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The best spatial resolution so far achieved in thermal imaging is several nanometers, much coarser
than routinely achieved for other physical properties. Here we propose a method to map electronic
temperature variations in operating nanoscale conductors by relying solely upon electrical tunneling
current measurements. The proposed measurement scheme involves two scanning probe opera-
tions to measure the conductance and thermopower, respectively. These two measurements are
shown to determine the local temperature with high accuracy in nanoscale conductors, where the
Wiedemann-Franz law holds quite generally. The proposed scanning tunneling thermometer, owing
to its operation in the tunneling regime, would be capable of mapping temperature variations with
sub-nanometer resolution, thereby enhancing the resolution of scanning thermometry by some two
orders of magnitude.

I. INTRODUCTION

Thermal imaging of nanoscale systems is of crucial im-
portance not only due to its potential to enable future
technologies, but also because it can greatly enhance our
understanding of heat transport at the smallest scales.
In recent years, nanoscale thermometry has been used
in a wide range of fields [1] including thermometry in a
living cell [2], local control of chemical reactions [3] and
temperature mapping of operating electronic devices [4].
Various studies utilize radiation-based techniques such as
Raman spectroscopy [5], fluorescence in nanodiamonds
[2, 6] and near-field optical microscopy [7]. The spatial
resolution of these radiation-based techniques is limited
due to optical diffraction and, to overcome this draw-
back, scanning probe techniques have seen a flurry of
activity in recent years [8]. However, despite their re-
markable progress, the spatial resolution remains in the
10 nm range. A key obstacle to achieving high spatial
resolution in scanning probe thermometry has been the
fundamental difficulty in designing a thermal probe that
exchanges heat with the system of interest but is ther-
mally isolated from the environment.

Since temperature and voltage are both fundamental
thermodynamic observables, it is instructive to draw the
sharp contrast that exists between the measurement of
these two quantities at the nanoscale. Scanning tunnel-
ing potentiometry (STP) [9] is a mature technology and
can map local voltage variations with sub-angstrom spa-
tial resolution by operating in the tunneling regime. STP
has been used to map the local voltage variations in the
vicinity of individual scatterers, interfaces or boundaries
[10–14], providing direct observations of the Landauer
dipole [15, 16]. STP has been a useful tool in disentan-
gling different scattering mechanisms [14] and can map
local potential variations due to quantum interference ef-
fects [12, 13]. Similarly, local temperature variations due
to quantum interference effects have been theoretically
predicted for various nanosystems out of equilibrium [17–

20] but have hitherto remained outside the reach of ex-
periment.

Scanning thermal microscopy [21] (SThM) relies on the
measurement of a heat-flux signal that can be sensed,
e.g., by a calibrated thermocouple or an electrical resistor
[22]. A good thermal contact between the tip and sam-
ple is needed for an appreciable heat flux and generally
implies a measurement in the contact regime, thus lim-
iting the spatial resolution. Despite the recent progress
in adressing contact-related issues in SThM [8, 23], the
best spatial resolution is presently ∼ 7 nm [24].

It is well known that, outside equilibrium, the tem-
peratures of different degrees of freemdom (e.g. phonon,
photon, electron) do not coincide [25]; Existing SThM
schemes cannot distinguish between the contributions of
the different degrees of freedom to the heat-flux. A num-
ber of nanoscopic devices operate in the elastic transport
regime where the electron and phonon degrees of freedom
are completely decoupled and, consequently, the distinc-
tion between their temperatures becomes extremely im-
portant [26].

From a fundamental point of view, a thermometer is a
device that equilibrates locally with the system of interest
and has some temperature-dependent physical property
(e.g. resistance, thermopower, mass density) which can
be measured; the temperature measurement seeks to find
the condition(s) under which the thermometer is in local
thermodynamic equilibrium with the system of interest
and concurrently infers the thermometer’s temperature
by relying upon those temperature-dependent physical
properties. Ideally, the measurement apparatus must not
substantially disturb the state of the system of interest
[27]. SThM schemes, by relying on heat fluxes in the
contact regime, may alter the state of a small system.

We propose here a noninvasive thermometer whose lo-
cal equilibration can be inferred by the measurement of
electrical tunneling currents alone. Ours is a theoreti-
cal proposal only but we detail fully how the experiment
may be performed. In particular, we find that the con-
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ditions required for the local equilibration of the scan-
ning tunneling thermometer (STTh) are completely de-
termined by (a) the conductance and thermopower which
are both measured using the tunneling current and (b)
the bias conditions of the conductor defined by the volt-
ages and temperatures of the contacts. The validity of
our proposed measurement scheme is demonstrated with
simulations of the temperature distribution in a model
nanoscale conductor (graphene nanoflake) under various
thermoelectric bias conditions. Many additional details,
including importantly those pertaining to the resolution
of the tunneling currents, are given in the appendices.

