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Abstract

Point defects exist widely in engineering materials and are known to scatter vibrational modes

to reduce thermal conductivity. The Klemens description of point defect scattering is the most

prolific analytical model for this effect. This work reviews the essential physics of the model and

compares its predictions to first principles results for isotope and alloy scattering, demonstrating

the model as a useful materials design metric. A treatment of the scattering parameter (Γ) for

a multiatomic lattice is recommended and compared to other treatments presented in literature,

which have been at times misused to yield incomplete conclusions about the system’s scattering

mechanisms. Additionally, we demonstrate a reduced sensitivity of the model to the full phonon

dispersion and discuss its origin. Finally, a simplified treatment of scattering in alloy systems

with vacancies and interstitial defects is demonstrated to suitably describe the potent scattering

strength of these off-stoichiometric defects.

I. INTRODUCTION

Modelling the lattice thermal conductivity, or the heat transported through atomic vi-

brations, has long been important to a wide range of science and engineering applications

including thermoelectrics, thermal barrier coatings, and thermal management in electronic

materials. All of these functional materials rely on doping and alloying to tune their prop-

erties, and so the impact of impurities and other point defects on the lattice thermal con-

ductivity is important to understand[1, 2].

Peierls presented one of the earliest solutions for lattice thermal conductivity in 1929

by evaluating the phonon Boltzmann transport equation, which was simplified by Callaway

based on the relaxation time approximation[3, 4]. Later, Klemens established a theory for

vibrational mode scattering due to static imperfections in a lattice, and provided closed-form

expressions for thermal conductivity versus defect concentration still utilized today[5–7].

These analytical expressions based on low order perturbation theory are useful for routine

interpretation of experimental results to determine the dominant phonon scattering sources

in a material. By calculating the relative contribution of independent scattering mechanisms
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such as mass disorder and local strain effects, one can determine the dominant mechanisms

of scattering in a defective system to guide the design of thermal materials[8–11].

First-principles techniques have been developed recently to compute the impact of point

defects on thermal transport. These simulations have shown very good quantitative agree-

ment with experiments for a range of materials and have provided useful insights regarding

the mechanisms of phonon-defect scattering[12, 13]. However, multiple calculations are re-

quired to compute defect structures, evaluate scattering strengths, and solve the Boltzmann

transport equation for the thermal conductivity[14–17]. Often, these techniques are too

expensive and system dependent for routine modelling used to determine the dominant

scattering mechanisms in a system[18]. While the first-principles methods are essential to

understanding vibrational mode properties, and in many cases elucidate limitations of ana-

lytical phonon theories, the Klemens point defect model has proven to be highly descriptive

across material systems and therefore continues to be widely used[16, 18–20].

The Klemens equations are defined within the ostensibly limiting approximation of a sin-

gle atom unit cell and the Debye model, or linear phonon dispersion. However, by comparing

to both first-principles results as well as experiment, the predictive quality of this model is

demonstrated even for complex unit cell materials.

This paper provides a functional guide for understanding the influence of point defects

on phonon transport and applying the Klemens equations to model thermal conductivity

data. In addition, it resolves discrepancies between popular representations of the mass

difference model, which have led to consistent errors in model inputs that may yield large

factor differences in the predicted lattice thermal conductivity (κL). This study also re-

evaluates the limitation of these equations to the Debye model dispersion. A mechanism

is demonstrated for how the model’s sensitivity to dispersion relation is, in practice, lifted,

justifying the use of the model in systems with arbitrary dispersion relations.

The Klemens model predicts the ratio of the defective solid’s lattice thermal conductivity

to that of a reference pure solid (κL/κ0). The basic functional form of the ratio is tan−1u/u,

where the disorder scaling parameter u is related to the pure lattice thermal conductivity

reference (κ0), elastic properties of the host lattice through its speed of sound (vs), the

volume per atom (V0), as well as a scattering parameter (Γ), which captures the lattice

energy perturbation at the defective site
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FIG. 1: The lattice perturbation mechanisms of a point defect include a mass difference

(∆M), harmonic force constant difference (∆K), and strain scattering from site radius

difference (∆R). Each contribution perturbs the lattice Hamiltonian (E) through a

different term. T is the kinetic energy of the lattice, and U2 and U3 are the harmonic and

anharmonic contributions to the lattice potential energy.

κL
κ0

=
tan−1u

u
u2 =

(6π5V 2
0 )1/3

2kBvs
κ0Γ. (1)

At each composition, the values of κ0, vs, and V0 are linearly interpolated between the end-

member properties. The perturbation caused by point defects in a lattice can be understood

as a combination of a kinetic energy perturbation due to the mass difference on the defect site

(∆M) and a potential energy distortion due to both the harmonic force constant difference

(∆K) and a the structural distortion of nearest neighbors around the defect introduced

by a site radius difference (∆R) (see Figure 1). Often, the mass difference will be the

dominant perturbation effect at a point defect, since large site volume differences are often

energetically unfavorable in an alloy system. For simplicity, the remaining equations in this

section will be defined for mass difference scattering alone (ΓM), but analogous expressions

for the potential energy terms are discussed in later sections.

The ΓM parameter is the average mass variance in the system (〈∆M2〉) normalized by

the squared average atomic mass (〈M〉2)[9, 21–23]. Note that in the notation below, site

averages are denoted by a bar while stoichiometric averages are denoted by angular brackets

(〈〉).

ΓM =
〈∆M2〉
〈M〉2 . (2)
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In a compound, these averaged quantities are most easily calculated by treating each

component of the compound separately. For example, a generic compound can be expressed

as: A1c1A2c2A3c3 ...Ancn (e.g. CaZn2Sb2), where An refers to the nth component (e.g. Ca,

Zn, or Sb) and cn refers to the stoichiometry of that component (e.g. 1, 2, or 2).

