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Abstract 

The emerging technique of photonic doping endows epsilon-near-zero (ENZ) media with a 

broadly tunable effective magnetic permeability. In this work, we theoretically and 

experimentally demonstrate that a finite-size doped ENZ region counterintuitively behaves as a 

lumped circuit element, modelled as a controllable series reactance. Based on this concept, a 

general matching network is constructed to match a load with arbitrary complex impedance, 

while interestingly its operating bandwidth can also be modified by fine-tuning the dopants’ 

properties. To demonstrate the universality of the concept, different kinds of loads are matched, 

including microwave circuits, antennas, and absorbing particles. Since this technique is not 

limited to a specific type of load, nor a specific geometry, and can be readily transplanted from 

microwave to optical regimes, the proposed methodology facilitates impedance matching for 

maximum usage of power in quite general scenarios, and thus exhibits promising potential for 

broad applications.  
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I．Introduction 

The past decades have witnessed the exciting development of the metamaterial paradigm [1-4], 

synthetic structures which exhibit unconventional properties and advanced functionalities, such 

as cloaking [5,6], superresolution imaging [7,8], anomalous transmission and reflection [9], 

analog computing [10], and digital coding [11], to name only a few. Recently, media with the 

refractive index close to zero, near-zero-index (NZI) media [12,13], have drawn growing interest 

due to their exotic wave-matter interaction phenomenon. As the permittivity and/or permeability 

approach zero, the wavelength, as well as the phase velocity of light within the medium, tend to 

infinity, leading to spatially static while temporally dynamic field configurations. These 

materials with small constitutive relative parameters can give access to a number of intriguing 

phenomena and applications [13,14], such as supercoupling of wave through arbitrarily shaped 

channels [15-20], manipulating wave-matter interaction [21, 22], and implementing on-chip 

wave-guiding devices [23]. In addition, NZI media were also introduced to the design of 

geometry-invariant resonators [24], controlling the emission of quantum emitters [25-27], 

enhancement of nonlinear effects [28,29], and trapping of light in open resonators [30,31]. 

The emerging technique of photonic doping [32], where macroscopic dielectric impurities 

are introduced to an epsilon-near-zero (ENZ) host, provides a new gateway for realizing ENZ 

media with a designable effective permeability. In fact, to an external observer, an ENZ medium 

“doped” with one or very few arbitrarily located dielectric particles excites exactly the same 

external fields (both near and far) as a homogeneous ENZ medium with the designed effective 

permeability. This includes extreme cases, such as perfect magnetic conductors (PMC), with an 

infinitely large effective permeability, and epsilon-and-mu-near-zero (EMNZ) media, with near-
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zero effective permeability. Therefore, this intriguing property may lead to some exceptional 

functionalities unattainable from other material systems.  

In this work, we utilize doped ENZ building blocks to enable optimal transmission of 

power, thus proposing the concept coined “general impedance matching”. It is theoretically and 

experimentally demonstrated that, a doped ENZ medium, with an arbitrary cross-sectional shape, 

can be modeled exactly equivalent to a series lumped reactive element, despite being a 

wavelength size structure containing one or more resonant particles. The specific value of its 

reactance is directly associated with its effective permeability and can range from negative 

infinity to positive infinity via tuning of one or more arbitrarily located dopants. Subsequently, 

general impedance matching networks are established based on the doped ENZ building blocks. 

As an important subject in engineering, impedance matching [33] —  where a load impedance is 

transformed to the characteristic impedance of the feeding transmission line (or to the complex 

conjugate of the source impedance) —  serves as the purposes of minimizing the reflected power 

from the load and maximizing the transfer of power between the source and the load. Available 

matching schemes are usually defined for a specific frequency region and customized designs are 

necessary for different kinds of loads. For example, the networks constructed by lumped 

inductors [33] and capacitors can offer appreciable degrees of freedom to match electrical 

devices. However, this method is restricted to low frequency ranges, since traditional lumped 

elements need to be much smaller than their operating wavelength. Another popular technique is 

the quarter-wavelength film [34], which is a standard approach in optics to reduce the reflection 

of light. However, its applicability is restricted to layered structures with different refractive 

indices. These structural restrictions do not apply in ENZ media, which can be realized anywhere 

from the microwave regime to the optical regime via naturally occurring plasma materials [35] 
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and artificially synthetic near-zero-index materials [13, 15, 19, 23]. The “infinite” wavelength 

makes an electrically large area electromagnetically shrink to a “point”, where all bodies within 

it can be described by an effective impedance. Therefore, this technique can be applied to match 

systems with a complex geometry (which may include bends) which are not necessarily 

electrically small (when compared to the free-space wavelength).  