Our proposed method relies solely upon electrical mea-
surements made in the tunneling regime and provides
a measurement of the electronic temperature decoupled
from all other degrees of freedom. We predict a dramatic
enhancement of the spatial resolution by more than two
orders of magnitude, thereby bringing thermometry to
the sub-angstrom regime. The method is valid for sys-
tems obeying the Wiedemann-Franz (WF) law [28] which
relates the electrical (G) and thermal conductances (κ) in
a material-independent way κ/G = π2k2

BT/3e
2. The WF

law was first observed in bulk metals over 150 years ago
and has been verified in a large number of nanoscale con-
ductors. Most recently, it has been validated in atomic
contact junctions [29, 30] which represent the ultimate
limit of miniturization of electronic conductors.

II. TEMPERATURE MEASUREMENT

We note a crucial, but often overlooked, theoretical
point pertaining to the imaging of temperature fields on
a nonequilibrium conductor. The prevailing paradigm for
temperature and voltage measurements is the following
[31]: (i) a voltage is measured by a probe (voltmeter)
when in electrical equilibrium with the sample and (ii) a
temperature is measured by a probe (thermometer) when
in thermal equilibrium with the sample. We refer to this
definition as the Engquist-Anderson (EA) definition.

The fact that the EA definition implicitly ignores
thermoelectric effects was pointed out by Bergfield and
Stafford [18, 32], and a notion of a joint probe was put
forth by requiring both electrical and thermal equilibrium
with the sample. It is quite easy to understand this intu-
itively: A temperature probe lacking local electrical equi-
libration with the sample develops a temperature bias at
the probe-sample junction due to the Peltier effect; simi-
larly, a voltage probe lacking local thermal equilibration
with the sample develops a voltage bias at the probe-
sample junction due to the Seebeck effect. These errors
[32] can be quite large for systems with large thermo-
electric responses. A temperature probe therefore has
to remain in thermal and electrical equilibrium with the
nonequilibrium sample [18, 19, 26, 27, 32, 33], thereby
ensuring true thermodynamic equilibrium of the measure-
ment apparatus.

The joint probe measurement was made mathemati-

cally rigorous in a recent study by Shastry and Stafford
[27] where it was shown that the solution to the probe
equilibration problem always exists and is unique, ar-
bitrarily far from equilibrium and with arbitrary inter-
actions within the quantum system. Moreover, it was
shown that the EA definition is provably nonunique: The
value measured by the EA thermometer depends quite
strongly on its voltage and, conversely, the value mea-
sured by the EA voltmeter depends on its temperature.
These results are intimately connected to the second law
of thermodynamics and expose the fatal flaw in the EA
definition: the measurement apparatus (thermometer or
voltmeter) has to remain in thermodynamic equilibrium,
i.e., electrical and thermal equilibrium, with the system
of interest which it probes locally. Simply stated, an open
system of electrons (a conductor) exchanges both charge
and heat. We therefore write

Ip = 0; Jp = 0, (1)

for the simultaneous vanishing of the electric current Ip
and the electronic contribution to the heat current Jp
flowing into the probe p. The above equation determines
the conditions under which a local thermodynamic equi-
librium is established between the probe (STTh) and the
nonequilibrium system of interest.

III. TEMPERATURE FROM TUNNELING
CURRENTS

The probe currents depend linearly on the temperature
and voltage gradients for transport within the linear re-
sponse regime:(

Ip
Jp

)
=
∑
α

(
L(0)
pα L(1)

pα

L(1)
pα L(2)

pα

)(
Vα − Vp
Tα−Tp
T0

)
, (2)

where the L(ν)
pα are the Onsager linear response coeffi-

cients evaluated at the equilibrium temperature T0 and

chemical potential µ0. L(0)
pα is the electrical conductance

(L(0)
pα = Gpα) between the probe p and contact α. L(1)

pα is
related to the thermopower (Spα) and electrical conduc-

tance (L(1)
pα = −T0SpαGpα). Finally, L(2)

pα is related to the

thermal conductance (L(2)
pα = T0κpα) up to leading order

in the Sommerfeld series [28] (see also appendix C).
We solve for the temperature of the STTh in Eq. (1)

and find [19]
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FIG. 1: (a) Schematic depiction of the system and measurement apparatus. An STM tip scans the surface of a
nanoscale conductor at a fixed height. The conductor sits on top of a substrate which may be gated. Two gold
contacts C1 and C2 are connected to the conductor on either side. A Pt heater (H1H

′
1 and H2H

′
2) sitting atop each

gold contact, and electrically insulated from it, allows one to modulate the temperature of the gold contacts. (b)

The conductance circuit which measures the coefficient L(0)
pα for each contact α selected using switch S. (c) The

thermoelectric circuit which measures the coefficient L(1)
pα for each contact α. Switch S* activates the heater in the

corresponding contact α selected by switch S.

Here T
(Exact)
p denotes the exact solution to the equilibra-

tion of the STTh, i.e., Eq. (1), within the linear response
regime where the currents are expressed by Eq. (2).

Eq. (2) suggests that L(0)
pα and L(1)

pα can be measured

using the tunneling current Ip, whereas L(2)
pα appears only

in the expression for the heat current Jp and would gen-
erally involve the measurement of a heat-flux-related sig-
nal. However, for systems obeying the WF law, we may

simply relate L(0)
pα and L(2)

pα using

L(2)
pα =

π2k2
BT

2
0

3e2
L(0)
pα

(
1 +O

(
kBT0

∆

)2

+ ...