For each site n in the compound, Equation 3 gives the average mass variance (∆M2
n)

and average atomic mass (∆M2
n) specifically for that site, which can be occupied by a set

of species indexed by i, including the host atom and any substitutional defects.

∆M2
n =

∑
i

fi,n(Mi,n −Mn)2 Mn =
∑
i

fi,nMi,n (3)

∆M2
n is defined by a sum over i of the species site fraction (fi,n) multiplied by the mass

variance at each defect site, defined from the species mass Mi,n and average atomic mass at

that site Mn[24]. In vacancy scattering, where the perturbation emerges from both missing

mass (Mvac) and missing bonds to nearest neighbors, a virial theorem derivation (see Section

V) suggests that the mass difference at the vacancy site should beMi,n−Mn = −Mvac−2〈M〉.
Finally, to derive the mass difference scattering parameter ΓM, the stoichiometric averages

of the ∆M2
n and Mn values are taken (Equation 4)[24].

〈∆M2〉 =

∑
n cn∆M2

n∑
n cn

〈M〉 =

∑
n cnMn∑

n cn
(4)

II. COMPARISON TO THE POPULAR MASS DIFFERENCE EXPRESSIONS

The mass difference model expressed in Equation 3 and 4 is a reformulation of the popular

equation proposed in Yang et al.[9], and follows the interpretation of Berman, Foster, and

Ziman[21]. It is recommended for conceptual clarity. This section reviews other popular

interpretations of the mass difference model to understand the conceptual differences and

compare the numerical results.

A. Tamura Model

The mass difference model proposed by Tamura preserves the dependence of the phonon

relaxation times on polarization vector and the spatial anisotropy of atomic sites within
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the primitive unit cell, and is frequently implemented in numerical Boltzmann transport

equation solvers for thermal conductivity[14, 16, 19, 20, 23, 25–29]. The mass difference

parameter in the Tamura model (ΓT
M) involves performing a sum over all the atom sites s

in a simulation cell, where i again labels the species that may occupy site s, including the

host and substitutional atoms. In a similar fashion to previous expressions, Mi,s and Ms

indicate the ith species mass and the average mass on atomic site s, respectively. In this case,

however, the mass difference term is weighted by the eigenvector components corresponding

to atom s in the incident (ek(s)) and final (ek′(s)) vibrational mode.

ΓT
M =

∑
s

∑
i

fi,s(
Mi,s −Ms

Ms

)2|(ek(s) · ek′(s))|2 (5)

The eigenvectors are composed of the displacement vectors (u(k, s)) of each atomic site

as it participates in a vibrational mode, weighted by the square root of the atomic mass

(ek = [
√
M1u(k, 1) . . .

√
Msu(k, s)]), and are finally normalized such that |ek|2 = 1. These

eigenvectors can be calculated from the DFT (Density Functional Theory) force constant

matrix[30]. The description of mass difference scattering here is general enough in its for-

malism that it could be used to describe the perturbation induced to a vibrational mode

regardless of its spatial extent. Therefore, in addition to plane wave phonons, the vibrational

modes of diffusons, locons, and propagons within the Allen and Feldman formalism could

be treated under the same point defect scattering theory[31, 32].

Point defect scattering has been studied with first principles techniques by applying DFT

to compute the full vibrational spectrum, using T-matrix scattering theory and the Tamura

model to compute point defect scattering rates, and finally solving the linearized Boltzmann

transport equation to get κL[13–16, 32, 33]. In several reported materials systems, an ex-

cellent correspondence in shown between the results attained from first principles methods

described above and the analytical Klemens model (Figure 2)[14, 34]. It is important to

remember that the Klemens model is fit to the end member thermal conductivity values,

but still adequately predicts the suppression in thermal conductivity with compositional

variation.

In addition to the Tamura model with full structural and lattice dynamical dependence,

a closed form expression is presented for the low frequency limit, which depends only on

the atomic masses. The assumption made here is that the displacement (u) of each atom
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FIG. 2: Thermal conductivity reductions due to point defect scattering for two systems:

(a) isotope scattering in Si at 800 K based on DFT dispersions and T matrix scattering

theory (points) and the Klemens model (lines) and (b) Mg2Sn1–xSix from experiment

(points), T matrix theory (dotted), and Klemens model (solid) at 300 K[14, 35, 36]

in a low-frequency mode is roughly equal in magnitude; therefore, one can assume the

magnitude of an eigenvector element is simply proportional to the square root of the atomic

mass (|e(k, s)| ∝ √Ms). Following this assumption, Equation 4 can be derived, which is

detailed in Supplementary Section A.

B. Primitive Unit Cell Model

Finally, several texts, including original descriptions by Klemens, suggest defining all

values of the mass difference model on the basis of the primitive unit cell[5, 7, 21, 37, 38].

Physically, this treatment suggests a monatomic lattice approximation in which the atoms

of the unit cell are simply summed together in a single large, vibrating mass. The scattering

strength of the lattice can be thought of as an ensemble average of its microstates, or

the primitive unit cells which compose it. Therefore, the unit cell model mass scattering

parameter (Γuc
M) can be calculated from the fraction (Pc) of unit cells with a mass of Mc

and their deviation from the average unit cell mass (M). Finally, the mass differences are

summed over all possible microstates in the lattice

Γuc
M =

∑
c

Pc

(
Mc −M
M

)2

. (6)

While most model inputs are well-defined, it is not immediately clear what the fraction
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FIG. 3: In an example 2-atom primitive unit cell (shown in dotted line), three possible

microstates exist, containing 0,1, or 2 impurity atoms. In the unit cell basis, each

microstate would contribute a term to the overall scattering parameter (Γ).

of unit cells (Pc) should be. When there is a random distribution of defects in the lattice,

the fraction or probability of finding a unit cell of mass Mc can be determined from a

binomial distribution function (described in more detail in Supplementary Section D). A

schematic of possible unit cells (microstates) for a 2-atom unit cell are shown in Figure 3.

