This is the accepted manuscript made available via CHORUS. The article has been published as:

**Symphotic Multiplexing Medium at Microwave Frequencies**

Divya Pande, Jonah Gollub, Roberto Zecca, Daniel L. Marks, and David R. Smith

Phys. Rev. Applied **13**, 024033 — Published 13 February 2020

Symphotic Multiplexing Medium at Microwave Frequencies

Divya Pande,* Jonah Gollub, Roberto Zecca, Daniel L. Marks, and David R. Smith

Department of Electrical and Computer Engineering, Duke University,
Durham, North Carolina 27708, USA

Abstract

As opposed to metasurfaces, which can produce a single output waveform in response to a single input waveform, volumetric metamaterials have the ability to perform independent functions on many distinct input waveforms. Here, we present an experimental demonstration of this multiplexing capability using a volumetric metamaterial designed using the symphotic method. The symphotic method realizes highly efficient multiplexing structures in the strong scattering limit. In contrast to perturbative design methods like volume holography that are only applicable in weakly scattering media, we provide a comprehensive approach that takes into consideration design and fabrication constraints and which can be verified in simulations. We then demonstrate an experimental realization of a symphotic device operating at a frequency of 10 GHz, which has been optimized for three distinct input waveforms corresponding to three distinct output waveforms. The device is realized using a low-loss 3D-printed material. The symphotic device consists of a lattice of dielectric cylindrical elements with varying radii, excited in a parallel-plate waveguide to enforce two-dimensional field symmetry. The experimental results show excellent agreement with analytical coupled-dipole method simulations and finite-element simulations. The experiments further demonstrate the scalability of symphotic metamaterials and their viability for advanced RF and optical devices.

* divya.pande@duke.edu
I. INTRODUCTION

An important class of optical devices consists of those that convert an input wave form into an arbitrary output wave form. While there are many approaches to the design of such devices, a particularly intuitive method is that of holography, in which the desired output wave form, or object wave, is propagated back to an aperture plane and interfered with the incident wave form, or reference wave, producing a phase and amplitude variation over the plane, or hologram. When this spatially varying phase and amplitude distribution is added to the reference wave, the desired object wave is produced. Surface holography is a conceptually straightforward, yet powerful, design methodology that enables arbitrary control over wave fronts as long as the required amplitude and phase variations can be achieved in some physical medium.

If only the properties of a surface can be modified, then at most one function (at a given wavelength) can be designed into a surface hologram. Once the interference pattern between the back-propagated object and reference waves has been determined, all of the available degrees of freedom are exhausted; any other spatially distinct incident wave at the same wavelength will produce a different spatial pattern at the aperture plane. The subsequent scattering is thus uncontrolled, since the hologram has been designed specifically for one particular spatial pattern.

To construct a device that supports multiple functions, such as illustrated in Fig. 1, the properties of a medium occupying a finite volume must be subject to variation. Holography can also serve as the design approach in this context, but now an interference pattern between the object and reference waves over some volume of space must be realized, or a volume hologram. The advantage of a volume hologram is that many distinct reference waves can be incorporated into the volume hologram, each producing a distinct object wave, such that the volume hologram can be considered a multiplexing device. For this reason, volume holograms have been considered for many applications that require massive multiplexing capabilities, including optical computing, spectral imaging, data storage, and multispectral sensing.

While volume holography might seem the ideal design approach for multiplexing optics and has been used in several demonstrations [1–8], the concept is only valid in the weakly scattering limit, where the reference wave is left unperturbed as it travels through the
volume hologram. In reality, if there is any appreciable conversion of the reference wave to the object wave—as would be necessary for efficient devices—the reference wave will be altered as it transits the volume and the holographically designed medium properties no longer applicable. So, while volume holography is conceptually attractive due to its design simplicity, it cannot lead to efficient optical devices.

In general, an inverse problem must be solved to find the properties of a medium capable of converting an arbitrary set of input fields incident on its boundary to a set of desired output fields. Particularly if high-efficiency multiplexing is to be achieved, stronger scattering responses must be included and leveraged. One design approach introduced by Vučković et al. [9–15] can generate high-efficiency multiplexing devices by optimizing the topology of a mixture of naturally occurring materials in a volume. Similar approaches have been explored by Yablonovitch, Miller, et al. [16–18]. This family of strategies is effective, but computationally intensive and limited to fairly small volumes and number of functions. To encode a large number of functions in the same device, the volume considered must be large enough to afford it the necessary degrees of freedom to implement all the desired operations.