)
, (4)

where the characteristic energy scale of the problem ∆
is typically much larger than the thermal energy set by
kBT0: e.g., ∆ = εF , the Fermi energy, for bulk systems
and for a tunneling probe ∆ is of the order of the work
function. The Wiedemann-Franz law arises whenever the
transport is dominated by elastic scattering processes as
shown explicitly in appendix C. It is valid in most nor-
mal metals since the electron-phonon scattering is quasi-
elastic at room temperatures (kBT � εF ). The break-
down of the Wiedemann-Franz law has been reported
in various nanoscale systems. The characteristic energy

scale ∆ in such cases is comparable to the thermal energy
thereby leading to large corrections from the higher-order
terms in the series expansion (6). In graphene, the break-
down of the WF law was reported in Ref. [34]. Here,
the local chemical potential was tuned (via local doping)
such that it is smaller than the thermal energy thereby
creating the so-called Dirac fluid. Such systems show a
decoupling of charge and heat currents, making it impos-
sible to measure heat currents through electrical means.
Although our results apply to a broad array of nanoscale
conductors, they do not apply to systems prepared in this
manner.

Using the WF law given by Eq. (4) to infer L(2)
pα , we

obtain

T
(WF)
p

T0
=

3e2

π2k2
BT

2
0
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pαVα∑
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−
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(1)
pα∑
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(0)
pα

∑
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(0)
pβ Vβ∑
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(0)
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)

+
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α L

(0)
pαTα

T0

∑
α L

(0)
pα

,

(5)

valid up to leading order in the Sommerfeld series. T
(WF)
p

requires only the measurement of L(0)
pα and L(1)

pα , or equiv-
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alently, the electrical conductance and thermopower, and
lends itself to a simple interpretation: The first term in
Eq. (5) is the thermoelectric contribution whereas the
second term is the thermal contribution. The second-
order corrections (see appendix C for more details) in
the Sommerfeld series are typically very small

T (WF)
p = T (Exact)

p

(
1 +O

(
kBT0

∆

)2

+ ...

)
. (6)

It is clear from Eq. (5) that the measurement of (a)

conductance L(0)
pα and the thermoelectric coefficient L(1)

pα

along with the (b) known bias conditions of the sys-
tem {Vα, Tα} completely determine the conditions under
which the STTh is in local thermodynamic equilibrium
with the system.

IV. PROPOSED EXPERIMENTAL
IMPLEMENTATION

The temperature measurement involves two circuits:
(I) The conductance circuit which measures the electri-

cal conductance L(0)
pα and (II) The thermoelectric circuit

which measures the thermoelectric response coefficient

L(1)
pα , as shown in Fig. 1 (b) and (c) respectively. The

STTh involves operating the tip of a scanning tunneling
microscope (STM) at a constant height above the surface
of the conductor in the tunneling regime. The circuit op-
erations (I) and (II) are described below.

(I) The conductance circuit involves a closed circuit of
the probe and the contact α. All contacts and the probe
are held at the equilibrium temperature Tα = Tp = T0.
An ac voltage V (ω) is applied at the probe-contact junc-
tion V (ω) = Vp − Vα and the resulting tunneling current
Ip(ω) is recorded using standard lock-in techniques. The
STM tip is scanned along the surface. A switch discon-
nects all contacts except α and the tunneling current is
therefore

Ip = L(0)
pα (Vp − Vα) = −Iα,

Ip(ω) = L(0)
pαV (ω).

(7)

The procedure is repeated for all the contacts α by tog-
gling the switch S shown in Fig. (1b) and a scan is ob-
tained for each probe-contact junction. This completes

the measurement of the conductance L(0)
pα for all the con-

tacts α.
(II) The thermoelectric circuit involves a (i) closed cir-

cuit of the probe and contact α, which is the same as
the conductance circuit without the voltage source, and
(ii) an additional circuit which induces time-modulated
temperature variations in contact α; An ac current at
frequency ω induces Joule heating in the Pt resistor at
frequency 2ω and results in a temperature modulation
Tα = T0 + ∆Tα(2ω) in the contact α. The probe is held
at the equilibrium temperature Tp = T0. The resulting

tunneling current Ip(2ω), at frequency 2ω, is recorded us-
ing standard lock-in techniques. The STM tip is scanned
along the surface at the same points as before. A switch
disconnects all contacts except α and the tunneling cur-
rent is

Ip = L(1)
pα

(Tα − Tp)
T0

= −Iα

Ip(2ω) = L(1)
pα

∆Tα(2ω)

T0
.

(8)

The procedure is repeated for all the contacts α by tog-
gling the switches S and S* shown in Fig. (1c) and a scan
is obtained for each probe-contact junction. Note that
the switch S* must heat the Pt resistor in the same con-
tact α for which the probe-contact tunneling current is
measured. This completes the measurement of the ther-

moelectric coefficient L(1)
pα for all the contacts α.