In the case where all microstates are equally likely, the results are exactly equivalent to

those produced by Equation 4 in the Introduction, which is more easily implemented. The

benefit of the primitive unit cell interpretation arises when defect complexes are present in

the lattice. Recent studies have identified these defect complexes in important engineering

materials including clustering of Na dopant atoms in PbTe, antisite defects occurring in

close proximity in BAs, vacancy clusters in crystalline Si, or Schottky and Frenkel defect

pairs in functional oxides [39–41]. In these scenarios, the microstates corresponding to the

defect complexes can be preferentially weighted with a larger fraction (Pc).

C. Inconsistent Usage

The dual formalisms of the scattering parameter Γ based on either “per unit cell” or

“per atom” quantities have led to inconsistencies in the calculation of κL in Equation 1.

Notably, the relevant scatterer volume for the primitive unit cell formalism is the volume of

the primitive unit cell (V uc) not the volume per atom (V0), because this model treats one

large mass per unit cell[5, 23]. This value enters into the phonon scattering rate (Equa-
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tion 12 below) and, therefore, the κL prediction. The primitive unit cell formalism for

Γ, while suggested in several seminal papers, is rarely implemented to calculate thermal

conductivity[5, 7, 23, 37, 42, 43]. Instead, Γ is most often computed from Equation 4 based

on “per atom” quantities. In some of these studies, however, the primitive unit cell volume,

instead of the volume per atom, is still used to calculate the disorder parameter u in Equa-

tion 1, which leads to an over-prediction of the lattice thermal conductivity reduction (see

Supplementary Section E) proportional to the number of atoms in the unit cell[8, 44–46].

Often, as discussed in Section V on vacancies and interstitials, there is a cancellation of

errors such that the general conclusions of these papers about the influence of point defect

scattering in their system is still supported[8, 44–47]. This effect is discussed in greater

detail in Section V on the large scattering strength of vacancies and interstitial defects.

III. MODEL DERIVATION: UMKLAPP AND POINT DEFECT SCATTERING

TREATMENTS

The following section reviews the full derivation of the Callaway/Klemens model to gen-

eralize beyond mass difference scattering alone, clarify assumptions made in the derivation,

and discuss the model’s dependence on phonon dispersion, a topic garnering recent interest

[18, 48].

Lattice waves, or phonons, carry a substantial amount of heat through the lattice, charac-

terized by the lattice thermal conductivity (κL). The efficiency of a phonon with frequency ω

at transporting heat is characterized by its heat capacity (Cs), group velocity (vg = dω/dk),

and relaxation time (τ). The lattice thermal conductivity can then be expressed in terms of

these values by integrating over phonon frequency up to a maximum frequency supported

by the lattice (ωm)[4, 49]. If the high temperature approximation is made, the heat capacity

at frequency ω directly relates to the density of states (g(ω)) as Cs(ω) = kBg(ω).

κL =
1

3

∫ ωm

0

Cs(ω)vg(ω)2τ(ω)dω (7)

The relaxation time of the phonons is limited by the scattering sources in the crys-

talline material. Each main source of scattering has an associated relaxation time, including:

boundary scattering off of planar defects (τb), umklapp phonon-phonon scattering (τU), and

point defect scattering (τPD). Their associated scattering rates are summed according to
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Matthiessen’s rules (τ−1 = τb
−1 + τU

−1 + τPD
−1), assuming that the scattering mechanisms

are uncoupled. The model for alloy scattering typically used to describe thermal conductiv-

ity versus alloy composition trends neglects boundary scattering to yield the total relaxation

time of τ = τUτPD/(τU + τPD). Finally, the model is best applied above the Debye tem-

perature of the material, where the influence of the normal, momentum-conserving phonon

interactions on thermal conductivity can be neglected[4, 6, 50].

The scattering rate from a static imperfection can be derived using Fermi’s Golden Rule

to define the transition probability (Wk,k′) from an initial state (k) to a final state (k′). The

transition probability is related to the square of the perturbation matrix element, a measure

of the overlap between two phonon states induced by a perturbation to the lattice energy,

and includes a lattice energy conservation criteria captured by δ(E − E ′). This transition

probability is then summed over all the possible final phonon states (k′), restricted by the

conservation conditions of the phonon interaction.

Wk,k′ =
2π

h̄
〈k|H ′ |k′〉2 δ(E − E ′) (8)

The three contributions to point defect scattering (Figure 1) introduced above are mass

contrast (∆M), force constant contrast (∆K) and radius contrast (∆R) and each perturb

a different term in the lattice Hamiltonian (H)—the kinetic energy (T ), harmonic potential

energy (U2nd), and the third order, anharmonic potential energy (U3rd), respectively [5, 15,

51–54]. The energy perturbation (H ′) induced by the point defect on site r with a set of

linkages to nearest neighbor sites (bn) is then a combination of the effects discussed above

H ′ =
1

2
∆M

(
du(r)

dt

)2

+
∑
n

1

2
∆Kbn [u(r)−u(r−bn)]2+

∑
n

γ η(∆R)[u(r)−u(r−bn)]2. (9)

The scattering due to local, static strain (η) depends on the anharmonicity of the distorted

bonds, as captured in the Grüneisen parameter (γ). Notably, both the ∆K and ∆R effects

are captured in the changes to the DFT-calculated interatomic force constants, which change

locally in response to both structural relaxation and an altered chemical environment[15].

