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We present a piezoelectric transducer in thin-film lithium niobate that converts a 1.7 GHz mi-
crowave signal to a mechanical wave in a single mode of a 1 micron-wide waveguide. We measure
a -12 dB conversion efficiency that is limited by material loss. The design method we employ is
widely applicable to the transduction of wavelength-scale structures in emerging phononic circuits
like those needed for efficient piezo-optomechanical converters and spin-phonon transducers.

I. INTRODUCTION

Phonons interact strongly and coherently with many
kinds of degrees of freedom and so can glue together hy-
brid classical and quantum systems. With efficient elec-
tromechanical transducers, we can leverage microwave
electronics to readout and control quantum dots [1, 2],
color-centers [3, 4], magnons [5], and optical photons [6–
16]. Furthermore the phonons themselves are useful for
manipulating classical and quantum information. Ultra-
high-Q nanomechanical resonators [17] have precipitated
a number of new approaches to hardware-efficient quan-
tum information processing [18, 19]. Since mechanical
waves are highly confined and slow compared to light,
they are apt for low-loss, compact microwave components
for storing [20–22], routing [23], delaying [24–26], and fil-
tering [27–29] classical and quantum information.

Many of these applications rely on or benefit from go-
ing to smaller mechanical waveguides and resonators.
Per phonon, the strain and displacement in a cavity
and waveguide scales as the inverse root of the volume
and area, respectively. As a result, size plays a central
role in improving phonon coupling rates as in optome-
chanics [30–34] and strain-coupled two-level systems [35].
Moreover, wavelength-scale structures have fewer modes
giving more control over loss and coupling. The smaller
the waveguide or resonator the better, placing new de-
mands on the design of efficient and mode-selective elec-
tromechanical transducers [36–38]. While piezoelectric
driving of wavelength-scale structures—both nanobeam
resonators [11, 13–15, 39] and waveguides [7, 40]—has
been demonstrated, many devices such as nanophotonic
acousto-optic modulators [7] and microwave-to-optical
quantum converters [14, 15] are still primarily limited by
the efficiency of their transducer. An important challenge
remains in systematically designing and characterizing
wavelength-scale, single-mode transducers as stand-alone
phononic components that can be broadly incorporated
into phononic networks.

Here we present a piezoelectric transducer at 1.7 GHz
that excites the fundamental horizontal shear (SH0)
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mode of a 1 µm-wide waveguide in thin-film lithium nio-
bate (LN). We recently used these transducers to drive
the breathing mode of a nanobeam increasing our previ-
ously demonstrated electromechanical efficiency by five
orders of magnitude [41].

Our work focuses on a single transducer design in the
platform but many of the methods we employ are general.
In Section II, we show how the area of a transducer can be
estimated from the piezoelectric coupling coefficient k2

eff
and the target bandwidth. With large k2

eff, a small trans-
ducer can be matched to 50 Ω making it easier to couple
to a wavelength-scale waveguide. In Section III, we show
that, for shear waves, adiabatic elastic horns cannot be
used to generate wide beams. This motivates our narrow
designs. In Section IV, we formulate the design prob-
lem in terms of the electromechanical scattering matrix
and show how the elements of the matrix (in particular,
the transmission tbµ) can be computed by FEM with a
normal model decomposition. This S-matrix approach
makes it possible to incorporate the transducer into a
more general network of microwave electromagnetic and
phononic components. In our analysis, we find the best
matched transducer is not the most efficient; microwave
reflections |S11| cannot be used as a proxy for |tbµ|. For
this reason, our measurements in Section V focus on de-
embedding the transducer from a cascaded transducer-
waveguide-transducer network giving us a conversion ef-
ficiency |tbµ|2 = 7.0%.

II. PIEZOELECTRIC COUPLING
CONSTRAINTS ON TRANSDUCER AREA

We begin by considering the area A on the surface of
a chip needed to impedance match to a 50 Ω transmis-
sion line. The smaller we can make our transducer, the
easier it will be to couple to a wavelength-scale waveg-
uide; but the area of the transducer is constrained by the
impedance of the transmission line, the desired band-
width, and the piezoelectric coupling coefficient k2

eff. We
show in Appendix A that for a few different models of
piezoelectric transducers, these important parameters are
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FIG. 1. Suspended transducers patterned in 300 nm-thick, X-cut LN on silicon are designed to excite the SH0 mode of a
1 µm-wide waveguide at 1.7 GHz. They are comprised of a 3.4 µm wide, 100 nm thick aluminum IDT, and a 10 µm-long linear
horn. In the false color SEM c, LN is blue, aluminum is yellow, and the XeF2 release etch front is burgundy. FEM analysis
b shows the horn scatters the SH0 mode of the IDT efficiently into the SH0 mode of the 1 µm-wide waveguide. Bands and
Bloch functions of the IDT and waveguide which constitute the asymptotic state of the horn are plotted at left a and right d,
respectively. Waves propagate along y and color indicates displacement along z.

related by the expression

A =
π

4

1

ω2
s csk

2
eff

∫
dωG (ω) (1)

=
π

8

2 G0

ω2
s cs

γ

k2
eff

(for Lorentzian G(ω)). (2)

Here G is the conductance (the real part of the admit-
tance Y ) of the interdigital transducer (IDT) ; cs is the
capacitance per unit area; ωs is the series resonance fre-
quency; G0 and γ are the maximum and full-width-half-
maximum of G (ω); and the integral is evaluated over an
interval about ω0.