The recently published symphotic design method [19] is an effective means of attacking the inverse design problem. It yields designs for devices that are able to multiplex many functions with high efficiency and low crosstalk, even when encoded at the same frequency and polarization. This emphasis on multiplexing led to the term symphotic, which indicates a medium that can perform a large number of simultaneous optical functions with high efficiency. In principle, it is possible to use the symphotic method to design devices that operate at any frequency in the electromagnetic spectrum, up to the visible and ultraviolet range. The underlying assumption to the method is that a medium can be constructed out of very small scattering elements, such that each element may be accurately described as an electromagnetic point-dipole. This assumption, known as the discrete-dipole approximation—originally used in the field of astronomy to model interstellar grains [20–24]—requires all elements to be of subwavelength dimension and to interact solely through their dipolar fields. The dipole assumption has more recently found extensive application in the modeling of artificial media, such as metamaterials [25–33], metasurfaces, plasmonic systems [34–37], and, most recently, symphotic devices [19, 38]. In this context, it is more appropriate to refer to the dipole framework as the coupled-dipole model (CDM), since once elements are found that scatter as dipoles, all interactions among the dipoles are rigorously taken into
FIG. 1. Illustration of a symphotic device that transforms three spatially distinct input sources to three distinct Gaussian beam output waveforms.

account. By reducing a medium to a set of dipole-like elements, the requisite forward model can be efficiently solved (the CDM scales in operations as $N \log N$, where $N$ is the number of point dipoles [22]). Since the inverse design of a symphotic medium requires many iterative solutions of the scattering problem, reducing the number of unknowns via the dipole description enables extremely large systems to be designed, with potentially thousands of simultaneous functions encoded. More recently, Fan et al. have published a formulation akin to the symphotic method [39, 40].

In this work, we present the first experimental demonstration of a symphotic medium designed to convert the fields from three line sources at different locations to three outgoing beams, as illustrated in Fig. 1. The fabricated symphotic medium consists of a regular grid of all-dielectric elements, to keep losses low. Other choices, such as metallic and/or resonant scatterers, have inherently larger ohmic losses and would be more challenging to incorporate into an efficient design. For ease of fabrication and testing, we choose the microwave X band (8–12 GHz) for the experiments, and fabricate the symphotic devices using a 3D printed low-loss polymer, polylactic acid (PLA). For this first demonstration, we limit the design and testing to a two-dimensional structure, invariant along the out-of-plane axis and with a uniform electric field polarized along the cylinder axes. This work is structured as follows: in Sec. II, we briefly summarize the symphotic method. Since the electromagnetic properties of 3D printed materials may vary significantly as a function of the printing path algorithms, extrusion properties of the material, and infill density, we characterize several polymers in order to select the most appropriate one for our application. The results are presented in Sec. III. Next, we introduce the cylindrical scatterers we use
to realize the symphotic design. To convert the symphotic design, which is expressed in terms of dipole polarizabilities, into a geometric design, we find the relationship between cylinder radius and polarizability using both theory and simulation, in Sec. IV. We check our assumption that the cylinders scatter like point-dipoles in Sec. V, again using both theory and simulation. This process also suggests an upper limit on cylinder radii and a choice of lattice parameter. The device fabrication is discussed in Sec. VI. We design and fabricate two devices: a simplex (one function) device that collimates a line source into a beam and a multiplex (more than one functions) device that converts three different line sources into three separate beams, independently, efficiently, and with minimal crosstalk. In Sec. VII, we introduce our experimental apparatus, a field-mapping parallel-plate waveguide, and present the behavior of the designed devices, comparing measured fields with predictions from the symphotic/CDM modeling and full-wave simulations. We draw conclusions and outline future directions in Sec. VIII.

II. THE SYMPHOTIC METHOD

The task of finding a scattering medium given the specification of pairs of input-output waves is a form of the inverse scattering problem. This inverse problem has unfavorable properties, such as nonlinearity, poor conditioning, numerical instability, and no guarantees of uniqueness or existence of solutions. There are many simplified and tractable models like the first Born approximation[41] which linearize the problem and make it easier to solve, but are only applicable to weakly scattering media. Media that scatter more strongly are a necessity if one wants to design highly efficient multifunctional electromagnetic devices. The symphotic design methodology, originally introduced in [19, 42], provides a mechanism for designing such media. We now give a brief summary of this design methodology, which does not simplify the problem by linearizing it and is thus more general.