To demonstrate this concept and its design scheme, exemplary two-component and three-

component matching networks based on doped ENZ regions are constructed and analyzed, where 

we use a microwave component with complex input impedance as the load. As a property of the 

proposed matching network, a tunable bandwidth is readily obtained by engineering the 

dispersion of the effective permeability of the doped ENZ material. Three proof-of-concept 

implementations are presented, including (i) the matching of a stepped waveguide, (ii) feeding an 

aperture antenna, and (iii) efficiently transferring power to an absorbing particle. The first two 

are experimentally verified by the use of the platform of substrate-integrated photonic doping 

[36], and the latter associated with the absorbing particle is numerically demonstrated. The 

obtained results validate the theory of general impedance matching. Since this technique can be 

adapted to different frequency regimes and applications, the proposed general impedance 

matching scheme sets a new direction in the paradigm of optical circuit/metatronics [37], and it 

might have important implications in different areas, such as electronics, material science, and 

energy management.  
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II. Concept and theory  

 

 

As conceptually depicted in Fig. 1(a), we consider a two-dimensional (2D) ENZ channel 

surrounded by perfect electric conducting (PEC) walls, with arbitrary cross-sectional geometry 

and area A, containing one or more arbitrarily located dielectric dopants with cross-sectional area 

Ad (d = 1, 2, 3…). This doped ENZ channel is inserted into a transmission line terminated by a 

load with an arbitrary complex impedance ZL, and excited by an incident wave with the magnetic 

 

Fig. 1. Conceptual sketch of general impedance matching using doped ENZ regions. (a) A two-dimensional 

(2D) ENZ medium comprising dielectric dopants is introduced within a transmission line to match a load of 

arbitrary complex impedance ZL, which can take on various forms in practice, such as circuits/waveguides, antennas 

and absorbing particles. The heights of the input and output ports are denoted as hi and ho, respectively. The incident 

wave is polarized with the magnetic field along the out-of-plane axis. (b) The equivalent transmission line model, 

where the doped ENZ channel is modelled as a series reactance iXs. 
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field polarized along the out-of-plane axis. To obtain the impact of the doped ENZ channel on 

this configuration, we apply Faraday’s law along the boundary of the ENZ channel:  

                             (1) 

, where Eo and Ei denote the electric field at the output and input ports with heights ho and hi, 

respectively, ω is the operating angular frequency, H is the uniform magnetic field in the ENZ 

host, and ψd is the magnetic field  distribution within a dopant normalized to unity on its 

boundary. The e-iωt time convention has been assumed, and we have used the fact that the 

tangential component of the electric field vanishes along the PEC boundary of the channel and 

the magnetic field is spatially invariant throughout the ENZ host [15-17]. The impedance seen at 

the input and output ports of the doped ENZ channel toward the load are denoted as Zi and Zo, 

being equal to Ei/H and Eo/H, respectively. Therefore, with the help of Eq. (1) the relationship 

between Zi and Zo yields: 

                                                                (2) 

, where µeff is the effective permeability of the doped ENZ channel, defined as: 

                                              (3) 

As demonstrated in Eq. (2), if the heights of the ports hi and ho are set equal, the doped ENZ 

channel contributes a purely imaginary additive impedance, proportional to the effective 

permeability of the doped ENZ region. Equation (2) also implies the interesting physical effect 

that although the doped ENZ can be electrically large, it simply behaves as a series lumped 

impedance component, with the following reactance value: 

                                                             (4) 
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The equivalent circuit diagram of Fig. 1(a) is displayed in Fig. 1(b). An ENZ region containing 

no dielectric particles is characterized by µeff = 1, and behaves as a series inductance. In contrast, 

the value of the lumped reactance emulated by the doped ENZ channel can be adjusted to exhibit 

nontrivial values and dispersion via engineering the effective permeability characteristics by 

tuning the dopants’ properties.  

Starting with the doped ENZ material as cornerstone, we  demonstrate the design scheme of 

general impedance matching, we consider an air-filled parallel-plate waveguide with intrinsic 

impedance of η0 = 377Ω as the transmission line, while a stepped waveguide with an abrupt 

change in height from h1 to h2 serves as the load with complex input impedance. The port with 

the height of h2 is assumed to be terminated by a well-matched wave port. The detailed geometry 

and impedance characteristics of the stepped waveguide are presented in the Supplementary 