Equation 1 gives us a quick way to estimate device
parameters. We see that matching to 50 Ω over a large
bandwidth comes at the cost of area. Materials like LN
with high εk2

eff, where ε is the dielectric permittivity, en-
able small transducers with large bandwidth. If we only
need a small bandwidth, we can make a small, resonant
transducer that is easier to couple to a wavelength-scale
waveguide. In principle there is no lower bound on the
area of a 50 Ω-matched transducer; in practice material
and clamping loss sets a minimum γ.

The horizontal shear (SH) waves of an LN slab are
strongly piezoelectric enabling small transducers. SH
waves traveling along the Y crystal axis in X-cut LN
couple to an IDT’s electrodes mainly via the dYZY =
68 pC/N component of the piezoelectric tensor [42, 43]
leading to large k2

eff up to 35%. The coupling coefficient
can be computed for an arbitrary mode of a unit cell of
an arbitrary IDT as shown in Appendix B; values for var-
ious modes of an LN slab without electrodes are reported
by Kuznetsova et al. [44].

A 1.9 µm pitch IDT with cs = 155 µF/m2 and ωs =
2π × 1.7 GHz (computed by FEM) requires an area of
roughly 250 µm2 to match to 50 Ω over 10 MHz. This
bandwidth is consistent with our previous measurements
of loss which places a lower bound on bandwidth in the
platform [45]. With this area constraint in hand and the
intuition that comes with it, we turn our attention to the
modes of LN waveguides and the physics of elastic horns.

III. MODES OF AN LN WAVEGUIDE
AND ELASTIC HORN DESIGN

A piezoelectric waveguide with continuous transla-
tional symmetry such as the rectangular waveguide in
Figure 1d supports a power-orthogonal basis of modes
at each frequency ω. These modes solve an eigenvalue
problem on a 2D cross-section of the waveguide in which
the stress σ and velocity v fields of the theory of elas-
ticity and the electrostatic potential Φ of electrostatics
are coupled by the piezoelectric tensor d. The modes
|ψm〉 ≡ (σm,vm,Φm), indexed by m, vary along the
waveguide as eiKmy for complex eigenvalue Km. If
Ki 6= K∗j , modes i and j are power-orthogonal and satisfy

〈ψi| ψj〉 ≡
∫

dS · (−σ∗i vj − σjv∗i + iωD∗iΦj − iωDjΦ
∗
i )

= 0 (3)

forming an inner product space in which band structures
can be computed and scattering can be studied [46]. Here
D = −ε∇Φ + dσ is the electric displacement field, and
we normalize our basis such that 〈ψi| ψj〉 = δij . For



3

more detail on our choice of Fourier conventions and the
relationship between the inner product and power see
Appendix C.

The wavelength-scale LN waveguide we are trying to
excite is 1 µm wide and 300 nm thick. It supports four
modes between 0 and 1.6 GHz: the Lamb (A0), the hor-
izontal shear (SH0), the first excited Lamb (A1), and
the longitudinal (S0) mode [47]. The band structure is
plotted in Figure 1d.

From Section II, we know we need a 250 µm2 IDT and
a way to couple it efficiently to the waveguide. A wider
IDT provides room for the wires and reduces the impact
of material loss (see Section IV). A natural choice then
is to expand the mode of the narrow waveguide using a
horn structure to couple to a wider IDT. In microwave
and acoustic design, adiabatic horns are commonly used
to expand a beam, but elastic media have an added phe-
nomenon that spoils this approach: they support surface
waves.

If we increase the width of the waveguide adiabati-
cally, the SH0 mode splits and localizes to the edges.
This is analogous to how Rayleigh waves localize to a
surface. In Figure 2a, we vary the width of the waveg-
uide and compute the wavevectors of the SH modes. The
SH0 and SH1 modes of the 1 µm-wide waveguide (left)
continuously transition to the degenerate antisymmet-
ric and symmetric edge modes (right), respectively. For
shear waves, adiabatic horns cannot produce wide, uni-
form beams and therefore cannot efficiently convert these
waves from a wide IDT to a narrow waveguide.

We choose 3.4 µm for the width of the IDT so that
an adiabatically tapered horn can efficiently scatter the
transduced mode into the 1 µm waveguide. The narrow
IDT allows us to simplify the design, make full use of the
width of the transducer, spectrally resolve the SH0 and
SH1 modes, and keep spurious shear modes in cutoff.

IV. FEM MODELS OF THE TRANSDUCER:
LOSS LIMITS TRANSMISSION tbµ

A transducer is often sufficiently characterized by its
admittance Y (ω) and the design objective can be to min-
imize microwave reflections, i.e., to match to the device.
This is true, for example, when loss channels like scatter-
ing into bulk can be ignored and the mode structure of
the radiation is well understood. But the admittance
does not fully characterize the linear response; mini-
mizing microwave reflections does not necessarily maxi-
mize the electro-mechanical transmission. Our numerical
analysis in this section and measurements in Section V
are tailored to maximize and characterize transmission
into the SH0 mode, tbµ.

A 3D FEM analysis of the transducer, IDT and horn
as shown in Figure 1b, is used to solve the inhomogenous
piezoelectric equations at each frequency. The domain
is bordered by a perfectly matched layer. As discussed
in Section III, the modes of the output waveguide form
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FIG. 2. a. Adiabatic elastic horns do not generate wide
mechanical beams. The SH0 and SH1 modes (uz plotted at
left) limit to degenerate antisymmetric and symmetric edge
supermodes (right), respectively. Below 5 µm the SH waves
(red) are well-resolved. The Lamb waves are plotted in light
blue. b. The linear horn scatters the SH0 mode of the 3.4 µm-
wide IDT efficiently into SH0 of the 1 µm-wide output waveg-
uide. c. Decomposing the power in the waveguide we find
that transduction of spurious modes, the isolation, is better
than −10 dB away from the nodes in the conductance over a
200 MHz bandwidth. The largest spurious component is the
SH1 mode plotted in red.

an inner-product space (see Appendix D) in which we
decompose the power radiated by the IDT and check that
the transducer excites a single mode. Given a solution
|ψ〉, the coefficients am are computed using Equation 3

am = 〈ψm| ψ〉 (4)

such that

|ψ〉 =
∑
m

am |ψm〉 (5)

where |am|2 is the power in mode m. For each mode m
there’s an associated backwards propagating mode −m,
the pair of which form a piezoelectric port. In order to
compute tbµ, we set the voltage across the IDT at each
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frequency ω; compute Y (ω) and am; and relate them
to a column of the S-matrix, one component of which is
tbµ. Details on piezoelectric ports and expressions for
the S-matrix can be found in Appendix E.