The symphotic method provides a way to design such media, by combining 1) the coupled-dipole model (CDM) [20, 21, 23, 24, 29] 2) the variational principle [43], and 3) an adjoint-state approach to separate the inverse scattering problem into two more easily solved direct scattering sub-problems. The reader is encouraged to refer to [19, 38, 42] for more background and details.

In brief, solutions to the design problem can be found at the stationary points of a
functional $F$, which depends linearly on the electric fields of both direct scattering sub-problems and on the scattering properties of the medium. In our case, the scattering behavior is represented by the electric polarizabilities of non-dispersive dielectric elements acting as point ”dipoles”, $\alpha$, which acquire an electric dipole moment $p = \alpha E$, where $E$ is the total electric field, inclusive of the dipole fields, at the dipole location. The sub-problem fields are denoted as $E$ and $E^a$, and at the solution points they relate as $E^* = E^a$ [19, 38, 42]. For $N_w$ pairs of input-output waves, the gradient of the functional $F$ with respect to polarizabilities $\alpha$ is

$$ \nabla_\alpha F = -\sum_{n=1}^{N_w} w_n E_n^{a*} \circ E_n, $$

(1)

where $w_n$ are optional weighting factors and $\circ$ is the element-wise product. We use the $e^{j\omega t}$ convention for time phasors. The symphotic method starts from the specification of input-output pairs and a hypothesis of an initial medium (its values of $\alpha$) and alternates field-solving steps using the CDM and updates to the polarizabilities, using $\nabla_\alpha F$ in a simple gradient-descent method:

$$ \alpha^{(p+1)} = \alpha^{(p)} - \gamma (\nabla_\alpha F)^{(p)}, $$

(2)

where $\gamma$ is a small step-size parameter. The iteration may include Lagrange multipliers to constrain the values of $\alpha$ within a set interval, which is typically determined by the physical limitations on the realized scattering element, as discussed in Sec. V. The “design optimality” of each input-output transformation may be calculated as [19, 38]

$$ \eta_n \equiv \left| \frac{\langle E_n^{a}, E_n \rangle}{\sqrt{\langle E_n, E_n \rangle \langle E_n^{a}, E_n^{a} \rangle}} \right|^2, $$

(3)

using the conjugated inner product $\langle x, y \rangle \equiv x^\dagger y$. This “design optimality” represents the degree to which the design approaches the limit of what is achievable given the device volume. In other words, it quantifies how well the portion of the input waves that effectively reaches the device boundary is transformed into the desired output wave.

III. MATERIAL CHARACTERIZATION

To ensure accurate device design, it is necessary to precisely characterize the electromagnetic properties of the dielectric material composing the scatterers. Since our devices are
fabricated by additive manufacturing techniques, it is not enough to know the electromagnetic properties of the extrusion filament material. We must measure the properties of the material, post-extrusion, to account for variations in infill density and layer thickness.

Material characterization is performed via measurements of the printed material within a waveguide. The experimental setup consists of an Agilent N5222A vector network analyzer (VNA), semi-rigid cables extending from the test ports to WR-90 waveguide adapters, and a 10 mm long waveguide section filled with the material to be characterized. The geometry of the waveguide has standard WR-90 dimensions, as shown in Fig. 2, $a = 22.86$ mm $b = 10.16$ mm, such that only a TE$_{10}$ mode propagates for the given frequency range. Scattering (S)-parameters are measured across the network using the VNA. To extract the electromagnetic properties, the measurement plane of the scattering parameters must be established at the front and back of the material sample, and error, due to other scattering imperfections (connectors, cable loss, impedance mismatch, etc.) eliminated. A thru, reflect, line (TRL) calibration method is used for this purpose. This approach is more accurate than other methods [44–46]; it is very repeatable; and, requires measurements of only three simple standards (thru, reflect (short), and a line). Since the X-band upper-to-lower frequency ratio is less than 8:1, we need only one line standard to characterize the frequency band we are interested in [47]. We choose the mid-frequency, i.e., 10 GHz, to calculate its length. The phase length of a line standard can be between 20 and 160 electrical degrees with respect to the thru standard [47]. We fabricated a 10 mm long line standard with a 90 degree phase shift at 10 GHz; this results in good calibration across the entire X-band. Once the calibration is performed, we measure all four S-parameters of the waveguide containing the 3D printed samples. We use the Nicolson-Ross-Weir (NRW) algorithm to extract the complex permittivity from the S-parameters [48, 49]. Here, we assume the complex permeability value of the 3D printed samples to be $\mu_r = 1 + 0j$ as verified in [48, 50]. This waveguide extraction method is preferred over free-space measurements, as it eliminates the plane-wave approximation, diffraction effects, and ensures mode/energy confinement. It also offers wide bandwidth, high signal strength, and easy sample preparation.