Additionally, the strain scattering strength is scaled by the coefficient Q, which approximates

the number of distorted nearest neighbor bonds around a point defect. Assuming a cubic

lattice with a strain field that decays with distance cubed, Q = 4.2. If all three effects
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are present in a system, they combine according to Equation 10, where, as before, atomic

species are indexed with i and atomic sites in the unit cell are indexed with n [5, 53].

Γn =
∑
i

fi

(
∆M2

〈M〉2 + 2

(
∆K

〈K〉 − 2Qγ
∆R

〈R〉

)2
)

Γ = 〈Γn〉 (10)

The change in force constant (∆K) is not an intuitive value, but it is typically assumed

that force constants change proportionally with atomic volumes. Therefore, the force con-

stant difference and local strain terms are combined, and both are captured by the average

variance in atomic radius, defined analogously to the mass scattering parameter in Equa-

tion 3 and Equation 4. Again, the atomic radius variance on the nth site is based on the

difference between atomic radius of the ith species which can occupy that site Ri,n and the

average atomic radius of the site Rn. Since the relationships between force constants and

atomic volumes are system dependent, these effects are captured in a phenomenological fit-

ting parameter ε, which can vary in value on between 1-500 in order to fit to experimental

data.

Γ =
〈∆M2〉
〈M〉2 + ε

〈∆R2〉
〈R〉2 〈∆R2〉 =

〈∑
i

fi(Ri,n −Rn)2
〉

(11)

For the point defect scattering rate (τPD
−1), only two phonon states, an incident and

final state, are involved in the interaction. Given the conservation of energy condition, the

frequencies of the final and initial phonons are equal. Therefore, the sum over all final

scattering states contributes a factor of the 3D density of states (g) at the phonon frequency

ω[24]

τPD
−1 =

V0πΓω2g(ω)

6
, g(ω) =

3ω2

2π2vp2(ω)vg(ω)
. (12)

In umklapp scattering, phonons scatter other phonons by virtue of the lattice distortions

they generate. The scattering strength is, then, also related to the anharmonicity of the

distorted bonds via the Grüneisen parameter, γ, in addition to the phase velocity of the

phonon producing the distortion (vp(ω) = ω/k) and the group velocity of the final phonon

state (vg(ω
′′))[3, 24]. Umklapp scattering is referred to as a three-phonon process, and in the

typical picture, either two incident phonons combine to form a final phonon state or an initial

phonon splits into two final phonon states. Unlike normal three-phonon processes, umklapp

11



processes do not conserve momentum, but instead include an exchange of momentum with

the crystal lattice, which given periodicity constraints, must occur in intervals of a reciprocal

lattice vector (b = 2π/a). The relevant conservation law is then: k+k′ = k′′+b. This more

complex conservation law yields a less intuitive set of final available phonon states, and the

numerical prefactor of the umklapp scattering rate varies somewhat from source to source,

depending on the level of complexity assumed for the expression of final states[2, 24, 55, 56].

τU
−1 =

4πaγ2ω2kB√
2Mvp2(ω)vg(ω′′)

T (13)

The umklapp scattering rate appears to have the same motif present in the density of

states: ω2/(vp
2vg). However, due to the increased complexity of the energy and momentum

conservation in a 3-phonon process, the sum over final phonon states does not simply con-

tribute a factor of the 1-phonon density of states g. Rather, the selection rule for 3-phonon

processes is more accurately captured by a calculation of the joint density of states, repre-

senting allowed phonon transitions, weighted by the equilibrium occupation numbers of the

phonon modes k′ and k′′[57]. In Klemens, the approximation is made that the magnitude

of the final phonon wavevector (k′′) is small with respect to a reciprocal lattice vector, and

as such, the phase space for final phonon states approaches the 1-phonon density of states,

contributing a factor of g(ω) to the umklapp scattering rate[57].

At this point it is typical to make the Debye approximation, which suggests that the

vg and vp are independent of frequency and equal to the classical speed of sound (vs =

dω/dk|k→0). Equation 7 for lattice thermal conductivity simplifies, after substituting in the

expressions for relaxation time and specific heat, to the integral form of arctan and gives

the final expression for κL shown in Equation 1.

IV. DISPERSION RELATION SENSITIVITY

The formalism above has shown wide applicability to thermoelectric materials, which

often have complex, non-Debye dispersions. The examples depicted of Si isotope scattering

and Mg2Si1–xSnx shown in Figure 2 both show good correspondence between the first princi-

ples methods and the Klemens model. Since both materials disagree with the Debye model

dispersion implicitly assumed in Klemens theory, the suitability is surprising [58, 59].

Previous studies have explicitly compared the κL predictions of the Klemens model using
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various approximations of the phonon dispersion relation, ranging from the Debye model to

polynomial or trigonometric fits of the dispersion[18, 48]. For example, in a study of two Half-

Heusler systems, three different approximations were used to describe the phonon structure

of the two materials—the Debye model, a truncated Debye model, and a cubic polynomial fit

of the full dispersion relation. The predicted κL versus defect concentration curve was plotted

for each case and compared to experimental results. The study showed that the prediction

of the pure thermal conductivity (κ0) depended on the choice of dispersion. However, the

ratio κL/κ0 was shown to be independent of the dispersion relation choice, suggesting that

while full features of the dispersion relation are required to model the thermal conductivity

of pure solids, the suppression of κL due to point defects can be described more generally[18].

The dispersion relation dependence enters into the Klemens model through the factors of

density of states and the frequency-dependent phonon velocities. In Equation 14 for lattice

thermal conductivity, the relaxation times are re-written to isolate the density of states

contribution (τPD
−1 = a g(ω)ω4, τU

−1 = b g(ω)ω2) with coefficients a and b combining any

physical and material constants. The factor of g(ω) cancels in each of the relaxation times

as well as the heat capacity, softening the dispersion dependence of the expression. A full

derivation of this form is included in Supplementary Section C.