Our transducer is a 1.92 µm-pitch, 100 nm thick alu-
minum IDT with a duty cycle of 50%. The IDT’s fingers
end 300 nm away from the 400 nm wide bus wires that
run along the edges of the waveguide. Based on previ-
ous measurements in the platform [45], we incorporate a
uniform material loss tangent corresponding to Qi = 300
and scale the piezoelectric tensor from its bulk values by
0.67. The SH0 and SH2 Γ-point modes of the IDT (Fig-
ure 1a) are efficiently transduced and scattered into the
SH0 and SH1 modes of the waveguide (Figure 1d). In
what follows, we focus on the SH0 mode of the IDT but
have recently used the SH2 response to drive the breath-
ing mode of a nanobeam [41].

Our analysis in Section III suggests the 10 µm long lin-
ear horn shown in Figure 2b will function approximately
adiabatically. Over a large bandwidth, over 90% of the
power transmitted into the waveguide is transmitted into
the SH0 mode. Less than −10 dB goes into spurious
modes (labeled isolation in Figure 2c). Excluding nodes
in the conductance, power in the largest spurious mode
(SH1) remains below −15 dB over 200 MHz.

In Figure 3, we analyze how impedance matching and
damping contribute to tbµ for transducers of different
lengths. At first as N increases, the microwave reflec-
tions drop and the transmission improves as expected.
But improvements in matching to the transmission line
compete with damping in the IDT. This is seen in the
fraction of the dissipated energy which is lost due to in-
trinsic damping (Figure 3b). Above an optimal N , the
transmission tbµ decreases even as microwave reflections
continue to drop. These competing effects lead to a max-
imum in |tbµ|2 for an optimal N (Figure 3c): 12% for 29
finger pairs with Qi = 300. In short, minimizing S11 does
not always maximize tbµ. Also, tbµ is larger in transduc-
ers with lower dissipation (larger Qi).

For Qi = 300, intrinsic damping in the transducer is
the dominant loss channel with only a small fraction of
the energy lost to the tethers. Of the total power dissi-
pated 2G (ω) |V (ω)|2 by an N = 40 transducer like those
measured in Section V, 11% is emitted into the waveg-
uide, 96% of which is in the SH0 mode. Only 5% is lost
to clamping from the tethers along the back edge while
the other 84% is lost to intrinsic damping.

There are a few approaches to improve |tbµ|2 beyond
12%. The most obvious is to improve the material pa-
rameters k2

eff and Qi (Figure 3c). For applications in
quantum science, operating at cryogenic temperatures
will likely increase Qi by suppressing thermally induced
mechanical loss and ohmic dissipation in the electrodes.
Another strategy is to reduce the reflection coefficient
at the IDT-waveguide interface reducing the influence of
resonance and allowing us to make longer transducers be-
fore reaching loss-limits. Lastly we could diverge from the
low width, low density of states design and employ wider

waveguides, embracing the challenges of multi-mode de-
sign [39, 40].

V. MEASUREMENTS

Starting with a 500 nm-thick film of LN on a 500 µm-
thick silicon substrate, the film is thinned to 300 nm by
argon milling before patterning an HSQ mask with e-
beam lithography to define the waveguides. The mask is
transferred to the LN by angled argon milling [15]. We
then perform an acid clean to remove resputtered, amor-
phous LN. We deposit 100 nm of Al for electrodes and
200 nm Al for contact pads by e-beam lithography and
photolithography, respectively; metal evaporation; and
liftoff. Finally we release the structures with a masked
XeF2 dry etch.

The S-parameters of the transducers are measured
with a vector network analyzer (Rhode & Schwarz
ZNB20) on a probe station calibrated to move the ref-
erence plane to the tips of the probes (GGB nickel 40A).
Several modes below 10 GHz are strongly transduced as
seen in the S11 plotted in Figure 4. The conductance
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FIG. 3. By computing the linear response Y (ω) and decom-
position {am} we study the N -dependence of the transmission
tbµ from a 50 Ω transmission line to the SH0 mode. a. Mi-
crowave reflections S11 decrease with N . Lower loss devices
are matched with smaller N . b. As reflections drop, the
fraction of the total power lost increases, diminishing trans-
mission into the SH0 mode. c. These competing effects lead
to an optimal N for maximizing |tbµ|2 which increases with
Qi. Numerical results (points) are smoothed with a moving
window average (curve) for clarity.
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FIG. 4. a. The |S11| of an N = 40 transducer restricted to
the SH0 and SH2 responses in b. c. The conductance G and
susceptance χ of the SH0 mode are overlaid on FEM results.
d. The |S21| of an ideal delay line with no insertion loss would
equal the two-port mismatch 1−|S11|2/2−|S22|2/2 in red (see
Appendix G). e. For L = 800 µm, the heights of the echoes
in the impulse response are fit (inset) to extract the round
trip loss. We filter the echoes (intervals shaded blue, red, and
green) to compute the single, triple, and quintuple-transit S21

plotted with corresponding colors (inset) used to extract |tbµ|
as described in Section V.

