blue curves in the energy range are drastically smoothed
out by the geometric modification of the dot structure.
This effect can be further seen by examining the local
density of state (LDOS) defined as [4]

ρ(r;E) = − 1

π
Im[GR(r, r;E)]. (33)

Figures 6(b) shows the LDOS associated with the four
Fano resonance peaks in the unmodified system, which
exhibits a strongly localized behavior. For the same en-
ergy value, the localization no longer exists in the modi-
fied dot, signifying the disappearance of the original Fano
resonances. A practical implication of the results in Fig. 6
is that spin transport and Fano resonances can be mod-
ulated through geometric modifications of the dot struc-
ture, which can be experimentally realized by applying

a judiciously designed gate potential profile to the quan-
tum dot [56, 57].

D. Electronic switch device for spin transport

Spin Fano resonances can be exploited for device appli-
cations. Here we present a design of an electronic switch
that can control the spin orientation of the electrons as-
sociated with the output current. The basic structure of
the device is a semiconductor heterostructure, as shown
in Fig. 7(a), where the confining boundary has the shape
shown in Fig. 1(a). A gate potential is applied to a cir-
cular region above the cavity with a controlling switch.
When the switch is off, electrons move ballistically in-
side the cavity whose classical dynamics are mixed with
stable periodic orbits, leading to sharp Fano resonances.
When the switch is on so that a negative potential is
applied, the electrons under the circular gate will be re-
pelled out, forming effectively a circular forbidden region,
as shown in Fig. 6(c), leading to drastic and character-
istic changes in the underlying classical dynamics. As a
result, the originally sharp Fano resonances will be either
broadened or removed, generating distinct spin transport
behaviors.

To explain the working of the device, we present a con-
crete example. In particular, we choose the Fermi energy
to be E/t0 = 0.1293, which corresponds to a spin Fano
resonance. Figures 7(b) and 7(c) demonstrate that the
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output current can be controlled to either being made
up of purely spin-up electrons (when the gate potential
is off), or constituting almost purely spin-down electrons
(with gate potential on). We see that the energy value
for T↑ to reach a maximum and that for T↓ to become
minimum are nearly identical but with a small difference.
The reason is that, when T↑ takes on a maximum value,
T↓ will no longer be zero but will have a small value, with
their sum being one. Nevertheless, whether the gate volt-
age is off or on can cause the electrons constituting the
output current to be either spin-up or spin-down, respec-
tively. There are other Fano resonance peaks at which
the gate potential can make the spin of the output elec-
trons either polarized in the z-direction, where the value
of Pz can be close to 1 or −1, or polarized in the x − y
plane where the value of Pz is close to zero. For differ-
ent spin Fano resonances, the device can thus generate
electrons with drastically different spin orientations.

IV. CONCLUSION AND DISCUSSION

We have generalized the universal Fano resonance
formula describing quantities associated with electronic
transport in 2D mesoscopic systems (e.g., conductance)
to two key quantities underlying spin transport: spin-
resolved transmission and spin polarization vector. The
fact that Fano resonances, regardless of the nature of
the transport (electronic or spin), are described by for-
mulas of essentially the same form is strong indication
of the same physics underlying the transport or scatter-
ing processes: Fano resonances are the result of the in-
teraction between the continuous propagating states in
the waveguide leads and the discrete states in the scat-
tering region. While our analysis is of the perturbative
type, where the self-energies describing the interactions
are treated as a perturbation, the resonance peaks in
the spin-resolved transmission and spin polarization vec-
tor predicted by two slightly different theories agree well
not only with each other but also with those from direct
numerical simulation, validating the analysis. We have
also demonstrated that Fano resonances in spin transport
can be smoothed out or even removed through geometri-
cal modifications to the scattering region. We note that
there were previous studies of control of quantum trans-
port with respect to electronic properties [20, 22, 24, 25],
especially the scheme of exploiting geometrical modifica-
tion to modulate conductance fluctuations [56, 57]. Our
results suggest that the same principle can be applied
to spin transport. Especially, given that the Fermi en-
ergy takes on the value for a particular Fano resonance,
by changing the nature of the classical dynamics, e.g.,
through a properly designed local gate potential, the res-
onance can be weakened or enhanced, leading to drastic
changes in the spin transport properties. This effect can
be exploited to design electronically controlled switches
for spin transport, a key component in spintronic devices.
We wish to further clarify that our work was moti-

vated by the fact that, while Fano resonances associated
with electronic transport have been reasonably well un-
derstood, a systematic and quantitative understanding
of spin Fano resonances was lacking. The goals of our
study were to gain such an understanding and to de-
sign an electrically controlled switch for spin transport
with an eye toward potential applications in spintronics.
As explained, our understanding of how spin Fano reso-
nances emerge naturally leads to a mechanism for their
breakdown: localized states can be removed by altering
the nature of the corresponding classical dynamics, and
this has significance in practical applications.

It is generally true that the origin of the Fano res-
onance lies in the properties of the S-matrix, and any
observable built from it should exhibit a Fano profile.
However, to derive explicitly the resonance profiles for
general physical observables is highly nontrivial. For ex-
ample, as demonstrated in a previous work [5], even if the
channel-to-channel scattering Fano profile is known, it is
far from straightforward to obtain the overall resonance
profile for the transmission. To derive the resonance pro-
file for spin transport, we follow the standard method of
decomposing the Greens function into a slow and a fast
component, but the derivation is much more challenging
and sophisticated than that without spin, making our an-
alytic derivation a meaningful contribution to the field.

Broadly, Fano resonances are a common phenomenon
in a large variety of quantum transport and scattering
systems. The contribution of our work is that, for spin-
resolved transport systems, not only can Fano resonances
occur in the total current, but the spin resolved current
and the spin polarization vector can also exhibit such res-
onances. From a theoretical point of view, we have devel-
oped a framework to generalize the conventional Green’s
function formalism to spin transport and employed the
Fisher-Lee relation to obtain the spin resolved transmis-
sion matrix from which the spin polarization vector to
be calculated. Treating the coupling to the leads as a
perturbation and separating the Green’s function into a
slow and a fast component, we have succeeded in de-
riving explicit formulas for spin resonances. Our theory
predicts that classical chaos can have a dramatic effect
on the width of the spin Fano resonance, which has been
verified numerically with a generic type of dot geome-
try that generates nonhyperbolic chaotic dynamics in the
classical limit. Exploiting classical chaos also leads to a
regularization scheme for spin-resolved transmission and
spin polarization fluctuations with potential benefits to
spintronics. To our knowledge, prior to our work, explicit
formulas for spin Fano resonance did not exist. Further-
more, while there were previous studies on the effect of
classical chaos on spin transport [51, 59–63], the under-
standing of how chaos helps remove or weaken spin Fano
resonances was at a qualitative level. Our present work
provides a quantitative understanding.
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