Heating elements have been fabricated in the contacts
previously [35]. Any system where one may induce Joule
heating can be used as the heating element (instead of
Pt) in the circuit. For example, another flake of graphene
could be used as a heating element as long as it is cali-
brated accurately. The voltage modulation frequency in
the heating elements ω � 1/τ , where τ is the thermal
time constant of the contacts, so that the contact may
thermalize with the heating element. Typically, τ is of
the order of tens of nanoseconds (cf. methods in [18]).
We discuss the calibration of the contact temperature
Tα = T0 + ∆Tα in appendix D. The thermoelectric re-
sponse of the nanosystem may be quite sensitive to the
gate voltage which is also discussed in appendix E, sub-
section E 1 a.

V. NUMERICAL RESULTS AND DISCUSSION

We present model temperature measurements for a
hexagonal graphene flake under (a) a thermal bias and
(b) a voltage bias. The measured temperature, for a
combination of thermal and voltage biases, would sim-
ply be a linear combination of the two scenarios (a) and
(b) in the linear response regime (under identical gating
conditions). Therefore, we present the two cases sepa-
rately but we note that the gate voltages are not the same
for the two scenarios that we present here. The voltage
bias case has been gated differently so as to enhance the
thermoelectric response of the system (see appendix E 1 a
for a more detailed discussion). We show the tempera-
ture measurement for (a) the thermal bias case in Fig. 2
and (b) the voltage bias case in Fig. 3. The two panels
in Figs. 2 and 3 compare (1) the temperature measure-

ment T
(Exact)
p obtained from the exact solution [given by

Eq. (3)] and (2) the temperature measurement T
(WF)
p ob-

tained from our method [given by Eq. (5)] which relies
on the WF law.

Graphene is highly relevant for future electronic tech-
nologies and provides a versatile system whose transport
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FIG. 2: Temperature variations on a hexagonal graphene flake with an application of a symmetrical temperature
bias Tred − Tblue = 0.5 K, where the red (hot) and blue (cold) squares indicate the sites coupled to the contacts;
T0 = 4 K. The left panel shows the exact linear response solution given in Eq. 3 while the right panel shows the WF
solution given by Eq. (5). The same temperature scale is used for both panels. The STTh tip is scanned at a
constant height of 3 Å above the plane of the graphene flake.

properties can be tuned by an appropriate choice of the
gate voltage — we therefore illustrate our results for
graphene. The method itself is valid for any system obey-
ing the WF law. The thermoelectric response coefficient

L(1)
pα ∼ T 2

0 has a quadratic suppression at low tempera-
tures and its measurement from Eq. (8) depends crucially
on the choice of gating especially at cryogenic operating
temperatures ∼ 4 K since the resulting tunneling cur-
rent must be experimentally resolvable. In graphene, we
find that the electrical tunneling currents arising from
its thermoelectric response are resolvable even at cryo-
genic temperatures when the system is gated appropri-
ately and, owing to the fact that a number of STM ex-
periments are conducted at low temperatures, we present
our results for T0 = 4 K. Higher operating temperatures
result in a higher tunneling current in Eq. (8) and gating
would therefore be less important.

The π-electron system of graphene is described using
the tight-binding model whose basis states are 2pz or-
bitals at each atomic site of carbon. The STTh is mod-
eled as an atomically sharp Pt tip operating at a constant
height of 3 Å above the plane of the carbon nuclei. The
details of the graphene Hamiltonian as well as the probe-
system tunnel coupling are presented in appendix A and
B respectively. The atomic sites of graphene which are
coupled to the contacts are indicated in Figs. 2 and 3 by
either a red or blue square. The chemical potential and
temperature of the two contacts (red and blue) set the
bias conditions for the problem. The coupling to the two
contacts is symmetrical and the coupling strength for all
the coupling sites (red or blue) is taken as Γ = 0.5 eV.
Additional details regarding the gating and the tunneling
currents are included in appendix D.

Fig. 2 shows the variations in temperature for a sym-

metrical (Tred + Tblue = 2T0) temperature bias Tred −
Tblue = 0.5 K. The agreement between T

(Exact)
p and

T
(WF)
p given by Eqs. (3) and (5) respectively is excellent.

The gating has been chosen to be µ0 = −2.28 eV with
respect to the Dirac point in graphene. The same tem-
perature scale is used for both the panels in Fig. 2. The

temperature variations in T
(WF)
p are solely the result of

the temperature bias and are given by the second term in
Eq. (5). Therefore, we require only the measurement of

the conductances L(0)
pα for the temperature measurement

under these bias conditions. We consider a contact-tip
voltage modulation of 1 mV for the measurement of the
conductance. The resulting tunneling currents are of the
order of 10 nA with a maximum tunneling current of
about 30 nA. We present the details in appendix E.