Section S1 of the Supplementary Material [38], which shows that the input impedance ZL of the 

stepped waveguide is (2.1−4.0i)η0 at fp = 5.5 GHz. In order to transform the impedance ZL into 

the intrinsic impedance η0 of the transmission line at the design frequency fp, we first consider a 

two-ENZ-channel matching network, which is presented in the left column of Fig. 2(a). To 

match the load impedance to the transmission line, the required shunt reactance iXp and series 

reactance iXs in Fig. 2(a) are calculated to be 1.97η0i and −0.27η0i, respectively. The shunt 

reactance then is replaced by the equivalent series reactance (iX’s= η02/(iXp) = −0.51η0i) cascaded 

with quarter wave transformers (detailed information about the transformation of series 

impedance to a shunt one is provided in Supplementary Section S2 in the Supplementary 

Material [38]), as shown in the middle column of Fig. 2(a). In doing so, the circuit topology may 

be readily realized by the general impedance matching scheme, with the series reactance being 

implemented by a doped ENZ channel, as shown in the right column of Fig. 2(a). Here, the ENZ 



 8 

host for both channels 1 and 2 (Ch.1 and Ch. 2) is assumed to be a plasma with a dispersive 

permittivity described by the Drude model, εh(f) =1−(fp /f )2 , and for simplicity, a circular 

dielectric dopant is adopted. The normalized magnetic field distribution, ψd(r), within the 

circular dopant is given by J0(kd r)/J0(kd Rd) [32], where Jn(-) denotes the nth order Bessel 

function of first kind, kd =  is the wave number in the dopant (c is the speed of light in 

vacuum, εd = 88 is the relative permittivity of the dopant), and Rd represents the radius of the 

circular dopant. Inserting the expression of the magnetic field distribution at hand into Eq. (3), 

we can obtain the effective permeability of the ENZ host comprising circular dopants39: 

                        (5) 

Accordingly, the reactance of each doped ENZ channel can be obtained by substituting Eq. (5) 

into Eq. (4). After obtaining the required reactance from standard circuit analysis, the radii of the 

dopants can then be found by solving the resulting equation. For the case where each ENZ 

channel in the two-ENZ-channel network (right column of Fig. 2(b)) contains a single dopant 

(i.e., dopants with radii R2 and R3 are arranged in channels 1 and 2, respectively, while R1 is 

assumed zero), the calculated effective permeability of doped ENZ channel 2 for R3 = 0.045λp is 

shown in Fig. 2(b), and the calculated effective permeability of ENZ channel 1 and the simulated 

transmission coefficient are plotted with green dash-dot lines in Figs. 2(c) and (d), respectively. 

The numerical simulation is carried on by RF module of finite-element-method commercial 

software COMSOL Multiphysics V5.0 [39]. Evidently, total transmission of power is achieved at 

the predesigned frequency fp, indicating that the stepped waveguide is perfectly impedance 

matched.  
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Fig. 2. Bandwidth tailorability with general impedance matching. (a) The equivalent circuit and the geometry of 

a two-ENZ-channel matching network based on the photonic doping structures. The cross-sectional areas of the 

regions filled with ENZ hosts (denoted by Ch.1 and Ch.2) are 0.073λp2 and 0.039λp2, where λp is the free-space 

wavelength at fp = 5.5 GHz. The relative permittivity of all dopants is chosen as 88, while the quarter-wavelength 

transmission lines are filled by a material with relative permittivity εt = 1, e.g., air. The heights of port 1 and port 2 

(denoted by h1 and h2), and the parameter L1 take values of 10 mm, 1 mm, and 12 mm, respectively. Here, the 

guided wavelength λg in the transmission line is equal to λp. (b) Effective relative permeability of doped ENZ 

channel 2. (c) Effective relative permeability of channel 1 for different values of the radii of dopants. (d) Simulation 

results of the transmission coefficients of the two-ENZ-channel matching network. (e) The equivalent circuit and the 
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geometry of a three-ENZ-channel matching network based on the photonic doping structures. Three ENZ channels 

comprising dopants (whose radii are denoted by R’1, R’2, and R’3) are designed with cross-sectional areas of 0.032λp2, 

0.037λp2, and 0.048λp2, respectively. (f) Simulation results of the transmission amplitudes in case I: (R’1, R’2, R’3) = 

(4.10, 4.28, 4.09)×0.01λp, and case II: (R’1, R’2, R’3) = (4.18, 4.22, 4.11)×0.01λp. 

 

 

Next, we demonstrate another powerful property of general impedance matching, the 

convenient tunability of the bandwidth, which can be realized by engineering the slope of the 

permeability curve of the doped ENZ channel around the operating frequency. To this end, we 

fix the parameters of the dopant (R3) in channel 2 while introducing two dopants whose radii R1 

and R2 can be changed individually in ENZ channel 1. The effective permeability of channel 1 

for dopants with different radii are shown in Fig. 2(c) (red dash line and blue solid line). 