κL = kB

∫ ωm

0

v2g(ω)g(ω)ω2 (1/b g(ω))ω2

1 + a g(ω)ω2/b g(ω)
dω =

kB
b

∫ ωm

0

v2g(ω)
1

1 + aω2/b
dω . (14)

At this point, the factor of v2g remains as a phonon structure-related quantity in the model.

Therefore, the dispersion dependence is not eliminated from the model, but softened.

However, the partial cancellation in dispersion relation quantities through the factors of

density of states in the model inputs, helps justify this model’s application to a wide range

of complex, functional electronic materials.

V. SCATTERING DUE TO VACANCIES AND INTERSTITIALS

The Klemens/Callaway model is best defined for randomly dispersed substitutional de-

fects. However, initial work on other off-stoichiometric defects, including vacancies and

interstitials, have shown large phonon scattering effects and warrant further investigation.

Several investigations of thermoelectric compounds show large thermal conductivity re-
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ductions due to vacancy scattering[44–47, 60–63]. In several of these cases, the reduction

in κL is attributed to mass difference scattering alone. However, it was identified that the

volume in Equation 12 was incorrectly defined as the volume of the unit cell rather than the

volume per atom, leading to an over-prediction of the thermal conductivity change[8, 44–47].

However, the large perturbation effects of vacancies are still well-described using Klemens

theory[64, 65]. In this case, the lattice energy perturbation comes from missing kinetic energy

(T ′) related to the mass of the removed atom and missing potential energy related to the

removed bond between two atoms, or double the potential energy per atom (2U ′). Within

the harmonic approximation (E = T +U2nd), the kinetic and potential energy perturbations

of a single atom should be equal (T ′ = U ′) according to the virial theorem, allowing one to

relate the potential energy perturbation to the average atomic mass in the lattice (
〈
M
〉
).

In the calculation of Γ, the perturbation at a vacancy site can be represented by the mass

difference Mi,n −Mn = −Mvac − 2
〈
M
〉

in Equation 4 and Equation 5, where Mvac is the

mass of the vacant atom[64, 65].

This simple treatment of vacancy scattering performs well in many defective solids, some

of which are reproduced in Figure 4a. The experimental data shown would not be described

by standard mass difference alone and requires the perturbation induced by a missing bond.

The Supplementary Section E compares results for the mass difference only curve versus the

full inclusion of the broken bonds term, and depicts how an incorrect definition of volume

can lead to a cancellation of errors.

The suitability of the vacancy model suggests, then, that interstitial atoms may be de-

scribable with an identical treatment. Interstitial or filler atoms represent the reverse sit-

uation, where an extra mass (M int) is added onto a site and a new bond forms between

the interstitial atom and a neighbor; therefore, a perturbation of T ′ + 2U ′ should apply,

yielding essentially the same mass difference as before (Mi,n − Mn = M int + 2
〈
M
〉
). It

should be noted that the interstitial atom sites have a stoichiometry corresponding to the

ratio of interstitial to lattice sites. While interstitial scattering requires more detailed study

across additional materials systems, the initial data represented in Figure 4b, supports the

application of the virial theorem treatment.
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FIG. 4: Both vacancy and interstitial scattering data from literature (points) can be

described using a simple treatment of broken (or added) bonds based on the virial theorem

(line). Normalized thermal conductivity reductions for systems with (a) stoichiometric

vacancies, where [] represents a vacancy [44, 45, 62] and (b) stoichiometric interstitial

atoms [8, 66]

VI. CONCLUSION

The analytical point defect scattering model provides a simple route to identify scattering

mechanisms in a system. In several systems, comparisons of alloy scattering models with

different scattering terms excluded, such as strain scattering or broken bonds, provide a lens

into the most potent scattering effects and a route to optimally tailor the thermal properties

via defect engineering[8, 41, 46, 66]. The systems best described by this model are those

with well-defined crystal structures, randomly dispersed point defects, and low magnitude

perturbations, such that regions of high mass contrast and high defect concentration may

require verification[19]. However, the large thermal conductivity reduction induced by va-

cancies and interstitial atoms is still described by these analytical equations using the virial

theorem to model the perturbation due to the formation or removal of nearest neighbor

bonds.

In addition, the suitability of the alloy model for arbitrary dispersion relations suggests

that the ratio of alloy scattering to umklapp scattering predicted by the model is fairly

dispersion relation independent. This reduced sensitivity to dispersion can be understood

through a partial cancellation of the density of states in the phonon relaxation times and

heat capacity. As a result, it is found that these equations are justifiable in describing the

15



impact of point defects on the thermal properties of materials with complex atomic and

phonon structures attracting attention in fields like thermoelectrics and microelectronics.
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APPENDIX

A. Tamura Model Low Frequency Limit

This section describes the low frequency approximation of the Tamura model. The

Tamura expression with full structural and lattice dynamical dependence is shown in Equa-

tion 5 and reproduced below.

ΓT
M =

∑
s

∑
i

fi,s(
Mi,s −Ms

Ms

)2|(ek(s) · ek′(s))|2 (15)

In addition, an approximation is described in the low frequency limit to yield a closed form

expression, which depends only on the atomic masses. The assumption made here is that

the displacement (u) of each atom in a low-frequency mode is roughly equal in magnitude;

therefore, the magnitude of an eigenvector element is proportional to the square root of

the atomic mass (|e(k, s)| ∝ √Ms). This suggests that the squared polarization vector

dot product (|(ek(s) · ek′(s))|2) weights the mass difference on a site depending on its mass

relative to the other atoms in the formula unit, or an approximate factor of (Ms
2
/〈M〉2).