The model system considered in this section represents
a quantum coherent conductor with no inelastic scatter-
ing within the system which may lead to a “mixing” of
the electron waves emanating from the two reservoirs.
The local temperature, however, is well-defined [Eq. (1)]
[18, 20, 33] and rigorously justified [26, 27] even though
a local equilibrium does not exist. In quantum coher-
ent conductors, the local temperature variations can be
understood in terms of constructive and destructive in-
terference of electron waves entering the probe from the
two reservoirs [18, 33]. For example, in Fig. 2, the cold
(hot) spots correspond to a situation where the transmis-
sion of electron waves from the hot (cold) reservoir into
the probe is suppressed. The effect is analogous to the
cold spots arising in food heated by a coherent microwave
source in a microwave oven. The wavelength of such
quantum coherent temperature oscillations in graphene
is related to that of the Friedel oscillations [20] and may
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FIG. 3: Temperature variations on a hexagonal graphene flake with an application of a voltage bias
Vblue − Vred = kBT0/e = 0.34 mV, where the red and blue squares indicate the sites coupled to the contacts;
T0 = 4 K. The left panel shows the exact linear response solution given in Eq. 3 while the right panel shows the
approximate solution obtained by employing the WF law given in Eq. 5. The same temperature scale is used for
both panels. The STTh tip is scanned at a constant height of 3 Å above the plane of the graphene flake.

be tuned by appropriate gating [36]. It is possible to have
dramatic temperature variations within a single bond
length, as seen in the central hexagon in fig. 3 (see also
Ref. [18]), and our method is capable of mapping such
sub-angstrom temperature variations. However, we reit-
erate that our method relies only upon the general appli-
cability of the Wiedemann-Franz law (not on quantum
coherence) and have explicitly shown in appendix C that
the Wiedemann-Franz law is valid when the transport is
dominated by elastic scattering processes.

Fig. 3 shows the variations in temperature for a volt-
age bias of Vblue−Vred = kBT0/e, with T0 = 4 K, so that
the transport is within the linear response regime. The
gating for this case has been chosen to be µ0 = −2.58 eV
such that there is an enhanced thermoelectric effect. The
tunneling currents from the thermoelectric circuit, un-
der these gating conditions, are of the order of 100 pA
with a maximum tunneling current of about I = 150 pA
and are resolvable under standard lock-in techniques.
The variation of the contact temperature is taken to be
∆T = (10%) T0 with T0 = 4 K. The resolution of the
tunneling current is an important point especially for the
measurement of the thermoelectric response coefficient

L(1)
pα and has been covered in greater detail in appendix

E. The same temperature scale is used for both panels in

Fig. 3 and there is excellent agreement between T
(Exact)
p

and T
(WF)
p . The temperature variations shown here are

solely the result of the voltage bias and are given by the
first term in Eq. (5). Under voltage bias, temperature
variations arise due to Peltier cooling/heating in the sys-
tem [32], as well as Joule heating. Joule heating is omit-
ted in linear response theory, but is negliglible at the bias
of 0.34mV shown in Fig. 3. Since the variations in Fig. 3

are purely due to the thermoelectric effect, the EA def-
inition would have noted no temperature variations at
all.

The disagreement between the exact solution and our
method are due to higher-order contributions in the Som-
merfeld series which are extremely small [cf. Eq. (6)].
An explicit expression for the first Sommerfeld correc-
tion in the WF law has been derived in appendix C.

The discrepency between T
(WF)
p and T

(Exact)
p defined

by |T (WF)
p − T (Exact)

p |/T (Exact)
p is less than 0.01% for the

temperature bias case in Fig. 2, whereas their discrepency
for the voltage bias case in Fig. 3 is less than 0.2%.

VI. CONCLUSION

It has proven extraordinarily challenging to achieve
high spatial resolution in thermal measurements. A key
obstacle has been the fundamental difficulty in design-
ing a thermal probe that exchanges heat with the sys-
tem of interest but is thermally isolated from the en-
vironment. We propose circumventing this seemingly
intractable problem by inferring thermal signals using
purely electrical measurements. The basis of our ap-
proach is the Wiedemann-Franz law relating the thermal
and electrical currents flowing between a probe and the
system of interest.

We illustrate this new approach to nanoscale thermom-
etry with simulations of a scanning tunneling probe of a
model nanostructure consisting of a graphene flake un-
der thermoelectric bias. We show that the local temper-
ature inferred from a sequence of purely electrical mea-
surements agrees exceptionally well with that of a hypo-
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thetical thermometer coupled locally to the system and
isolated from the environment. Moreover, our method
provides the electronic temperature decoupled from all
other degrees of freedom and can therefore be a vital tool
to characterize nonequilibrium device performance. Our
proposed scanning tunneling thermometer exceeds the
spatial resolution of current state-of-the-art thermome-
try by some two orders of magnitude.
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Appendix A: System Hamiltonian

The π-electron system of graphene is described within

the tight-binding model, Hgra =
∑

<i,j>

tijd
†
idj + h.c, with

nearest-neighbor hopping matrix element tij = −2.7eV.
The coupling of the system with the contact reservoirs
is described by the tunneling-width matrices Γα. We
calculate the transport properties using nonequilibrium
Green’s functions. The retarded Green’s function of the
junction is given by Gr(ω) = [Sω − Hgra − ΣT (ω)]−1,
where ΣT = −i

∑
α Γα/2 is the tunneling self-energy.