We characterize a number of 3D printed samples and compare them to accepted literature values to ensure the accuracy of the test setup. We printed 10 mm thick samples of each (100% infill density), using the two most common 3D printing techniques, fused deposition modeling (FDM) and polyjet printing. Thermoplastics, including polylactic acid (PLA) [50],
FIG. 2. Experimental and literature values for the real and imaginary parts of the relative permittivity of 3D printed gray PLA (100% fill fraction). The experimental value are determined using the waveguide extraction method. Inset: PLA sample inside the X-band rectangular waveguide. Its dimensions are $a = 22.86$ mm and $b = 10.16$ mm.

<table>
<thead>
<tr>
<th>Material</th>
<th>Re($\varepsilon_r$)</th>
<th>tan $\delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>2.40</td>
<td>0.008</td>
</tr>
<tr>
<td>PLA</td>
<td>2.70</td>
<td>0.005</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>2.56</td>
<td>0.010</td>
</tr>
<tr>
<td>Veroclear</td>
<td>2.80</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Polycarbonate [51, 52], and acrylonitrile butadiene styrene (ABS) [53] samples are generally fabricated using FDM, while Veroclear [54, 55] (a curable photopolymer) is printed on high-resolution polyjet printers that use ultraviolet light (UV) curing to print thin layers until the device is fully formed. The UV curing during polyjet printing is responsible for the high losses in Veroclear. Conversely, PLA is an excellent candidate for the fabrication of our devices, because it has a low loss tangent and a reasonably high permittivity that can support the large range of desired polarizabilities. Furthermore, unlike ABS, it does not show thermal shrinking and warping during printing.
FIG. 3. The electric field scattered in a parallel plate waveguide by a PLA cylindrical element (inset) placed at its center. The cylinder dimensions are $c = 9.75$ mm, $d = 0.25$ mm; the waveguide height is 11 mm. To extract the element’s polarizability, the scattered electric field is integrated over the circle of radius $r' = 120$ mm.

IV. ELEMENT DESIGN AND POLARIZABILITY EXTRACTION

Here we discuss the design and polarizability extraction of the elements that constitute the devices. For our designs, we use PLA cylinders as building blocks; conveniently, the scattered electric field outside the cylinder is invariant along its axis ($z$-axis). The field invariance along the $z$-axis allows us to limit our investigation to two dimensions and test the devices in a parallel-plate waveguide with a 11 mm gap between the plates. For successful implementation, as discussed in Sec. VII A, the cylindrical elements are modeled as being 10 mm tall. Depending on the size of the device, it is composed of hundreds to thousands of cylinders of varying radii, arranged in a square lattice. To connect them all in a single structure, we include a 0.25-mm-thick base layer, as shown in Fig. 3. The thickness of the layer is chosen such that it has negligible scattering and does not affect the mode profile in the parallel-plate waveguide.

We extract the intrinsic polarizability of the cylinders by simulating their scattering in the parallel-plate waveguide with the commercial full-wave simulation software COMSOL Multiphysics. We extract the values at the working frequency 10 GHz ($\lambda = 3$ cm). The extraction provides the available range of polarizability (which depends on the geometric constraints on the cylinder, discussed in Sec. V) for device design and fabrication. We use COMSOL’s 3D scattering formulation, which lets us simulate the field scattered by a cylinder
in the waveguide excited with a TEM plane wave. The cylinder is placed at the center of a lossless waveguide modeled as a 11-mm-tall bounding box, shown in Fig. 3. We apply perfectly matched layer (PML) boundary condition in the $x$-$y$ plane to avoid any reflection of electromagnetic waves back in the computational domain and perfect electric conductor (PEC) boundary conditions in the $z$-direction. Since the problem is $z$-invariant, we limit our analysis to the electric field in the $z$-direction.