Specifically, two closely spaced magnetic resonances are clearly observed in the permeability 

diagram shown in Fig. 2(c), with the lower frequency resonance being contributed by the rod 

with larger radius while the higher one provided by the smaller rod. As the difference between 

the radii of the dopants becomes smaller, the two poles of the permeability function adjacent to fp 

get closer, which leads to a stronger dispersion of the lumped reactance iXs. In this manner, the 

matching bandwidth can be engineered into a transmission peak with a higher quality factor (see 

Fig. 2(d)).   

We can also consider a more complicated matching network. A three-ENZ-channel circuit 

topology with a T-shape architecture is shown in the left column of Fig. 2(e), where the shunt 

element is transformed to an equivalent series one, following a procedure similar to that used in 

the two-element configuration. The architecture of the matching network comprising three doped 

ENZ channels is shown on the right column of Fig. 2(e). Based on this structure, two cases 

designed with different radii of the dielectric rods are investigated. In Case I, the reactance 
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values Xs1, Xs’’, and Xs2 equal -1.39η0, -0.27η0, 5.63η0, respectively, while in Case II, Xs1, Xs’’, 

and Xs2 equal 1.63η0, 0.22η0, 2.17η0, respectively. It is very interesting to find in Fig. 2(f) that 

although the simulated transmission amplitudes of both two cases are near 100% at the 

predesigned frequency fp, their bandwidths are dramatically different. The underlying physics is 

described as follows: to realize the relatively larger (compared with the counterpart in case II) 

capacitance value of iXs2 for case I, the doped ENZ channel has to offer a large negative effective 

permeability (according to Eq. (4)) which features a much steeper slope in the dispersive 

permeability curve. As a result, through simply tuning the size of the dopants while leaving other 

constituents of the network unchanged, we can conveniently control the bandwidth of the 

impedance matching. We emphasize that since the electrically large space within index-near-zero 

media is electromagnetically equivalent to a single point, the behavior of the doped ENZ 

material as well as the performance of the general impedance matching are independent of the 

locations of the dopants, as well as the geometry of the ENZ channel.     

 

III. Experimental verification  

As a proof of concept, we experimentally test the performance of doped ENZ medium to 

compensate the reactance of the stepped waveguide, while the intrinsic impedance of the 

substrate-filled feeding waveguide is designed equal to the real part of the load impedance, as 

shown schematically in the first panel of the Fig. 3(a). A rectangular dielectric dopant is chosen 

for ease of fabrication, and the governing theory of photonic doping for this rectangular dopant 

has been derived in our earlier work [36]. The input impedance of the load is (0.92−2.74i)η0 at fp 

= 5.5 GHz. Detailed information about calculating the load impedance can be found in 

Supplementary Section S1 in the Supplementary Material [38]. To compensate for the input 



 12 

i

nductance, a series capacitance is needed, corresponding to a doped ENZ channel with a negative 

effective relative permeability of −0.82. Hence, a dielectric dopant with a relative permittivity of 

40 and a cross-sectional area of 12 mm × 2.4 mm (0.22λp × 0.044λp, λp is the free space 

wavelength at fp) is chosen so as to satisfy this requirement (Analysis of the ENZ channel 

 

Fig. 3. Experimental verification. (a) The single-ENZ-channel matching network and the distribution of magnetic 

field magnitude at fp. The dopant is designed with relative permittivity of 40, loss tangent of 0.001, and a cross 

sectional area of 12 mm × 2.4 mm (0.22λp × 0.044λp). The length L of the doped ENZ channel is 20 mm (0.37λp), 

the length L1 of the load is set as 11 mm for the single-ENZ-channel matching, and the relative permittivity of the 

feeding waveguide εf is 1.5. The heights h1 and h2 of port 1 and port 2 are chosen as 10 mm and 1 mm, respectively. 

(b) Simulated transmission coefficients for the dopant placed in different locations and in the absence of the dopant. 

(c) Photograph of the prototype of the single-ENZ-channel matching network, where a channel with width W= 27.2 

mm is designed to emulate the plasmonic material following Drude dispersion profile of εh,eff with a plasma 

frequency at fp =5.5 GHz. (d) Measured transmission coefficients for the dopant placed in different positions and in 

the absence of the dopant. 
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comprising the rectangular dopant is presented in Supplementary Section S3 of Supplementary 

Material [38]). The simulation result of the distribution of magnetic field magnitude at fp is 

shown in the bottom panel of Fig. 3(a), which confirms the uniform distribution of the magnetic 

field within the ENZ host and the complete absence of a standing wave in the input and output 

waveguides, signifying zero reflection. The simulated transmission amplitude spectrum for the 

dopant placed in different positions is shown in Fig. 3(b), verifying that the matching 

performance is independent of the location of the dopant. Our prototype of the single-ENZ-

channel matching network, constructed using the planar circuit board technique, is shown in Fig. 