G ≡ ReY and susceptance χ ≡ −ImY for the SH0
mode plotted in Figure 4c match well with the overlaid
simulated curve and Γ-point frequency of the IDT unit
cell bands shown in Figure 1a. The peak conductance
and full-width-half-max for the SH0 mode, 6.5 mS and
9.7 MHz inferred by Lorentzian fit, agree with our mod-
els, 6.9 mS and 7.3 MHz. We infer a static capacitance
of 31 fF by fit to the DC response of χ and use it along
with the conductance fit by Equation 2 to calculate a k2

eff
of 15% (17% computed in Appendix B). From the exact
expression in Appendix A, we find k2

eff = 12% (14.6%
simulated). This is decreased by the feedthrough capac-

itance of the contact pads.
In order to characterize the transducer, we need to

extract tbµ from measurements of S21. To this end, we
de-embed the transducer from the transducer-waveguide-
transducer two-port network by analyzing its response in
the time-domain. Consider a device with an L = 200 µm
long waveguide. If we were to infer tbµ directly from
the |S21| shown in Figure 4d by halving the −15.7 dB
peak, we would come to the unlikely conclusion that
our transducer in practice is more efficient than in sim-
ulation. This is because at 1.7 GHz, reflections at the
IDT-waveguide interface resonantly enhance transmis-
sion through the waveguide. The transmission coefficient
tbµ cannot be deduced directly from the |S21| of a short
device with large reflections at the IDT interface.

Instead, we isolate the propagation loss α and tbµ by
analyzing the time-domain impulse response h (t), the
inverse Fourier transform of S21(ω), plotted for a device
with L = 800 µm (Figure 4e). The first pulse takes the
shortest path through the device and is attenuated by
|tbµ|2e−αL/2. Each subsequent echo takes an additional
round trip, is attenuated by |r|2e−αL, and delayed by
2L/vg = 4.0 × 102 ns. We fit |r|2e−αL = −11.6 dB
from the peaks in Figure 4e and transform the first
pulse (blue) back to the frequency domain (inset) to find
|tbµ|2e−αL/2 = −28.6 dB. More detail is provided in
Appendix F.

The single-transit and round-trip loss are two con-
straints on three unknown quantities: |tbµ|2, |r|2, and
α. By sweeping the length of the device, all three pa-
rameters can be determined independently. In lieu of a
length sweep, we ignore scattering into other modes and
assume |tbµ|2 + |r|2 = 1 at the IDT-waveguide interface
to find a |tbµ|2 of 7.0% (comparable to the simulated
value of 8.9% for N = 40), an |r|2 of 93%, and an α of
6.8 dB/mm.

Given the measured group velocity of vg = 4.0 ×
103 m/s, this α corresponds to a quality factor Q =
ω0/αvg of 1700 in the waveguide and an f0Q of 2.9×1012

which is comparable to our previous work in multi-
moded, high frequency delay lines with an f0Q of 4.6 ×
1012 [45]. We see an order of magnitude improvement
over delay lines in suspended LN employing the S0 mode
at 350 MHz where f0Q = 0.45×1012 [48]. Resonators us-
ing antisymmetric thickness modes exhibit f0Q products
over twice as large (9.15× 1012) [49].

VI. CONCLUSIONS

In suspended LN films, large reflections at the IDT-
waveguide interface lead to resonance. These reflections
distort signals in a filter or delay line and reduce band-
width; here, resonance allows us to make small trans-
ducers and use simple horns to couple to a waveguide.
This reduced bandwidth can be tolerated in microwave-
to-optical conversion and two-level system control and
readout if it facilitates high conversion efficiency. At
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cryogenic temperatures, intrinsic loss will likely drop, in-
creasing the conversion efficiency of our design and en-
abling smaller bandwidths and therefore smaller trans-
ducers. At room temperature, the route to more efficient
designs calls for wider transducers and efficient horns.

The design of a horn depends on the details of a
given platform. For example, coupling surface acous-
tic waves to suspended waveguides and beams [39] in-
troduces new features to the design like mitigating re-
flections at the slab interface. The S-matrix formulation
described here can be applied generally to design and
characterize phononic components, such as horns, in a
variety of platforms.

Our hope is that insights from our design of a phononic
waveguide transducer in suspended LN can be generally
applied to selectively exciting modes of wavelength-scale
mechanical devices and that the methods we employed
can inform approaches to design and characterization of
phononic components and systems.
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Appendix A: Relating the piezoelectric coupling
coefficient to the net conductance

In Section II, we relate the area of a transducer to the
piezoelectric coupling coefficient k2

eff, the static capaci-
tance per unit area cs, and the net conductance

A =
π

4

1

ω2
0csk

2
eff

∫
dωG (ω) (A1)

with conductance G ≡ ReY (ω). In this Appendix, we
show how this expression holds for two very different
models of piezoelectric transducers: the Butterworth-
Van Dyke circuit model and the impulse response model
of a SAW transducer [50]. We consequently take this
expression as our device-independent and easily com-
putable definition of k2

eff.

1. Review of Butterworth-Van Dyke

The Butterworth-Van Dyke (BVD) circuit model is a
simple, widely used model of a piezoelectric resonator.
The circuit is comprised of a static capacitance C0 in
parallel with a motional series LC with motional induc-
tance Lm and capacitance Cm. It is equivalent to the
circuit in Figure 5 for Rm = 0.