Analytically, the scattered electric field can be expressed as the superposition of the cylindrical harmonics

$$E_{sc}(r, \phi) = -E_0 \sum_{n=-\infty}^{\infty} b_n j^n H_n^{(2)}(kr) e^{-jn\phi},$$  

(4)

where $E_0$ is amplitude of the incident field at the center of the element, $n$ is the mode number, $H_n^{(2)}$ is the $n$-th order Hankel function of the second kind, and $b_n$ is the scattering coefficient that can be calculated as [56]

$$b_n = \frac{J_n(mkR) J'_n(kR) - m J'_n(mkR) J_n(kR)}{J_n(mkR) H_n^{(2)'}(kR) - m J'_n(mkR) H_n^{(2)}(mkR)}.$$  

(5)

Here, $m$ is the refractive index and $R$ is the radius of the cylinder, $J_n$ is the Bessel function of the first kind, and the prime sign indicates derivation with respect to the radial coordinate.

For subwavelength cylinders ($mkR \ll 1$), the lowest-order mode ($n = 0$) is dominant and the contribution of higher modes may be disregarded:

$$E_{sc}(r) \simeq -b_0 E_0 H_0^{(2)}(kr)$$  

(6)

To extract the intrinsic polarizability in COMSOL, we first calculate the scattering coefficient by integrating the scattered electric field $E_{sc}$ over a circle of radius $r' = 4\lambda$ with the origin at the center of the cylinder,

$$b_0 = -\frac{1}{2\pi E_0 H_0^{(2)}(kr')} \int_0^{2\pi} E_{sc}(r', \phi) d\phi.$$  

(7)

The radius $r'$ is chosen large enough such that the higher order modes have decayed by that distance. Theoretically, it can be any large distance away from the cylinder. However, increasing the radius will also increase the size of the computational domain, thus increasing the computational time. We use $r' = 4\lambda$ ($\lambda = 3$ cm), which is sufficient to ensure accurate
Simulations of Infinite Cylinder ($\varepsilon_r=2.5$)

Radius (mm) $\alpha_0/\varepsilon_0$ (m$^3$/F)

![Graph showing intrinsic electric polarizability](image)

**FIG. 4.** Intrinsic electric polarizability of the cylinders shown in Fig. 3 (red curve) and of infinite cylinders with $\varepsilon_r = 2.5$ (dashed blue curve) at 10 GHz.

results and minimum computational time. Then, we calculate the intrinsic polarizability $\alpha_0 = -\frac{4j\varepsilon_0}{k^2} \left( \frac{b_0}{1-b_0} \right)$. (8)

To build a library of building blocks, the polarizabilities are extracted using Eq. (8) for a variety of cylinder radii. In the simulations, the cylinder is not infinite, due to the presence of the 1 mm air gap and the base layer in the design. The extracted polarizabilities, however, are close to those of the equivalently sized infinite cylinders, with $\varepsilon_r = 2.5$, as shown in Fig. 4 (blue dashed curve). As we show in the next section, we can use these values to simulate cylinders and devices in a 2D full-wave model, thus avoiding the computational burden of 3D simulations.

**V. DESIGN CONSTRAINTS**

Our design methodology relies on the ability to characterize the scattering elements as equivalent point “dipoles”. In a waveguide, a deeply sub-wavelength cylinder scatters like an infinite line source, or equivalently, as a set of dipoles stacked vertically. As the electrical size of the cylinder increases, however, the energy in the higher-order modes increases and can invalidate our model (which assumes only the lowest-order mode matters), leading to inaccurate designs. In this section, we derive operational bounds for the radius of the
FIG. 5. The ratio of the first-order modes to the lowest-order mode scattering coefficients demonstrates how the higher-order mode contribution increases with the electrical size of the cylinder.

constituent PLA cylinders and their lattice spacing, under which the elements are well described as electric line sources. Since the fields are effectively invariant in the vertical direction, we examine the cylinders in 2D and treat them as point “dipoles”. Here, we use the term “dipole” improperly, as our examples are in two dimensions, in analogy with the more common three-dimensional formulation of the coupled-dipole model.