This treatment results in Equation 3 and 4 suggested in the Introduction, as depicted below.

Γlf
M =

1

〈M〉2
∑

n cn(Mn)2
∑

i fi(1−Mi,n/Mn)2∑
n cn

=
〈∆M2〉
〈M〉2 (16)

In the original paper by Tamura, the low frequency limit instead as:

Γlf
M =

∑
n cn(Mn)2

∑
i fi(1−Mi,n/Mn)2∑

n cnMn
2 =

1

〈M2〉

∑
n cn∆M2

n∑
n cn

〈M2〉 =

∑
n cnMn

2∑
n cn

. (17)

As shown, this expression can be rearranged to a form similar to Equation 4 in the

Introduction. However, the expression is subtly different, as it includes an averaging of

the squared atomic masses (〈Mn
2〉), rather than the average mass, which is finally squared

(〈Mn〉2). Through comparison with experimental and simulated thermal conductivity data,

the mass difference term provided in the Introduction (Equation 4) is verified to give more ac-

curate predictions, while Equation 17 can deviate by 30-40%. Figure 5 compares the results

of the low frequency Tamura model and Equation 4 from in Introduction for the CaZn2Sb2

and YbZn2Sb2 solid solution. Moreover, the mass difference parameter from Equation 17
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FIG. 5: The predictions of the low frequency Tamura model and Equation 3 and 4 in the

paper are compared for the example of point defect scattering in the Mg2Sn and Mg2Si

solid solution. The low frequency Tamura model typically over-predicts the thermal

conductivity reduction due to point defect scattering.

suffers from a lack of generalizability to arbitrary unit cell sizes, such that a doubling of the

unit cell leads to an increase in the predicted scattering rate.

B. Derivation of Relaxation Times

This section details the derivations of the point defect and umklapp relaxation times from

Fermi’s Golden Rule to understand their dependence on phonon velocity and dispersion

relation.

1. Point Defect Scattering

Point defects act as a static perturbation, and therefore the scattering rate can be de-

termined using Fermi’s Golden Rule based on first order perturbation theory. Previous

work has shown that higher order perturbation terms have a negligible effects on the lattice

energy[25, 26]. The probability of scattering from state k to k′ (Wk,k′) is proportional to the

square of the perturbation matrix element, a measure of the overlap between two phonon

23



states due to a perturbation to the lattice energy, with a conservation of energy enforced

through the δ(ωk − ωk′) term.

Wk,k′ =
2π

h̄2
〈k|H ′ |k′〉2 δ(ωk − ωk′) (18)

The perturbation matrix element includes a coefficient (C), which captures the physics

of the perturbation induced by the point defect, while a(k) and a∗(k′) are creation and

annihilation operators to represent the change in occupation numbers of the k and k′ states

as a result of the phonon-impurity interaction.

〈k|H ′ |k′〉 = C(k,k′)a(k)a∗(k′) (19)

Substituting in the full form of the creation and annihilation operators gives the expres-

sion below, where N refers to the number of phonons in a given state.

〈k|H ′ |k′〉2 =
h̄2

M2ω2
C2(k, k′)[N(N ′ + 1)−N ′(N + 1)] (20)

It has been shown that the term in the square brackets reduces to 1 in the integral over

the constant energy surface corresponding to final k′ states[5].

Here, the coefficient (C) will be calculated for the mass difference case, in which the

perturbation stems from an atom with a mass of M ′ = M0 + ∆M sitting at site R. The

perturbation due to force constant fluctuation and strain are similar in form. The energy

perturbation (E ′) to the lattice due to mass difference comes in through the kinetic energy

term, where u̇(R) signifies the time derivative of the unit cell displacement.

E ′(R) =
1

2
∆M(R)u̇2(R) (21)

The real space perturbation is written in terms of a reciprocal space vector (Q) by taking

the Fourier transform. Here, S refers to the number of sites in the lattice[23, 25].

∆M̃(Q) =
1

S

∑
R

∆M(R)eiQR (22)

The expression for C2 picks up a factor of ∆M̃(Q)∆M̃(Q′), which is equal to:

∆M̃(Q)∆M̃(Q′) =
1

S2

∑
R,R′

∆M(R)∆M(R′)ei(Q
′R′−QR) (23)
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If the approximation is made that the point defects are randomly distributed over the

lattice, the sum over lattice sites can instead be written as an average squared mass difference

(∆M2) times the number of defect sites in the lattice (Si)[23, 25].

∆M̃(Q)∆M̃(Q′) =
1

S

Si

S
∆M2 =

1

S
fi∆M

2 (24)

The velocity u̇ is again written in terms of creation and annihilation operators, which

contribute a frequency and polarization vector dependence to yield the full expression for

C2 [42].

C2 =
1

4S
fi(∆M)2ω4|(ek(s) · ek′(s))|2 (25)

Equation 25 can then be substituted into Equation 18 for the transition probability to

get the simplified expression shown below.

Wk,k′ =
π

2S
fi

∆M2

M2
ω2δ(∆ω)|(ek(s) · ek′(s))|2 (26)

To get the scattering rate, one must then sum Wk,k′ over all the possible final phonon

states k′. Given the conservation of momentum constraint (|k| = |k′|), this constitutes an

integral over a constant energy surface or sphere of radius k in k-space. In the conversion

from a sum over discrete k states to an integral over k states, a volume factor of V tot/(2π)3

is picked up, where V tot is the volume of the crystal.