The BVD circuit with admittance [51]

Y (ω) = −iωC0 − iωCm
1

1− ω2/ω2
s

(A2)

exhibits a pole at the series resonance frequency ωs ≡
1/
√
LmCm. Similarly, the impedance diverges at the par-

allel resonance frequency ωp where Y (ωp) = 0. Setting
Equation A2 to zero and solving for ωp we find

ωp = ωs

√
1 +

Cm

C0
. (A3)

The splitting between the series and parallel resonance
frequencies increases with the ratio of motional and static
capacitance.

For a resonator, the effective piezoelectric coupling
coefficient is defined in terms of the ratio of ωs and
ωp [52, 53]

k2
eff =

π

2

ωs

ωp

[
tan

(
π

2

ωs

ωp

)]−1

. (A4)

To second order in (ωp − ωs) /ωp the coupling coefficient
is

k2
eff =

π2

4

ωs

ωp

(
1− ωs

ωp

)
(A5)

as in [54] and to first order

k2
eff =

π2

4

(
1− ωs

ωp

)
. (A6)

In the next section, we show that the motional capac-
itance Cm is proportional to the net conductance. Ul-
timately we want to relate the net conductance, which
is a convenient form for expressing design specifications,
to the area of the transducer using intensive quantities
like ωs, ωp, and k2

eff. To do this, it is helpful to note the
capacitance ratio from Equation A3

Cm

C0
=
ω2

p

ω2
s

− 1 (A7)

can be re-expressed to first order in (ωp − ωs) /ωp

k2
eff =

π2

8

(
ω2

p

ω2
s

− 1

)

=
π2

8

Cm

C0
(A8)

as in [55].
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2. Modified Butterworth-Van Dyke circuit model

In order to relate the net conductance to Cm, we be-
gin with the lossy resonator with motional resistance Rm

diagrammed in Figure 5.

FIG. 5. Butterworth-Van Dyke circuit modified to include
mechanical loss.

The admittance of this circuit

Y (ω) = −iωC0 +
1

1
−iωCm

− iωLm +Rm

= −iωC0 + iω2
sCm

ω

ω2 + iωsω/Q− ω2
s

(A9)

is conveniently expressed in terms of the series reso-
nance frequency ωs ≡ 1/

√
LmCm and the quality factor

Q−1 ≡ ωsRmCm. From Equation A9 we directly com-
pute G(ω) and the net conductance relating it to k2

eff to
derive Equation A1.

We can simplify the calculation by expanding the mo-
tional term as a sum of first order poles

Y (ω) =− iωC0 + Y+ (ω) + Y− (ω) . (A10)

The admittance of the pole at frequency

ω± ≡ ±ωs

√
1− 1/4Q2 − iωs/2Q (A11)

is

Y± (ω) = ± iω
2
sCm

2ω0

ω

ω ∓ ω0 + iωs/2Q
. (A12)

For compactness, we have introduced a modified series
resonance frequency ω0 ≡ ωs

√
1− 1/4Q2.

Taking the real part of Y , we find the conductance

G (ω) = G+ (ω) +G− (ω) (A13)

where

G± (ω) = ±ω
3
sCm

4Qω0

ω

(ω ∓ ω0)
2

+ ω2
s /4Q

2
. (A14)

The conductance is positive and even G(−ω) = G(ω).

Focusing on the positive pole, we recognize the net
conductance as the mean of a Lorentzian by changing
variables ω = ωsx/2Q∫ ∞
−∞

dωG+ (ω) =
πω3

sCm

4Qω0

[
1

π

∫ ∞
−∞

dx
x

(x− 2Qω0/ωs)
2

+ 1

]

=
πω2

sCm

2
. (A15)

Despite being an integral of dissipation by the circuit,
the net conductance is completely independent of Rm.

Each pole contributes πω2
sCm/2 to the net conduc-

tance. Since the conductance is even,∫ 0

−∞
dωG (ω) =

∫ ∞
0

dωG (ω) (A16)

=
πω2

sCm

2
. (A17)

By Equation A8, the coupling coefficient is

k2
eff =

π

4

1

ω2
sC0

∫ ∞
0

dωG (ω) (A18)

to first order in (ωp − ωs) /ωp. Devices are usually multi-
moded. To exclude contributions to k2

eff from other
modes, we integrate G (ω) in a narrow band about ω0.

In Equation A18, C0 is the product of the static ca-
pacitance per unit area cs defined in the text and the
area of the transducer A. A simple rearrangement gives
Equation 1

A =
π

4

1

ω2
s csk

2
eff

∫
dωG (ω) (A19)

where the integral is evaluated in an interval about ωs.
Equation A18 and Equation A19 use an approximate

form for k2
eff. We can write these expressions exactly

using Equation A7,∫
dωG (ω) =

π

2

(
ω2

p − ω2
s

)
C0 (A20)

and

A =
2

π

1(
ω2

p − ω2
s

)
cs

∫
dωG (ω) . (A21)

Without making any approximations, Equation A21
gives the area in terms of the net conductance and in-
tensive quantities that can be easily calculated for a unit
cell of a transducer (Appendix B).

Before moving on to the impulse response model, we
consider the traditional BVD circuit discussed in Sec-
tion A 1 which we will encounter in Appendix B. In
Equation A2, the conductance—and therefore the net
conductance—is zero. This seems like a problem for
Equation A18. On the other hand, the net conductance
derived above (Equation A15) is independent of Rm and
in the limit Rm → 0, the circuits are equivalent.
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Taking the limit of Equation A14, we find

lim
Q→∞

G± (ω) =
πω2

sCm

2
δ (ω ∓ ω0) . (A22)

In this limit, the admittance in Equation A9 becomes

Y (ω) =− iωC0 + i
ω2

sCm

2

[
1

ω − ωs
+

1

ω + ωs

]
+
πω2

sCm

2
[δ (ω − ωs) + δ (ω + ωs)] . (A23)

from which Equation A18 follows.
In contrast to Equation A2, the expression above sat-

isfies the Kramers-Kronig relations. For any causal cir-
cuit, the susceptance χ(ω) ≡ −ImY (ω) is related to G(ω)
by [56]

χ (ω) =
1

π
P

∫ ∞
−∞

dω′
G (ω′)

ω′ − ω
. (A24)

which the delta-function-pole pairs in Equation A23 sat-
isfy.