We take the contact-system couplings in the broad-band
limit, i.e., Γαnm(ω) = Γαnm(µ0) where µ0 is the Fermi
energy of the metal leads. We also take the contact-
system couplings to be diagonal matrices Γαnm(ω) =∑
l∈α Γαδnlδml coupled to π-orbitals n,m of the graphene

system. The nonzero elements of Γα (α = {blue, red})
are at sites indicated by either a blue or red square in figs.
2 and 3, corresponding to the carbon atoms of graphene
covalently bonded to the contact reservoirs. The tun-
neling matrix element at each coupling site is set as
Γα = 0.5 eV for both the contacts (blue and red). S
is the overlap-matrix between the atomic orbitals on dif-
ferent sites and we take S = I, i.e., an orthonormal set
of atomic orbitals. The tunneling-width matrix Γp de-
scribing the probe-sample coupling is also treated in the
broad-band limit. The probe is in the tunneling regime
and the probe-system coupling is weak (few meV) in com-
parison to the system-reservoir couplings.

Appendix B: Probe-Sample Coupling

The scanning tunneling thermometer is modeled as
an atomically sharp Pt tip operating in the tunneling
regime at a height of 3 Å above the plane of the car-
bon nuclei in graphene. The probe tunneling-width ma-

trices may be described in general as [37] Γpnm(ω) =
2π
∑
l∈{s,p,d...} ClV

n
l V

n∗

l ρpl (ω), where ρpl (ω) is the local
density of states of the apex atom in the probe electrode
and V ml ,V nl are the tunneling matrix elements between
the l-orbital of the apex atom in the probe and the mth,
nth π-orbitals in graphene. The constants Cl = C ∀l and
has been determined by matching with the peak of the
experimental conductance histogram [38]. We consider
the Pt tip to be dominated by the d-orbital character
(80%) although other contributions (s – 10% and p –
10%) are also taken as described in Ref. [37]. In the cal-
culation of the tunneling matrix elements, the π-orbitals
of graphene are taken to be hydrogenic 2pz orbitals with
an effective nuclear charge Z = 3.22 [39]. The tunneling-
width matrix Γp describing the probe-system coupling is
in general non-diagonal.

Appendix C: Elastic Transport

We explicitly show the derivation of the Wiedemann-
Franz law for elastic transport below. The steady-state
currents flowing into reservoir p, through a quantum con-
ductor where elastic processes dominate the transport,
can be written in a form analogous to the multiterminal
Büttiker formula [33]

I(ν)
p =

1

h

∑
α

∫ ∞
−∞

dω (ω − µp)ν Tpα(ω) [fα(ω)− fp(ω)] ,

(C1)
where

Tpα(ω) = Tr {Γp(ω)Gr(ω)Γα(ω)Ga(ω)} (C2)

is the transmission function for an electron originating in
reservoir α to tunnel into reservoir p. Our notation uses
ν = 0 to refer to the particle current and ν = 1 to refer to
the electronic contribution to the heat current. Gr (Ga)
is the retarded (advanced) Green’s function. Γp and Γα

are the tunneling width matrices describing the coupling
of the system to the probe and contact α respectively.
However, in this article, we like to express the measur-
ment condition [Eq. 1] in terms of the electrical current
Ip which is of course related to the particle current by

Ip =− eI(0)
p

=− e

h

∑
α

∫ ∞
−∞

dω Tpα(ω) [fα(ω)− fp(ω)] ,
(C3)

whereas the electronic heat current is simply

Jp = I(1)
p . (C4)

Operation within the linear response regime allows one
to expand the fermi functions fα and fp to linear order
near the equilibrium temperature and chemical potential
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fα − fp =

(
∂f

∂µ

)∣∣∣∣
µ0,T0

(µα − µp) +

(
∂f

∂T

)∣∣∣∣
µ0,T0

(Tα − Tp)

=

(
− ∂f

∂ω

)∣∣∣∣
µ0,T0

(
− e(Vα − Vp)

)
+ (ω − µ0)

(
− ∂f

∂ω

)∣∣∣∣
µ0,T0

(Tα − Tp)
T0

.

(C5)

The electrical current

Ip =
∑
α

L(0)
pα (Vα − Vp) + L(1)

pα

(Tα − Tp)
T0

, (C6)

to linear order in the voltage and temperature gradients.
Using Eq. (C5) in Eq. (C1), we obtain the expressions
for the linear response coefficients

L(0)
pα =

e2

h

∫ ∞
−∞

dω Tpα(ω)

(
− ∂f

∂ω

)∣∣∣∣
µ0,T0

(C7)

and

L(1)
pα =

−e
h

∫ ∞
−∞

dω (ω−µ0) Tpα(ω)

(
− ∂f
∂ω

)∣∣∣∣
µ0,T0

. (C8)

The heat current

Jp =
∑
α

L(1)
pα (Vα − Vp) + L(2)

pα

(Tα − Tp)
T0

, (C9)

where we have taken µp ≈ µ0 in Eq. (C1) since we are
interested in terms up to the linear order. Again, we infer
from Eqs. (C5) and (C1) that

L(2)
pα =

1

h

∫ ∞
−∞

dω (ω−µ0)2 Tpα(ω)

(
− ∂f
∂ω

)∣∣∣∣
µ0,T0

. (C10)