3(c). An air-filled waveguide, operating around its cut-off frequency for its TE10 mode, with a 

width W of 27.2 mm is employed to emulate a material with a permittivity dispersion described 

by Drude model, having a plasma frequency at its cut-off frequency [40].  That is, εh,eff=1-(fp/f )2 

and fp =c/(2W). The thin metal strip fenced around the dopant is introduced to suppress the 

undesired coupling to TM modes in the ENZ channel [32], while the metallized vias arranged at 

the two sides of the feeding waveguide, as well as the stepped waveguide, provide the perfect 

electric conductor boundary. Additional details on the assembly procedure are presented in the 

Appendix A. The measurement results are shown in Fig. 3(d), where the transmission peak is 

consistently observed around fp for the dopant located with different displacements S. The lower 

transmission amplitudes than those in simulations are caused by the dielectric loss of the dopant 

and substrate. This conclusion is corroborated by the parametric study on the influence of the 

loss presented in Fig. S4 of the Supplementary Material [38].  
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IV. Applications of general impedance matching 

In above sections, we have shown, theoretically and experimentally, an example of the 

utility of the general impedance matching method for the case of a microwave waveguide. 

Actually, far beyond that, we can enable maximum transmission of power in many other 

domains, via exploiting the doped ENZ material as the building block of the matching network. 

Here, we extrapolate the application of general impedance matching to the design of a near-zero-

index antenna. As conceptually depicted in Fig. 4(a), we introduce open apertures at the 

boundary of the ENZ cavity to enable radiation into free space. However, the input reactance 

incurred by the evanescent fields at the edge of apertures may lead to a poor matching 

performance. To address this problem, dielectric dopants can be designed to compensate for the 

imaginary part of the input impedance of the aperture, thus allowing a better radiation efficiency. 

The constructed prototype of the near-zero-index antenna is shown in Fig. 4(b), where the air-

filled rectangular waveguide at the cut-off frequency fp is exploited to emulate the ENZ host, and 

the end of the ENZ cavity is open for radiation. A detailed description of the assembly procedure 

is presented in Appendix A. The input impedance of the rectangular aperture is extracted and 

shown in Fig. S5(a), indicating a feeding capacitive reactance of 2.2η0. To cancel that feeding 

reactance at frequency fp, the effective relative permeability of the ENZ cavity (with a cross-

sectional area of h × L0) in Fig. 4(b) has to be 0.35, according to Eq. (4). The size of the dopant is 

therefore determined by reference to Eq. (S5) of the Supplementary Material [38]. The 2D 

configuration of the proposed near-zero-index antenna and the simulated magnetic field 

distribution are illustrated in Figs. S5(b) and S5(c) in the Supplementary Material [38]. As shown 

in Fig. 4(c), the simulation and measurement results for the reflection amplitude in presence of 
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the dopant are significantly reduced to below 0.1 at the design frequency. Despite a slight 

frequency detuning in the measurement, due to the fabrication imperfection (minor unevenness 

of the width of the waveguide), the insensitivity of matching performance to the dopant’s 

position is also evident from the experimental results, as demonstrated in Fig. 4(c). In addition, 

the radiation pattern was measured in a standard microwave anechoic chamber, and the results 

are gathered in Fig. S6 in the Supplementary Material [38], showing a quasi-omnidirectional 

pattern at the x-z cut plane and a “doughnut-∞” shaped pattern at the y-z cut plane with a peak 

realized gain of 2.3 dBi at the boresight (+z direction).   
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Fig. 4. Applications of general impedance matching. (a) Conceptual sketch of photonic doping to match an 

antenna. Several apertures are introduced in the walls of the doped cavity, through which an incident guided wave is 

transformed into a radiating wave. (b) Photograph of the fabricated aperture antenna matched by a doped ENZ 

medium. The width W, height h, and length L0 of the air-filled cavity are set as 27.2 mm, 5 mm, and 55 mm, 

respectively. The dopant is designed with a size of 27.2 mm × 12 mm × 2.45 mm and a relative permittivity of 40 

and loss tangent of 0.001. The upper metallic plate of the cavity is not shown here. (c) The measured and simulated 

reflection coefficients of the antenna with the dopant placed at different positions. (d) Conceptual sketch of 

delivering power to arbitrarily shaped absorbing particles via doped ENZ media. (e) Proposed configuration for 

matching an absorbing particle with a complex permittivity εp = 10+0.1i, detailed geometry information of this 

absorbing particle is presented in Supplementary Note 4. The dopant is chosen with a permittivity of 40 and a radius 

R of 3.3 mm (0.061λp). Other parameters are: Ls = 53.5 mm (0.98λp), hc = 10 mm, Lq = 4.3 mm, and εq = 11. (f) 

Simulated reflection coefficient for the absorbing particle located at different positions. The inset depicts the 

equivalent circuit of the matching scheme. 