3. Impulse response model of SAW transducer

The impulse response model (IRM) is a simple model
of piezoelectric transduction of a manifold of propagat-
ing modes—a band—rather than the resonant degrees of
freedom described by the BVD circuit. The conductance
of a transducer from the IRM is G(ω) = G+(ω) +G−(ω)
where [50]

G+ (ω) = 8k2
efffsC0N

sin2X

X2
, (A25)

X = πN (ω − ωs) /ωs, and ωs = 2πfs. A similar ex-
pression follows for the negative frequency response G−
centered at −ωs. Since∫ ∞

−∞
dX

sin2X

X2
= π, (A26)

we can integrate G (ω) about ωs changing variables from
ω to X to find ∫

dωG (ω) = 16πf2
s C0k

2
eff. (A27)

Again the static capacitance can be related to quantities
in the main text, C0 = Acs, from which it follows

A =
π

4

1

ω2
s csk

2
eff

∫
dωG (ω) . (A28)

This is Equation 1.

4. Using the net conductance to evaluate the
piezoelectric coupling coefficient

Equation A18 expresses the piezoelectric coupling co-
efficient k2

eff in terms of quantities that can be directly
measured—G(ω), ωs, and C0—without any appeals to
a model. This expression comes with a couple caveats.
The first is that it does not discriminate between dissi-
pation from mechanisms like ohmic loss and dissipation
from radiation into mechanical waves. If Equation A18
is used to calculate k2

eff, care has to be taken to exclude
non-mechanical loss mechanisms. Second, the interval of
integration for the net conductance

∫
dωG (ω) has to be

chosen carefully. All modes of a resonator or bands of
a SAW transducer in the interval will contribute to the
piezoelectric coupling in Equation A18. Finally, Equa-
tion A18 is correct only to first order in (ωp − ωs) /ωp.
For large coupling, it is better to use Equation A20 to
compute the resonance frequency ratio ωs/ωp which can
then be plugged into Equation A4.

Appendix B: Evaluating k2
eff on a unit cell of a

waveguide

In Section II, we begin our design process by using the
piezoelectric coupling coefficient k2

eff and the expression
described in Appendix A to estimate the area needed to
match to 50 Ω. It is well known that SH waves in X-cut
lithium niobate exhibit large k2

eff and there are numbers
for suspended films available [44]. For an arbitrary mate-
rial stack and waveguide geometry, transducer design be-
gins with a study of k2

eff. Here we show how we calculate
k2

eff for a mode of a wavelength-scale transducer. These
methods can be used to study the angle-dependence of
k2

eff in anisotropic media, coupling of different modes of
a waveguide, or the influence of geometry such as waveg-
uide dimensions, electrode thickness, etc.

The unit cell of the transducer is shown in Figure 6a.
Floquet boundary conditions are imposed on the faces
normal to the direction of propagation ŷ. Here we study
the Γ-point solution and so the wavevector K along ŷ is
set to 0. The frequencies of the modes supported in the
unit cell under this constraint are plotted in the bands in
Figure 1. We compute the admittance Y (ω) for this do-
main, setting the voltage across the IDT to 1 V and solv-
ing the inhomogenous piezoelectric equations by FEM.

Each mode gives rise to a pole in the susceptance which
can be fit to extract the residue GΣ/π and therefore k2

eff.
Here GΣ is the contribution to the net conductance from
the pole. Ignoring contributions from other modes, the
susceptance takes the form

χ (ω) = ωC0 +
GΣ

π

1

ωs − ω
. (B1)

We can independently compute the static capacitance C0

and the series resonance frequency ωs and put the prob-
lem of finding GΣ into the form of a linear regression.
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FIG. 6. a. The SH mode of a unit cell of the transducer.
b. The response near DC is fit for the static capacitance
C0. c. The pole in the susceptance centered at the series
resonance frequency fs is fit for the net conductance and used
with C0 to compute k2

eff. d. In addition to the pole in the
admittance, there’s a pole in the reactance centered at the
parallel resonance frequency fp.

The series resonance frequency ωs for each mode can be
computed by solving the same eigenvalue problem solved
to compute the bands in Figure 1. Here fs = 1.683 GHz.
The static capacitance C0 can be extracted from χ (ω) by
fitting a line to the low frequency response. The capac-
itance per unit cell is 1.339 fF. Then we rewrite Equa-
tion B1 as a linear regression

GΣ

π
= x \ y (B2)

with y = χ − ωC0 and x = (ωs − ω)
−1

. This regression
can be generalized to multiple modes by replacing x with
a matrix X with each column (ωs,i − ω)

−1
corresponding

to the ith pole with frequency ωs,i.

From the fit in Figure 6c we find GΣ = 32.91×103 S Hz
per unit cell. We can use GΣ directly to compute the
area needed to match to 50 Ω. By Equation A18, we
find a k2

eff of 17.26%. This approximate value for k2
eff

holds only to first order in (ωp − ωs) /ωp. If we want to
use GΣ to compute k2

eff exactly, we can use the form in
Equation A20 to find the resonance frequency ratio ωp/ωs

which we plug into Equation A4 to find k2
eff = 14.70%.