The lowest and first-order mode contributions for a PLA cylinder are assessed by calculating the respective scattering coefficients analytically at 10 GHz using Eq. (5). The higher-order mode \( n = 1 \) becomes more significant with respect to the lower mode \( n = 0 \) with the increase in cylinder radius. In Fig. 5, the ratio of quadrupole mode to the lowest order mode increases quadratically with the cylinder radius. In a lattice, the interference of these higher order modes degrades the functionality of the device, which is designed with the assumption \( b_n / b_0 \to 0 \forall \ n > 0 \). Thus, it is important to cap the maximum size of the cylinders. Our analysis has led us to choose the upper limit \( R_{\text{max}} = 1.7 \) mm, where the plot is linear and the quadrupole contribution is less than 2%. Theoretically, there is no restriction on the minimum size of the cylinder. The resolution of the FDM 3D printers available to us, however, limits cylinders to a minimum radius of \( R_{\text{min}} = 0.4 \) mm. An additional factor that influences the element interaction is the spacing of the elements. We choose the lattice parameter \( a = \lambda / 7 \). Our choice of maximum and minimum radii, and lattice parameter provides a good range of polarizability and ensures the point-dipole model
FIG. 6. The magnitude of the scattered fields $E_{sc}$ for two cylinders of radius $R_{max} = 1.7$ mm placed $\lambda/7$ apart at 10 GHz. (a) Analytic solution up to lowest order mode term, (b) full-wave simulations in COMSOL Multiphysics and (c) relative error, with respect to $|E_{sc,CDM}|$.

describes well the scattering in the fabricated device.

To calculate the error due to higher-order modes from our choice of maximum cylinder radius and lattice spacing, we simulate two cylinders of $R = R_{max} = 1.7$ mm kept $\lambda/7$ apart using the coupled dipole formalism and COMSOL 2D simulations. The electric-field vector is out of plane. While COMSOL simulates all the electromagnetic modes, the coupled dipole method (CDM) only gives dipolar fields, as shown in Fig. 6. By subtracting the two field plots, we calculate the error introduced by higher-order modes. The magnitude of the error is 2% and limited to the quasi-singular location of each dipole. We show in the results section that this discrepancy does not cause significant difference between the predicted behavior and the actual behavior of the fabricated devices.

VI. DEVICE FABRICATION

In this section, we discuss the design and fabrication process of simplex (mono-functional) and multiplex (multifunctional) devices at 10 GHz ($\lambda = 3$ cm). For the device functions described in Sec. VI, the symphotic design method provides a set of desired polarizable scatterers in the form of polarizability values. We map these polarizabilities to respective cylinder radii using the data in Fig. 4 (red curve). This gives us a 2D specification of the cylinders and their location in the device. Using the cylinder radii and location data, we
create 2D DXF files in MATLAB for the COMSOL simulations.

A CAD drawing of the design is constructed in SolidWorks®, a computer-aided design and engineering program. Cylinders are drawn with a height of 10 mm, including a base layer of 0.25 mm. The DXF file type is converted to a 3D STL file (the standard input file type for most 3D printers). The devices are printed on an Ultimaker®3 printer; the STL file is uploaded to the 3D printer control software and sliced. Slicing converts the STL file to G-code which dictates the path followed by 3D printer for printing. The printing parameters in the 3D slicers are chosen to achieve 100% infill density. Depending on the printer nozzle diameter and temperature, it is possible for the smaller cylinders to be larger than designed due to over-extrusion of the filament. The layer height, width, and wall thickness are set appropriately to minimize dimensional inaccuracies. The size of the devices (chosen to optimize the available field of view of the 2D field mapper where they are characterized) was ultimately larger than the maximum size of the print bed. As such, when necessary, the CAD design was split into multiple prints, which were then reassembled for the experiments.

A simplex device was designed to output a Gaussian beam at $30^\circ$ when placed $3\lambda$ away from a line source centered on the input edge (long side), as shown in Fig. 11(a). The diverging field from the line source is transformed into a Gaussian beam with 94.69% design optimality. The device size is $3\lambda \times 12\lambda$. Fig. 7(a) and (b) show the polarizability and 2D radii map of the device respectively. A photograph of the fabricated device is shown in Fig. 7(c).

To demonstrate multiplexing, we assign three functions to our second device at the same frequency (10 GHz) and polarization as shown in Fig. 13(a), (d) and (g). A line source is $2\lambda$ away from the input edge of a $4\lambda \times 12\lambda$ device. Outgoing Gaussian beams at $\{-30^\circ, -10^\circ, 35^\circ\}$ angles are generated when the source is moved $\{3\lambda, 0, -3\lambda\}$ in the vertical direction, as shown in Fig. 13. The theoretical design optimality determined for each functionality is $\{89.85\%, 93.12\%, 92.67\%\}$.
FIG. 7. Design of the $3\lambda \times 12\lambda$ simplex device: (a) Intrinsic electric polarizability map (b) 2D radius map showing the relative sizes and positions of cylinders in the device (c) 3D printed PLA device.