 

 

Next, we introduce another interesting application of general impedance matching of 

delivering power to an arbitrarily shaped lossy dielectric particle. As illustrated in Fig. 4(d), the 

absorbing particles with arbitrary shape are positioned in the ENZ host, while a dopant is 

designed to tune the impedance of the whole doped ENZ cavity so as to match the feeding 

transmission line. In this manner, the input power can be fully sent into the doped cavity and 

delivered to absorbing particles. A detailed design is presented in Fig. 4(e), where an ENZ cavity 

with a cross-sectional area of 0.96λp2 includes an absorbing (i.e., lossy) particle with a relative 

permittivity of 10+0.1i. The boundary of the absorbing particle is designed with a random-

number generator, and for its detailed geometry information, please refer to Table S1 in 

Supplementary Material [38]. The extracted input impedance at the interface of the ENZ host 

and feeding waveguide reads (0.10−30.85i)η0, where the real part of input impedance is due to 

the loss of the absorbing particle. The imaginary part can be cancelled as before by simply 

introducing an arbitrarily located dielectric dopant (the detailed matching procedure is presented 



 17 

in Supplementary Section S6 of Supplementary Material [38]). Once the input impedance is 

purely resistive, it can easily be transformed to η0 by a simple quarter-wavelength impedance 

transformer [33], placed between the doped ENZ cavity and the air-filled feeding waveguide. 

The equivalent circuit is shown in the inset of the Fig. 4(f). As seen from the simulation result, a 

perfect transmission of power to the absorbing particle is achieved, and changing the position of 

the dopant as expected does not influence the dip of the reflection coefficient. This method of 

illuminating or heating an absorbing particle, which can be considered as an efficient 

“microwave/optical oven”, can be employed in a number of applications, including exciting the 

transition of a quantum material [41], speeding up a biochemical reaction of, for example, a 

macromolecular cluster [42], and it may be of special interest to life sciences and material 

engineering. 

      

V.  Effects of the Material Loss   

After providing proof-of-concept demonstrations of the general impedance matching 

method, next we carry out a systematic study on the role of material loss in the general 

impedance matching, which will determine the extrapolation of the proposed method to other 

physical systems. Without loss of generality, the configuration of the two-ENZ-channel 

matching network (shown in Fig. 5(a)) is used here as a case study to investigate the impact of 

the loss from the photonic dopants, the ENZ media, and the surrounding metallic walls. The 

dielectric loss of the dopant directly contributes to the imaginary part of the effective 

permeability, which can essentially be treated as a resistance in series with the reactive matching 

component according to Eq. (4). As illustrated in Fig. 5(b), we use the simulation results to 
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evaluate the transmission amplitudes for the cases of dielectric loss tangent of the dopant set as 0 

(thus the imaginary parts of µeff of doped ENZ channel Ch. 1 and Ch. 2 are 0), 1% (thus the 

imaginary parts of µeff of doped ENZ channel Ch. 1 and Ch. 2 calculated by Eq. (5) are 0.0009µ0 

and 0.0025µ0, respectively), and 2% (thus the imaginary parts of µeff of doped channel Ch. 1 and 

Ch. 2 are 0.0017µ0 and 0.0050µ0, respectively). The reduced transmission amplitude is caused by 

a slight mismatch and the dissipation within the dopant. Next, we investigate the impact of the 

loss of the ENZ media. To this end, we use a lossy Drude model εh(f ) =1−fp2/(f 2 +ifγ) (where γ 

denotes the collision frequency) to describe a realistic ENZ host around its plasmonic resonance. 

As seen in Fig. 5(c), the transmission peak at fp is reduced to 0.75 when subjected to a collision 

frequency of around 0.06fp. Finally, the influence of the loss in the surrounding metallic walls 

has to be discussed. To this end, instead of applying a perfect electric conductor boundary, we 

use a material with finite conductivity to surround the whole structure in Fig. 5(a), and the 

simulated transmission amplitude responses for several different conductivities of metallic walls 

are gathered in Fig. 5(d). As seen, although the conductivity of the surrounding metallic material 

is decreased by five orders of magnitude, the operating band of transmission amplitude higher 

than 0.6 still remains over a range from 0.99fp to 1.01fp. The simulated reflection coefficients 

considering different losses are reported in Fig. S8 of the Supplementary Material [38]. These 

parametric studies demonstrate the robustness of the general impedance matching method to the 

inevitable losses in real applications.      
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VI. Conclusion  