There is an easier way to calculate k2
eff for a unit

cell directly in terms of ωs and ωp. In the absence
of material loss, the admittance and reactance diverge
at the series and parallel resonance frequencies as seen
in Figure 6c and d, respectively. A divergent admit-
tance means the voltage drop across the electrodes is
zero. This is consistent with boundary conditions that
short the IDT. Imposing these boundary conditions and
solving for the eigenmodes of the unit cell at the Γ-
point we find fs = 1683 MHz for the SH mode. This
is the same frequency as in the bands in Figure 1a.
Similarly, the divergent impedance is consistent with
an open terminal—floating boundary conditions for the
electrodes—and solving for the eigenfrequency of the SH
mode we find fp = 1795 MHz.

To first order in (ωp − ωs) /ωp by Equation A8, we find

k2
eff =

π2

8

(
ω2

p

ω2
s

− 1

)
(B3)

= 16.97%. (B4)

which can be used in Equation A1. This agrees well with
the fit of the pole. Using ωs/ωp to compute k2

eff from the
definition (Equation A4), we find k2

eff = 14.48%.
If material loss is added to the domain, the admittance

and impedance no longer diverge and the series and par-
allel resonances no longer correspond to short and open
terminal boundary conditions on the electrodes. In such
a case, the net conductance can be computed directly
rather than fitting the susceptance as described above.

We note that in a finite transducer, the wave excited
by the transducer is only approximated by the Γ-point
mode. The wave in a transducer exhibits a spatially-
varying envelope [45] in contrast to the Γ-point mode
which describes a uniform wave in an infinite transducer.
The coupling coefficient k2

eff decreases away from the Γ-
point because of mismatch between the wavevector K
and the period of the electrodes a, and so this method
gives us an upper-bound on k2

eff.

Appendix C: Power Dissipation in the Fourier
Domain

The voltage V (t) can be expressed in the frequency
domain

V (ω) =
1

2π

∫ ∞
−∞

dt V (t)eiωt (C1)

and similarly for current I and admittance Y . With our
choice of Fourier convention, the power dissipated by an
electrical element P(t) = V (t)I(t) is the convolution of
V (ω) and I(ω) in the frequency domain. Averaging this
quantity in time extracts the DC component of the spec-
trum thus reducing the convolution to

〈P〉 =

∫ ∞
−∞

dω V (ω)I(−ω). (C2)

Since the voltage is a real-valued quantity, V ∗(ω) is
equal to V (−ω) (the same argument holds for I(ω) and
Y (ω)). Changing our limits of integration and using
Ohm’s law, I(ω) = Y (ω)V (ω), we find

〈P〉 =

∫ ∞
0

dω (Y ∗(ω) + Y (ω)) |V (ω)|2 . (C3)

Since 2Re(Y )(ω) = 2G(ω) = Y (ω) + Y ∗(ω), the time
average power dissipated by the electrodes is

P0 = 2

∫ ∞
0

dωG(ω) |V (ω)|2 . (C4)



10

To determine the time-average power for a piezoelectric
wave, we repeat the previous analysis starting from the
instantaneous piezoelectric Poynting vector

Ppiezo(t) = −σ(t)v(t) + Φ(t)∂tD(t) (C5)

and find the time-average piezoelectric power

Ppiezo =

∫ ∞
0

dω

∫
dS ·(−σ∗v−σv∗+ iωD∗Φ− iωDΦ∗).

(C6)
We compare this expression to the inner product in Equa-
tion 3 to confirm |am|2 is the time-average power in mode
m. We note that our time-average power differs from that
of Auld’s by a factor of 1/4 [46] resulting from differences
in Fourier conventions. All values reported are power ra-
tios and thus factors of 2 from choices of convention drop
out.

Appendix D: Basis

Decomposition of the mechanical energy radiated into
a waveguide is necessary for calculating transmission co-
efficients like tbµ needed to characterize a phononic com-
ponent. For completeness we briefly describe the basis
of propagating modes in a 300 nm thick, 1 µm-wide,
X-cut LN, rectangular waveguide. We categorize the
five 1.7 GHz modes as Lamb (A), horizontal shear (SH),
and longitudinal (S) modes which differ in their principal
strains Sxz, Syz, and Szz, respectively. These modes are
plotted in Figure 7 along with their reflection symme-
tries (σz, σx) where (+,−), for example, means symmet-
ric and antisymmetric with respect to reflection across
the xy and yz-planes, respectively.

z
x

FIG. 7. Modes of an LN waveguide at 1.7 GHz. Color in
these plots visualize the dominant displacement field. Light
blue arrows show the direction of displacement.

Appendix E: Computing the S-matrix

In our FEM analysis, we are solving a set of inhomoge-
nous equations describing the behavior of our piezoelec-
tric device. The drive term of these equations is a vec-

tor (V,a−)
>

where V is the voltage across the leads of
our transducer and a− is a vector of coefficients for the

piezoelectric waves incident on the domain as defined by
Equation 4.

The solutions of these equations can be represented in
matrix form (

I
a+

)
=

(
Y x>1
x2 X

)(
V
a−

)
. (E1)

The scalar Y is the admittance of the transducer. For M
modes, x1 and x2 are vectors with M components and X
is an M ×M matrix. For the simulations reported here,
the coefficients of a− are set to 0 and we solve for the
first column of the matrix in Equation E1 in terms of the
input voltage V .