τPD
−1 =

V tot

(2π)3

∫
Wk,k′d3k′ (27)

The spherical surface integral is evaluated noting that: (1) d3k′ = k′2sinΘdkdΘdφ, (2)

ωk = ωk′ = vp(ω)k′, (3)
∫
sinΘdkdΘdφ = 4π, (4) δ(∆ω) = δ(∆k)/vg(ω) and (5) V0 = V tot/S

is the volume per site.

τPD
−1 =

V0
4π
fi

(
∆M

M

)2

|(ek(s) · ek′(s))|2 ω4

v2p(ω)vg(ω)
(28)

Finally, the relaxation time can be written in terms of the 3D phonon density of states

(g(ω)) given in Equation 12 of the main text.

τPD
−1 =

πV0
6
fi

(
∆M

M

)2

|(ek(s) · ek′(s))|2g(ω)ω2 (29)
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As discussed before in relation to the Tamura model (Section IIA), the scattering pa-

rameter Γ = fi (∆M/M)2 |(ek(s) · ek′(s))|2, which reproduces Equation 12 in the main text,

when V0 = V at for the virtual crystal.

τPD
−1 =

V 0πΓω2g(ω)

6
(30)

2. Umklapp Scattering

The umklapp scattering rate follows a similar derivation, however, the conservation rule

is more complicated since the process involves three phonon modes (k,k′,k′′) as well as

momentum exchange with the lattice via the addition or subtraction of a reciprocal lattice

vector (b). The derivation here is adopted from the derivation by Klemens for strain scat-

tering off a point defect, however in this case, the strain is produced by another phonon

rather than a point imperfection [42].

k + b = k′ + k′′ (31)

The umklapp perturbation matrix element is similar in form to that of point defect scat-

tering, but now includes three creation or annihilation operators since the process involves

the change in occupation number for three phonon modes. Additionally, the coefficient (CU)

is dependent on the anharmonicity of the lattice.

〈i|H ′ |f〉2 = [CU(k,k′,k′′)a(k)a∗(k′)a∗(k′′)]2 =
h̄3

M3ωω′ω′′
CU

2(k,k′,k′′)[(N+1)(N ′+1)(N ′′+1)−NN ′N ′′]
(32)

In Klemens, the phonon mode k′′ is treated as a Fourier strain component producing

a perturbation to the lattice energy. If a uniform dilatational strain (∆) is assumed, the

Fourier component can be written as iω′′/vp(ω
′′)
√
S in the limit k′′ → 0. The elastic strain

impacts force constants, and therefore induces a frequency shift modeled using the Grüneisen

model [42].

ω(k) = ω0(k)[1− γ(k)∆] (33)
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The coefficient CU then represents the lattice energy change associated with a uniform

dilatational strain, defined using the Grüneisen model, and the form of the uniform dilatation

as k′′ approaches 0.

CU(k,k′,k′′) =
−2i√
Svp(k′′)

γMωω′ω′′ (34)

The final component of the squared matrix element (shown in Equation 32) is the term

in the square brackets, representing the difference in occupation of phonon modes from the

initial to final state. At the high temperature limit, this term can be written in terms of

the Bose-Einstein distribution such that it reduces to: kBTω/h̄ω
′ω′′. The full form of the

squared matrix element simplifies to the form shown below.

〈i|H ′ |f〉2 =
h̄2

M

4γ2ω2

Sv2p(k′′)
kBT (35)

Just as before, the scattering probability is defined using Fermi’s Golden Rule (Equation

18, where the initial and final states are now represented as |i〉 and |f〉, for simplicity. As

before, the scattering rate is calculated by summing over Wi,f for all possible final states.

This is achieved by performing a sum over all k′ and b, which then fixes the value of k′′ as

a result of the conservation condition (Equation 31).

τU =
∑
k′,b

Wi,f (36)

It is assumed that k′ is restricted to spheres of radius 1
2
(k + b), which is suggested to be

true as long as the dispersion relation is not modified by the zone structure[55]. Therefore,

the sum can be once again replaced by a surface integral over this sphere, and picks up a

volume factor of V tot/(2π
3), where V tot is the volume of the crystal.

τU
−1 =

∑
b

V tot

(2π)3

∫
Wi,fd

3k′ (37)

Following the same integral simplifications discussed in the derivation of τPD, the scat-

tering rate due to umklapp processes is shown below.

τU
−1 =

V0πγ
2ω2

Mv2p(ω′′)vg(ω′)

∑
b

(k + b)2 (38)
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Finally, the approximation is made that k is small in magnitude in comparison to the

reciprocal lattice vector b = 2π/a, such that (k + b)2 = 4π2/a2. For a cubic close-packed

material with a rhombohedral primitive unit cell, the volume per site V0 is a3(
√

2)−1, and

the scattering rate reduces to the form shown below.

τU
−1 =

4πaγ2TkB√
2M

ω2

v2p(ω)vg(ω′′)
(39)

C. Derivation of the Arctan Equation

The lattice thermal conductivity with umklapp and point defect scattering simplifies to a

popular function with the form tan−1. The derivation of this form is shown here to highlight

the cancellation of phonon velocities in the relaxation times.

Equation 7 of the text gives an expression for the lattice thermal conductivity in terms of

the frequency-dependent heat capacity, phonon group velocity, and phonon lifetime, which

is reproduced below.

κ =
1

3

∫ ωm

0

Cs(ω)vg(ω)2τ(ω)dω (40)

for lattice thermal conductivity can be simplified at the high temperature limit to the

following form.

κ =
kB
2π2

∫ ωmax

0

ω2

v2p(ω)vg(ω)
v2g(ω)

τU
1 + τU/τPD

dω (41)

Next, the phonon velocities are pulled out of the coefficients of the relaxation times

(A = a(v2pvg)
−1, B = b(v2pvg)

−1).