FIG. 8. Design of the $4\lambda \times 12\lambda$ multiplex device: (a) Intrinsic electric polarizability map (b) 2D radius map showing the relative radii and positions of cylinders in the device (c) 3D printed PLA device.
VII. EXPERIMENTAL RESULTS

A. 2D Parallel-Plate Field Mapper

We perform the experiments in a 2D X-band field mapper, which is a parallel-plate waveguide [52, 59], as shown in Fig. 9. It consists of two aluminum plates separated by a gap of $h = 11$ mm. The VNA feeds the signal to the source and detects the scattering parameter, $S_{21}$, which are stored as complex values in matrices and plotted as field maps in MATLAB. A coaxial probe on the lower plate excites a radial wave within the chamber. Since $h < \pi/k$, only the lowest (TEM) mode propagates in the waveguide and the scattering is confined to two dimensions resulting in field invariance in the direction perpendicular to the plates. Furthermore, the field mapper lets us probe the fields both around and in the interior of the tested device.

The upper waveguide plate ($120$ cm $\times$ $120$ cm $\times$ $0.63$ cm) is equipped with six fixed detection antennas, whose measurements can be stitched together to measure a large region. The lower waveguide plate ($90$ cm $\times$ $90$ cm $\times$ $0.63$ cm), attached to the optical stages, moves relative to the upper plate while the probe antennas detect the field pattern just below the upper plate. The SIGMAKOKI®, orthogonal X-Y stages (with 100 $\mu$m resolution) are controlled by the computer. We fabricate our devices to be 10 mm tall, which leaves a 1
mm air gap between the top of the cylinders and the upper plate. This ensures smooth relative motion between the upper plate and the lower plate supporting the device. Aluminum bars and a structural frame hold the upper plate firmly to avoid sagging (any sag in the upper plate results in undesired artifacts in the field maps). To avoid reflection from the waveguide edges, 10 cm thick absorbers with a 6 dB/cm attenuation rate are cut in a sawtooth pattern and arranged along the edges of the lower plate. For both experiments, we drill access holes to insert three coaxial ports at different locations into the lower plate. Depending on the desired excitation, the switch activates the appropriate probe, while the others remain inactive and provide minimal undesired scattering.

B. Device Measurements

For the simplex device experiment, we placed the printed sample 3\(\lambda\) to the right of the coaxial feed, in agreement with the simulation setup. Despite the scattering due to the two inactive coaxial pins and dimensional inaccuracies in the device, there is excellent agreement between analytic, numerical, and experimental results, as shown in Fig. 10 and 11.

For the experimental demonstration of the multiplex device, we introduce three coaxial feeds 3\(\lambda\) apart from each other in the mapper, as shown in Fig. 9. Fig. 13 shows the field maps of each functionality. The VNA records measurements for each port individually when it is active. There is a small amount of scattering due to the inactive coaxial pins in the field maps. The device shows excellent agreement with both coupled-dipole and COMSOL simulations, despite the slightly perturbed line source incident fields.

Device efficiency and outgoing beam angles are calculated for theoretical, simulated, and fabricated devices. Here, we define the device efficiency as the ratio of the output Gaussian beam power to the input power. For the input power, a line integral is performed along what would be the left interface of the device in a simulated/experimental field map without the device. This ensures we capture the total power that is incident on the interface from the feed. The output power going into the Gaussian beam is calculated by integrating along a line perpendicular to the direction of the beam. Table II shows the calculated values.

\[
\eta_d = \frac{\int_{w_g} \mid E_{out} \mid^2 \, dl}{\int_{L} \mid E_{in} \mid^2 \, dl} \tag{9}
\]

where, L is the length of the device and \(w_g\) width of the beam. The experimental near-field
FIG. 10. Simplex device: electric field intensity plots at 10 GHz generated (a) numerically in COMSOL and (b) experimentally in 2D field mapper. Here, \( L = 36 \text{ cm} \) is the length of the device and \( w_g = 21 \text{ cm} \) is the beam width.