The derivative of the fermi function appears in the
expressions for all the linear response coefficients and we
may use the Sommerfeld series expansion [28, 33]. We
find that

h

e2
L(0)
pα = Tpα(µ0) + 2 Θ(2)(kBT0)2T (2)

pα (µ0) + 2 Θ(4)(kBT0)4T (4)
pα (µ0) + ... (C11)

and

− h

e
L(1)
pα = 4 Θ(2)(kBT0)2T (1)

pα (µ0) + 8 Θ(4)(kBT0)4T (3)
pα (µ0) + 12 Θ(6)(kBT0)6T (5)

pα (µ0) + ... (C12)

and

hL(2)
pα = 4 Θ(2)(kBT0)2Tpα(µ0) + 24 Θ(4)(kBT0)4T (2)

pα (µ0) + 60 Θ(6)(kBT0)6T (4)
pα (µ0) + ..., (C13)

where we use the notation from ref. [33]: T (k)
pα (µ0) de-

notes the k-th derivative of the transmission function
Tpα(ω) at ω = µ0 and Θ is a numerical factor related
to the Riemann-Zeta function

Θ(k + 1) =
(
1− 1

2k
)
ζ(k + 1). (C14)

Explicitly:

Θ(2) =
π2

12

Θ(4) =

(
7

8

)
π4

90

Θ(6) =

(
31

32

)
π6

945
.

(C15)
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The transmission function has appreciable changes on
an energy scale determined by the system’s Hamiltonian
and its couplings to the contacts. We thus define the
characteristic energy scale ∆

Tpα(µ0) = ∆2T (2)
pα (µ0), (C16)

which is typically much larger than the thermal energy
kBT0 for most experimental setups.

The following relation connecting L(0)
pα and L(2)

pα , from
Eqs. (C11) and (C13), is the Wiedemann-Franz law:

L(2)
pα =

π2k2
BT

2
0

3e2
L(0)
pα

(
1 +

8π2

15

(
kBT0

∆

)2

+ ...

)
. (C17)

Appendix D: Calibration of Temperature

HEATER

CONTACT

ENVIRONMENT

FIG. 4: Thermal circuit for heat transfer between the
Pt-heater, the metal contact, and the ambient
environment. The contact temperature is nearly equal
to that of the Pt-heater, TContact ≈ THeater, when they
are in good thermal contact κhc � κ0c.

The thermoelectric circuit requires the calibration of
the contact temperatures which we describe here. The
Pt-heater is fabricated atop an electrically insulating
layer above the metal contact α and has a thermal con-
ductivity κhc with the contact. The temperature of the
Pt-heater is inferred from its resistivity. The contact α
is heated when an electrical current is passed in the Pt-
heater but it also loses heat to the ambient environment
which is at the equilibrium temperature TEnv = T0. We
denote the thermal conductivity between the contact and
the ambient environment by κ0. The thermal circuit is
shown in Fig. 4.

The heat current flowing into the contact is given by

Q̇in = κhc
(
THeater − TContact

)
(D1)

whereas the heat current flowing out

Q̇out = κ0c

(
TContact − TEnv

)
. (D2)

In steady state, the rate of heat flow into the contact is
equal to the rate of heat lost to the ambient environment
and we find

TContact =
κhcTHeater + κ0cTEnv

κhc + κ0c
. (D3)

When the heater is in good thermal contact κhc � κ0c,
we find that

TContact ≈ THeater. (D4)

An alternating voltage V (t) = Vmax cos(ωt) results in
a current I(t) = GPtV (t) in the heater. The power dis-
sipated via Joule heating is given by

P = GPtV
2
max cos2(ωt) =

1

2
GPtV

2
max

(
1 + cos(2ωt)

)
,

(D5)
which results in 2ω modulations of the heater tempera-
ture

THeater = T0 + ∆Tmax

(
1 + cos(2ωt)

)
, (D6)

since the net power dissipated by the heater can be writ-
ten as

P = κ(THeater − T0), where,

κ = κ0h +
κhc κ0c

κhc + κ0c
,

(D7)

as seen from the thermal circuit shown in fig. 4.
The temperature of the heater is inferred from the con-

ductance (or resistivity) dependence of the Pt heating el-
ement GPt(T ). The modulation frequency must be cho-
sen so that ω � 1/τ , where τ is the thermal time con-
stant of the metal contact, so that it has enough time
to thermally equilibrate. It is of course understood that
such a frequency allows the heater itself to equilibrate
and enter a steady-state of heat transfer with the metal
contact. The temperature modulations in the metal con-
tact closely follow that of the heater when there is good
thermal contact:

TContact(t) = T0 + ∆Tmax

(
1 + cos(2ωt)

)
. (D8)

We have chosen ∆Tmax such that the contact would reach
a maximum temperature of T0+2∆Tmax. The calibration
fixes ∆Tmax accurately.

We also note that the temperature modulations can
be obtained by means other than using a Pt resistor. A
graphene flake itself undergoes Joule heating and could
therefore be used as a heating element so long as one is
able to calibrate its temperature accurately.
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FIG. 5: Amplitude of the tunneling current in the thermoelectric circuit. The left (right) panel shows the tunneling
current amplitude resulting from the heating of the first (second) contact as shown with the black squares in the
corresponding panel. The gating potential is set at µ0 = −2.58 eV with respect to the Dirac point. The amplitude of
temperature variations in the contacts [cf. Eq. (D8)] is taken to be 10% of the equilibrium temperature ∆Tmax

T0
= 0.1.