In conclusion, we have demonstrated the concept of general impedance matching via doped 

ENZ media. The theoretical analysis indicates that a doped ENZ region, despite having a finite 

size, acts as a point-like lumped reactance with a highly controllable value. This property allows 

us to construct the high-frequency distributed structures via elegant circuit-based design 

paradigms. As a unique merit of our design, via simply tuning the photonic dopants, we can 

tailor the dispersion of the effective permeability of doped ENZ medium, thus enabling a flexibly 

tailorable bandwidth of the matching networks built on doped ENZ regions. We have presented 

proof-of-concept experimental demonstrations at microwave frequencies, based on substrate 

 

Fig. 5. Numerical investigation of the influence of material loss. (a) geometry of a two-element matching 

network, similar to those in Fig. 2(a) (the radii of the dopants in Ch. 1 and Ch. 2 are 0.037λp and 0.045λp, 

respectively), but considering the influence of loss of dopants, ENZ media, or surrounding metallic walls, which 

are shown in (b), (c), and (d), respectively.    
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integrated waveguides, to validate the theory and design guidelines. Furthermore, the proposed 

impedance matching scheme based on doped ENZ medium enables the opportunity to optimally 

guide power without limiting the implementation to a specific type of load. This capability has 

been demonstrated to feed a microwave component (the stepped waveguide), to enable efficient 

coupling of guided wave to free-space radiation, and to fully direct the power into an absorbing 

particle. With these advantages, our proposed scheme of general impedance matching might find 

applications in the fields of microwave engineering, optics, biomedicine and material science. 

 

 

Appendix A：Experimental setup and measurements 

The feeding waveguide in Fig. 3(c) was constructed on a 10 mm substrate with a dielectric 

constant of 2.5 and loss tangent of 0.025, while the stepped waveguide was fabricated using 10 

mm and 1 mm substrates with a dielectric constant of 2.1 and loss tangent of 0.02. The 

metallized vias were drilled using standard planar circuit board techniques, and then we glued 

the 10 mm and 1 mm substrates together. For exciting the feeding waveguide, a 50-Ω SMA 

connecter with a 9.5 mm length inner probe was armed at a distance of λg/4 (λg is the wavelength 

in the substrate) apart from the shorting vias that end the waveguide. The substrate integrated 

waveguide on the 1 mm substrate was tapered into a 50 Ω microstrip line with a width of 2.4 mm 

and terminated with the receiving SMA connector. The near-zero-index antenna shown in Fig. 

4(b) was fabricated on a 5 mm substrate with a dielectric constant of 2.2 and loss tangent of 

0.003 via standard planar circuit board techniques, and the 50-Ω SMA connecter with a 4.8 mm 

length inner probe was armed at a distance of λg/4 apart from the ending metallic vias.   

 



 21 

Acknowledgments 

Y. L. acknowledges partial support from National Natural Science Foundation of China (NSFC) 

under grant 61771280, as well as the support from Beijing National Research Center for 

Information Science and Technology, Tsinghua University, Beijing 10084, China. E.N. and N.E. 

acknowledge partial support from the US Air Force Office of Scientific Research (AFOSR) 

Multidisciplinary University Research Initiative (MURI) grant number FA9550-14-1-0389, and 

partial support from the Vannevar Bush Faculty Fellowship program sponsored by the Basic 

Research Office of the Assistant Secretary of Defense for Research and Engineering and funded 

by the Office of Naval Research through Grant N00014-16-1-2029.  

 

References 

[1] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of 

refraction. Science 292, 77–79 (2001). 

[2] N. Engheta, An idea for thin subwavelength cavity resonators using metamaterials with 

negative permittivity and permeability. IEEE Antennas and wireless propagation letters 1, 

10 (2002). 

[3] R. W. Ziolkowski and E. Heyman, Wave propagation in media having negative permittivity 

and permeability. Phys. Rev. E 64, 056625 (2001) 

[4] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations 

(IEEE-Wiley, New York, 2006). 

[5] W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Optical cloaking with 

metamaterials. Nat. Photonics 1, 224 (2007). 

[6] A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings. 

Phys. Rev. E 72, 016623 (2005). 

[7] Z. Jacob, L. V. Alekseyev, and E. Narimanov, Optical hyperlens: Far-field imaging beyond 

the diffraction limit. Opt. Express 14, 8247 (2006). 

[8] C. M. Soukoulis, S. Linden, and M. Wegener, Negative Refractive Index at Optical 



 22 

Wavelengths. Science 315, 47 (2007). 

[9] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light 

propagation with phase discontinuities: Generalized laws of reflection and refraction. 

Science 334, 333 (2011). 