κ =
kB
2π2

∫ ωmax

0

v2g(ω)
1

vg(ω)v2p(ω)
ω2

(1/b(v2pvg)
−1)ω2

1 + a(v2pvg)
−1ω2/b(v2pvg)

−1dω (42)

The phonon velocities in the specific heat, umklapp relaxation time, and the point defect

relaxation time will cancel to yield the final simplified form.

κ =
kB

2π2b

∫ ωmax

0

v2g(ω)
1

1 + aω2/b
dω (43)

If the approximation can be made that the factor of v2g is largely frequency-independent,

then the integral above has a solution in the form of tan−1.
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κ =
kBv

2
g

2π2b(b/a)1/2
tan−1(

ωmax

(b/a)1/2
) (44)

The pure lattice thermal conductivity κ0 can be calculated from Equation 43 when the

point defect scattering coefficient a is set to 0. The resulting value of the pure lattice

thermal conductivity is: κ0 = (kBv
2
gωmax)/(2π

2b). Therefore, the ratio of κD/κ0 simplifies

to the following form:

κ

κ0
=

tan−1u

u
u =

ωmax

(b/a)1/2
(45)

D. Primitive Unit Cell Mass Model

The primitive unit cell mass difference model describes a system in which all individual

atom sites in a primitive unit cell are coarse-grained into a single, vibrating mass, and is

signified in the main text as ΓPUC. Therefore, all quantities are defined on a per-unit-cell

basis. The parameter can be defined through a statistical mechanics model, where the

lattice can be described as a sum of microstates, which represent the unit cells in the lattice.

Therefore, the full mass difference parameter is determined by taking the mass difference of

each microstate weighted by the probability of finding that microstate in the lattice (Pc).

Γ =
∑
mic

PmicΓmic (46)

In the case that impurities randomly distribute on a given sublattice, the probabilities can

be calculated using the binomial distribution theorem. As an example, say there is a host

compound AxByCz with the impurities A’, B’, and C’, which substitute on the A, B, and C

sublattice, respectively. If fi is the atomic site fraction of the ith impurity as before, then the

overall composition of the alloy is given by: [A(1− fa)A
′(fa)]x[B(1− fb)B′(fb)]y[C(1− fc)C

′(fc)]z.

The various microstates that may compose this lattice can be defined by all the possible

fillings of the A, B, and C sublattice with host atoms versus impurity atoms. Thus, each

sublattice is treated as a binomial distribution in which a number of sites (set by the sto-

ichiometry) can each have one of two outcomes: the site can be occupied by an impurity

atom with a probability of fi or it can be occupied by a host atom with a probability of

(1-fi). By the binomial distribution formula, the probability that r of the total x sites on
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the A sublattice will be replaced by impurity atoms is given by:
(
x
r

)
f r
A(1− fA)x−r.

Now, it is possible to consider the probability of an example microstate (Pmic), such as

a unit cell with 2 impurity atoms on the A sublattice, 1 impurity atom on the B sublattice,

and no impurity atoms on the C sublattice. This full probability would have the form below,

where the shorthand PA(2) refers to the probability of having 2 impurity atoms on the A

sublattice.

Pmic = PA(2) ∗ PB(1) ∗ PC(0) (47)

Pmic = [

(
x

2

)
f 2
A(1− fA)x−2] ∗ [

(
y

1

)
f 1
B(1− fB)y−1] ∗ [

(
z

0

)
f 0
C(1− fC)z] (48)

The Γ associated with that microstate would be based on the difference between the mass

of that specific microstate (Mm) and the average mass of a unit cell in the lattice. So, for

the example microstate above, Γ would have the following form:

Γmic =

(
1− Mmic

M

)2

(49)

Mmic = MA(x− 2) +MA′(2) +MB(y − 1) +MB′ +MC(z) (50)

E. Elaborated Example of Vacancy Scattering

This section provides a full example of the vacancy scattering model applied to liter-

ature values. The thermal conductivity measurements from Wang et al. are utilized for

La1–xCoO3–y with La and O vacancies. The mass difference scattering strength is given by

the expression below, where M1 is the average mass of the La site and M3 is the average mass

of the O site. Here, the average atomic mass in the compound 〈M〉 = (M1 +MCo + 3M3)/5.

ΓM =
(1/5)(x(0−M1)

2 + (1− x)(MLa −M1)
2 + 3(y(0−M3)

2 + (1− y)(MO −M3)
2))

〈M〉2
(51)

In the original text, the full thermal conductivity reduction is explained using mass

difference scattering alone, without the perturbation due to broken bonds. However, in

this case, the volume in Equation 12 of the text was incorrectly defined as the volume of
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FIG. 6: The mass difference model with the unit cell volume error is compared to the mass

difference only model described in this study as well as the vacancy model with the virial

treatment for broken bonds, which best captures the κL reduction[44].

the primitive unit cell when defining the point defect relaxation, where it should have been

defined as the volume per atom. This error compensates for the missing broken bonds

term, such that the curve reported in the paper still adequately represents the data, and the

main conclusions about the point defect scattering strength hold. However, using the virial

theorem treatment, the above equation can be adjusted by tripling the mass difference on

both vacancy sites as shown below.

ΓM =
(1/5)(x(−MLa − 2〈M〉)2 + (1− x)(MLa −M1)

2 + 3(y(−MO − 2〈M〉)2 + (1− y)(MO −M3)
2))

〈M〉2
(52)

Figure 6 includes: 1) the model in the original paper using the unit cell volume (V uc),

2) the revised mass difference only model where the volume per atom (V0) is used, and 3)

the model with the virial theorem treatment for broken bonds, where V0 is used. As in the

original paper by Wang et al., it is assumed that x = y in the defected chemical formula[44].
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