Appendix E: Tunneling Currents

1. Thermoelectric Circuit

The tunneling current resulting from the heating of the
contact is given by

Ip = L(1)
pα

(Tα − T0)

T0
(E1)

during the operation of the thermoelectric circuit. Stan-
dard lock-in techniques are employed to measure the cur-
rent amplitude at frequency 2ω. It is easy to see from
Eq. (D8) that the current amplitude

Ip
∣∣
2ω

= L(1)
pα

∆Tmax

T0
. (E2)

We show the spatial variation of the tunneling current
amplitude in fig. 5. The probe is held at a constant
height of 3 Å above the plane of the sample. We assume
a modest increase in the contact temperature by setting
∆Tmax = (10%) T0 where the equilibrium temperature
T0 = 4 K. The corresponding contact α = {1, 2} is shown
by black squares in fig. 5 and represent the sites of the
sample which are covalently bonded to the metal contact
α. α = 1 is shown on the left panel and α = 2 is shown on
the right panel in fig. 5. The tunneling current amplitude
is as high as 150 pA at some points on the sample and
is therefore well within the reach of present experimen-
tal resolution. Since we illustrate our numerical results
for an experiment performed at liquid He temperatures
(4 K), the thermoelectric response is suppressed and gat-
ing becomes important. If, for example, T0 was set to
40 K, we would have a hundred-fold increase in the tun-
neling current amplitude [cf. Eqs. (E2) and (C12)] and
gating would be less important.

a. Gating

We find that the system has a sufficiently large ther-
moelectric response at 4 K, i.e. the current amplitude in
Eq. (E2) is experimentally resolvable, when the system is
gated appropriately. Indeed, our method works perfectly
well for systems which do not have a good thermoelectric

response. In such a case, L(1)
pα would have a low value and

would result in a current amplitude which is too small to
measure. This merely implies that the thermoelectric
contribution to the measured temperature is very small
— that is, a voltage bias within the linear response regime
does not lead to measurable differences in temperatures
across the sample. We have chosen the system’s gating
so that the thermoelectric response is appreciable and
there are measurable temperature differences across the
sample even in the case of a voltage bias. We find this
latter case more interesting.

The thermoelectric coefficient depends on the trans-
mission derivative [cf. Eq. (C12)] near the equilibrium
chemical potential. In fig. 6, we show the transmission
functions as a function of the chemical potential. The fig-
ure shows the transmission spectra into the probe from
the two contacts α = {1, 2} for one representative point
on the sample where the probe is held at a height of 3 Å
above the plane of the sample; The transmission spectra
would change from point to point on the sample but will
roughly resemble the one in fig. 6. The contact α = 1
is shown by in blue (dotted and dashed) whereas α = 2
is shown in red. We found that the transmission deriva-
tives are enhanced when the chemical potential is tuned
(via the gate voltage) to µ0 = −2.58 eV and therefore il-
lustrated the thermoelectric circuit for this choice of gat-
ing. The resulting temperature measurement is shown in
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FIG. 6: Transmission function Tpα from contact α into the STM probe p. α = {1, 2} are shown in (dotted-dashed)
blue and red respectively. The conductance circuit measurement is illustrated at a gating potential of
µ0 = −2.58 eV (magenta vertical line). However, we illustrate the thermoelectric circuit at a gating potential of
µ0 = −2.28 eV (black vertical line) since the transmission functions show a large change at that choice of gating,
thereby resulting in an enhanced thermoelectric effect.

Fig. 3 for a pure voltage bias. The spatial variations in
the transmission derivatives would resemble the pattern
shown in fig. 5 [cf. Eq. (C12)].

2. Conductance Circuit

The tunneling current resulting from the conductance
circuit would simply be

Ip = L(0)
pα (Vα − Vp). (E3)

We apply an ac voltage Vα − Vp = V (t) = Vmax cos(ωt)
across the contact-probe junction and measure the re-
sulting tunneling current

Ip(t) = L(0)
pαVmax cos(ωt) (E4)

using standard lock-in techniques. The tunneling current
amplitude at frequency ω

Ip
∣∣
ω

= L(0)
pαVmax (E5)

is measured across the sample as shown in fig. 7. We
set the amplitude of voltage modulations Vmax = 1 mV
and a scan of the sample is obtained by maintaining the
probe tip at a height of 3 Å above the plane of the sam-
ple. The tunneling current amplitude is as high as 30 nA
for some regions in the sample. Generally, gating doesn’t
play as important a role in the measurement of conduc-
tances since we obtain tunneling currents of the order of
a few nA for most choices of gating. The correspond-
ing contact α = {1, 2} is shown by black squares in fig. 7
and represent the sites of the sample which are covalently
bonded to the metal contact. α = 1 is shown on the left
panel and α = 2 is shown on the right panel in fig. 7.
The resulting temperature measurement is shown in Fig.
2 for a pure temperature bias.
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