In order to study how these transducers behave in
phononic networks—for example, the two-port transmis-
sion devices we use to measure tbµ—we want to transform
the matrix in Equation E1 into a scattering matrix S. To
do so, we reexpress V and I in terms of the microwave
amplitudes a±µ which we abbreviate to a± in this section

V =

√
Z0

2
(a+ + a−) (E2)

I =
1√
2Z0

(a− − a+) . (E3)

Here Z0 is impedance of the transmission line. Like am,
the squares of the amplitudes a2

+ and a2
− are the outward

and inward-going, time-averaged power in the transmis-
sion line. This is easily checked by computing the power
into the microwave port

V ∗I + V I∗ = |a−|2 − |a+|2 . (E4)

Substituting Equations E2 and E3 into Equation E1 and
collecting terms we find the S-matrix(

a+

a+

)
=

(
Y0−Y
Y0+Y −

√
2Y0

Y0+Y x>1√
2Y0

Y0+Y x2 X + 1
Y0+Y x2x

>
1

)
︸ ︷︷ ︸

S

(
a−
a−

)
(E5)

where Y0 = Z−1
0 . From reciprocity S = S> we find

x ≡ x2 = −x1 and therefore

S =


rµµ t1µ t2µ . . .
t1µ r11 t21

t2µ t21 r22

...
. . .

 =

(
Y0−Y
Y0+Y

√
2Y0

Y0+Y x>
√

2Y0

Y0+Y x X + 1
Y0+Y xx>

)
.

(E6)
The first component of S connecting a− and a+ is the
reflection S-parameter S11 in the absence of reflections
in the network (such as off a second transducer). The
component of S connecting a− to the SH0 coefficient ab

is tbµ. Its magnitude is conveniently expressed

|tbµ| =
√

1− |S11|2
|xb|√

2G
(E7)

where xb is the SH0 component of x and is the coefficient
ab for a 1 V drive. 2G |V |2 is the total power dissipated
by the transducer.
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Appendix F: De-embedding tbµ, α, and rbb from S21

When making a transducer, especially one embedded
in a network, e.g., a transducer coupled to a resonator, it
is tempting to be satisfied with a well-matched S11. Sup-
pression of |S11|, i.e., low microwave reflections, seems to
imply that microwaves are being converted to mechani-
cal waves and that the device is efficient. Under this
prescription, one would choose an IDT’s width and sim-
ply tune its length until it is matched. This procedure
does not produce efficient devices.

a

b

c

1.4 1.5 1.6 1.7 1.8 1.9 2.0
-120

-100

-80

-60

-40

-20

FIG. 8. a. Signal-flow graph for a two-port device. b. Paths
for the single, triple, and quintuple-transit (colored blue, red,
and green respectively) corresponding to the S21 curves of
matching color in c. c. S21 filtered by path.

A strong S11 dip is a necessary but insufficient con-
dition for efficiency (|tbµ|2 → 1). In a microwave or
phononic network, reflections can strongly modify the
response of a component. Resonance can enhance the
transmission through the device. If network perfor-
mance is the prime and only concern, measuring a res-

onator’s intracavity phonon number against microwave
input power, for example, will suffice. But if the goal is
to make a transducer which can serve as a general compo-
nent, one that can be embedded in an arbitrary network
and the response accurately predicted, we need to de-
embed the transducer’s response from the larger network
response.

In Appendix E, we describe how the full scattering
matrix S can be computed by the FEM. In Section IV,
we show that transmission into the SH0 mode exceeds
the total transmission into all other modes by 10 dB.
This allows us to reduce the S matrix of Equation E6 to
two-ports

S =

(
rµµ tbµ
tbµ rbb

)
. (F1)

The S-matrix for the waveguide is

Swg =

(
e−αL/2−iωτ 0

0 e−αL/2−iωτ

)
(F2)

where τ = L/vg is the transit time of the waveguide. The
devices measured in Section V consist of a transducer,
waveguide, and transducer. These components are cas-
caded in the signal flow graph in Figure 8a which can be
reduced by standard methods [57] to find

S11 = rµµ +
t2bµrbbe

−αL−2iωτ

1− r2
bbe
−αL−2iωτ

(F3)

and

S21 =
t2bµe

−αL/2−iωτ

1− r2
bbe
−αL−2iωτ

(F4)

where ports 1 and 2 are the electrical port of the first and
second transducer. The second term in our expression for
S11 comes from reflections rbb and gives rise to the Fabry-
Pérot peaks found on the blue side of ωs in Figure 4c.

The impulse response h (t) is computed by
inverse Fourier transforming S21. Expanding(
1− r2

bbe
−αL−2iωτ

)−1
to

∑
n r

2n
bbe
−nαL−2inωτ , each

term represents an echo in the impulse response in
Figure 4e. These echoes and the paths they take are
diagrammed in Figure 8b.

Since the L = 800 µm device is long enough to resolve
the echoes, the amplitudes of the echoes can be analyzed
directly in the frequency domain by filtering out each
echo in Figure 4e associated with a path in Figure 8b
and taking the Fourier transform. The results of this
procedure are inset to Figure 4e but are reproduced larger
here for clarity. The transmission factor t2bµ exp (−αL/2)
is extracted from the first transit plotted in blue.

Appendix G: Insertion loss from impedance
mismatch

In Section V we attribute a fraction of the insertion
loss to impedance mismatch between the transducers and
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transmission lines. This mismatch in Figure 4d is la-
beled the two-port mismatch. Derived below, this quan-
tity is the average of the ratios of the power dissipated
by each transducer over the incident microwave power
1− |S11|2/2− |S22|2/2.

For any lossy, passive system

|S11|2 + |S12|2 < 1 (G1)

and

|S22|2 + |S21|2 < 1. (G2)

Summing these conditions and assuming reciprocity, i.e.
S21 = S12 we have

|S11|2 + |S22|2 + 2|S21|2 < 2 (G3)

Rearranging the above expression we get

|S21|2 < 1− |S11|2/2− |S22|2/2 (G4)

The right-hand side which sets an upperbound on S21 is
the two-port mismatch.
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