FIG. 11. The simplex device, placed \( 3\lambda \) away from the line source, transforms the incoming line source field into a Gaussian beam at \( 30^\circ \). The figures show the real part of the electric field at 10 GHz. (a) Analytic solution, (b) numerical simulation of the device and (c) experimentally measured spatial field map.
FIG. 12. Multiplex device: electric field intensity plots at 10 GHz generated (a), (b), and (c) numerically in COMSOL; (d), (e), and (f) experimentally in 2D field mapper.

efficiency is calculated from the electric field values collected during the scans while the obtained fields are propagated to the far-field to calculate the far-field efficiency using the aforementioned method.

We note that we get excellent consistency between the simulations and experiments once material losses are included in the COMSOL full-wave simulation. The remaining small discrepancy is likely due to losses associated with the experimental setup. Further, the direction of the predicted and realized beams are in very close agreement.

VIII. CONCLUSION

We have presented a comprehensive design and fabrication method for engineering multi-functional electromagnetic devices using the symphotic method. We have used this method to demonstrate all-dielectric high efficiency simplex and a multiplex devices whose operation shows excellent agreement between the coupled-dipole model, the full-wave simulations, and the experiment. Each step is repeatable and we can easily fabricate multiplexing devices for any desired input-output waveform. This approach provides a viable path to realizing real-world devices and is robust to manufacturing variation and perturbation of the incident
FIG. 13. The multiplex device, placed $2\lambda$ away from the line sources, transforms the incoming line source fields to Gaussian beams at $\{-30^\circ, -10^\circ, 35^\circ\}$ when the source position is shifted by $3\lambda$ from top to bottom, respectively. The figures show the real part of the electric field at 10 GHz. (a), (d), and (g) analytic solution; (b), (e), and (h) numerical simulation of the device; (c), (f), and (i) experimentally measured fields.

fields. It is a promising candidate for applications that require multiple input-output operations. At microwave frequencies, routing and beam steering applications can benefit from a simple passive device that offers high efficiency and low cross talk. At optical frequencies, these techniques can be adopted to enable a host of optical communication and sensing devices, such as interconnects for optical circuits and physical-layer analog optical operators for optical computing. Furthermore, the ability to encode multiple fields (information) in a single volume can address the rapidly growing demand for high-density storage media and
TABLE II. For the simplex and multiplex devices, a comparison of the theoretical, simulated (with and without losses), and fabricated efficiencies are calculated.

<table>
<thead>
<tr>
<th>Device</th>
<th>CDM (lossless)</th>
<th>COMSOL (lossless)</th>
<th>COMSOL (lossy)</th>
<th>Experiment (near field)</th>
<th>Experiment (far field)</th>
<th>Outgoing beam angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplex</td>
<td>71.35%</td>
<td>67.94%</td>
<td>57.60%</td>
<td>56.84%</td>
<td>55.93%</td>
<td>+30°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+32°</td>
</tr>
<tr>
<td>Multiplex</td>
<td>51.14%</td>
<td>51.11%</td>
<td>42.98%</td>
<td>37.86%</td>
<td>35.70%</td>
<td>-30°</td>
</tr>
<tr>
<td>(function 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-31°</td>
</tr>
<tr>
<td>Multiplex</td>
<td>56.72%</td>
<td>52.40%</td>
<td>44.30%</td>
<td>38.88%</td>
<td>34.43%</td>
<td>-10°</td>
</tr>
<tr>
<td>(function 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-11°</td>
</tr>
<tr>
<td>Multiplex</td>
<td>59.19%</td>
<td>55.85%</td>
<td>46.33%</td>
<td>36.82%</td>
<td>34.41%</td>
<td>+35°</td>
</tr>
<tr>
<td>(function 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+37°</td>
</tr>
</tbody>
</table>

help revive the field of optical “holographic” memory.

Finally, we note that the symphotic design method was used, here, to build devices that multiplexes at a single frequency. We suggest that its utility can be extended to develop devices multiplexing over some bandwidth. This could advance multispectral imaging and sensing applications and boost optical transmission systems by encoding multiple signals at different wavelengths. Encoding multiple transformations simultaneously would increase data access and optical computing speeds.

ACKNOWLEDGMENT

This work was supported by the Air Force Office of Scientific Research under contract No. FA95501810187. The authors would also like to acknowledge the support of the Innovation CO-LAB at Duke university where the devices were fabricated. Finally, we would like to
thank Patrick Bowen and Mohammadreza F. Imani for helpful discussions.


[56] Craig F Bohren and Donald R Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