[10] A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, Performing 

mathematical operations with metamaterials. Science, 343, 160 (2014). 

[11] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, Coding metamaterials, digital 

metamaterials and programming metamaterials. Light Sci. Appl. 3, e218 (2014). 

[12] N. Engheta, Pursuing near-zero response. Science 340, 286 (2013). 

[13] I. Liberal and N. Engheta, Near-zero refractive index photonics. Nat. Photonics. 11, 149 

(2017). 

[14] I. Liberal and N. Engheta, The rise of near-zero-index technologies. Science 358, 1540-

1541, (2017). 

[15] M. Silveirinha and N. Engheta, Tunneling of electromagnetic energy through 

subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97, 

157403 (2006). 

[16] M. G. Silveirinha and N. Engheta, Theory of supercoupling, squeezing wave energy, and 

field confinement in narrow channels and tight bends using ε-near-zero metamaterials. Phys. 

Rev. B 76, 245109 (2007). 

[17] B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, Experimental 

verification of epsilon-near-zero metamaterial coupling and energy squeezing using a 

microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008). 

[18] M. G. Silveirinha and N. Engheta, Design of matched zero-index metamaterials using 

nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 075119 (2007). 

[19] R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, 

Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero 

metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 023903 (2008). 

[20] R. Maas, J. Parsons, N. Engheta, and A. Polman, Experimental realization of an epsilon-

near-zero metamaterial at visible wavelengths. Nat. Photonics 7, 907 (2013). 

[21] A. M. Mahmoud and N. Engheta, Wave–matter interactions in epsilon-and-mu-near-zero 

structures. Nat. Commun. 5, 5638 (2014). 



 23 

[22] R. W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero 

index of refraction. Phys. Rev. E 70, 046608 (2004). 

[23] Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, On-chip 

zero-index metamaterials. Nat. Photonics. 9, 738 (2015). 

[24] I. Liberal, A. M. Mahmoud, and N. Engheta, Geometry-invariant resonant cavities. Nat. 

Commun.7, 10989 (2016). 

[25] R. Sokhoyan and H.  Atwater, A. Quantum optical properties of a dipole emitter coupled to 

an ε-near-zero nanoscale waveguide. Opt. Express 21, 32279 (2013). 

[26] R. Fleury and A. Alù, Enhanced superradiance in epsilon-near-zero plasmonic channels. 

Phys. Rev. B. 87, 2329–2337 (2013).  

[27] I. Liberal and N. Engheta, Nonradiating and radiating modes excited by quantum emitters in 

open epsilon-near-zero cavities. Sci. Adv. 2, e1600987 (2016). 

[28] A. Ciattoni, C. Rizza, and E. Palange, Extreme nonlinear electrodynamics in metamaterials 

with very small linear dielectric permittivity. Phys. Rev. A 81, 043839 (2010). 

[29] C. Argyropoulos, P. Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, Boosting optical 

nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012). 

[30] F. Monticone and A. Alù, Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. 

Lett. 112, 213903 (2014). 

[31] M. G. Silveirinha, Trapping light in open plasmonic nanostructures. Phys. Rev. A 89, 

023813 (2014). 

[32] I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, Photonic doping of epsilon-

near-zero media. Science 355, 1058 (2017). 

[33] D. M. Pozar, Microwave Engineering, (John Wiley & Sons, New York, 1998). [2nd edn]. 

[34] F. A. Jenkins and H. E. White, Fundamentals of Optics, Fourth edition. (McGraw-Hill, New 

York, 2001). 

[35] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Searching 

for better plasmonic materials. Laser Photonics Rev. 4, 795 (2010). 

[36] Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, Substrate-integrated photonic 

doping for near-zero-index devices, Nat. Commun., 10, 4132 (2019). 

[37] Y. Li, I. Liberal, C. D. Giovampaola, and N. Engheta, Waveguide metatronics: lumped 

circuitry based on structural dispersion. Sci. Adv. 2, e1501790 (2016). 



 24 

[38] See the Supplemental Material for guideline to match the aperture antenna and the 

absorbing particle. Also, the impedance information of the stepped waveguide and detailed 

discussion to the loss are given. 

[39] COMSOL MULTIPHYSICS 5.0, COMSOL Inc. www.comsol.com. 

[40] W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. 

Antennas Propag. 10, 19 (1962). 

[41] V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, 

H.-J. Eisler, and M. G. Bawendi, Optical gain and stimulated emission in nanocrystal 

quantum dots. Science 290, 314 (2000). 

[42] M. Larhed, C. Moberg, and A. Hallberg, Microwave-accelerated homogeneous catalysis in 

organic chemistry. Accounts of chemical research, 35, 717 (2002). 

 

 


