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Entangling operations are among the most important primitive gates employed in quantum com-
puting and it is crucial to ensure high-fidelity implementations as systems are scaled up. We ex-
perimentally realize and characterize a simple scheme to minimize errors in entangling operations
related to the residual excitation of mediating bosonic oscillator modes that both improves gate
robustness and provides scaling benefits in larger systems. The technique employs discrete phase
shifts in the control field driving the gate operation, determined either analytically or numerically,
to ensure all modes are de-excited at arbitrary user-defined times. We demonstrate an average gate
fidelity of 99.4(2)% across a wide range of parameters in a system of 171Yb+ trapped ion qubits, and
observe a reduction of gate error in the presence of common experimental error sources. Our ap-
proach provides a unified framework to achieve robustness against both static and time-varying laser
amplitude and frequency detuning errors. We verify these capabilities through system-identification
experiments revealing improvements in error-susceptibility achieved in phase-modulated gates.

I. INTRODUCTION

The ability to perform robust, high fidelity entangling
gates in multi-qubit systems is a key requirement for
realizing scalable quantum information processing [1].
In several hardware architectures, qubits are entangled
through shared bosonic oscillator modes via an interac-
tion that is moderated by an external driving field. The
Mølmer-Sørensen (MS) gate [2–4] and the σz-gate [5]
in trapped ions as well as the resonator-induced phase
gate in superconducting circuits [6–8] are of this type.
In addition, interactions simultaneously employing mul-
tiple bosonic modes have been explored to improve gate
fidelities [9] and probe novel types of interactions [10] in
superconducting circuits.

A major source of error for oscillator-mediated gates
is residual qubit-oscillator entanglement at the end of
the operation [11]. This detrimental effect can arise due
to the presence of quasi-static or time-varying noise on
the driving field, slow drifts in experimental parameters
such as the qubit and oscillator frequencies, or the pres-
ence of spectator modes that are not properly accounted
for in the gate construction. In trapped ion systems,
various schemes have been demonstrated that minimize
this residual coupling [12–17], with some also incorporat-
ing the ability to simultaneously decouple from multiple
modes [18–26]. Their common feature is a temporal mod-
ulation of the driving field, modifying the trajectories of
the joint qubit-oscillator states in each oscillator’s phase
space.
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In this work, we experimentally demonstrate a class of
phase-modulated (ΦM) entangling gates using trapped
ions in the presence of multi-mode motional spectra.
Specifically, we implement an MS-type interaction and
employ discrete phase shifts of the driving field to sup-
press dominant gate errors. Using both an analytic
scheme [19] and numerical optimization to calculate the
required phase shifts, we experimentally validate that
phase modulation permits motional mode decoupling for
arbitrary laser frequencies in a way not otherwise achiev-
able through the conventional gate construction [27]. We
achieve an average two-qubit gate fidelity of 99.4(2)%
(including SPAM errors) across a range of laser detun-
ings near a pair of motional modes, reducing errors by
up to two orders of magnitude relative to the best un-
modulated alternative. We also demonstrate that proper
construction of the ΦM sequence provides the ability to
systematically increase gate-robustness to static offsets in
the laser detuning, as well as time-varying laser detun-
ing and amplitude noise. Experimental measurements
are in agreement with a theoretical model developed in
the filter function framework [28] to capture the influ-
ence of time-dependent noise. Finally, we study the scal-
ing behavior of both the analytic and numerically de-
rived phase-modulated gate constructions with system
size, and demonstrate that the use of numerical opti-
mization reduces scaling behavior from exponential to
linear with mode number, providing a means to accom-
modate high-fidelity, time-optimized ΦM gate construc-
tion in large multi-ion registers.
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II. PHYSICAL SETTING

A. Oscillator-mediated entangling gates

In oscillator-mediated entangling gates, the application
of an external driving field, typically a microwave or laser,
produces a qubit-state-dependent displacement of the os-
cillator wave packet in phase space. Given a system of N
qubits and M bosonic oscillator modes, this coupling is
described by the following time-dependent Hamiltonian

Ĥ(t) = i~
N∑
µ=1

σ̂(µ)
s

M∑
k=1

(
γ

(µ)
k (t)â†k − γ

(µ)∗
k (t)âk

)
, (1)

where σ̂
(µ)
s is the Pauli spin operator in the ba-

sis s ∈ {x, y, z} acting on the µth qubit, and â†k, âk
are creation and annihilation operators acting on the
kth oscillator mode. The complex-valued function

γ
(µ)
k (t) = Ωf

(µ)
k e−iδkt describes the coupling of the µth

qubit and kth oscillator mode, where the effective cou-
pling strength is given by the product between the
strength of the driving field Ω and a hardware-specific

factor, f
(µ)
k . Here, δk is the angular frequency differ-

ence (detuning) of the driving field from the kth oscilla-
tor mode. Under the application of the driving field, the
coupled system undergoes a unitary evolution [29, 30] in-
cluding both a qubit-qubit entangling term and a qubit-
state-dependent displacement D̂ of the oscillator modes
in phase space. The latter is central to our discussion
and is described by

D̂ = exp

{
N∑
µ=1

σ̂(µ)
s

M∑
k=1

[
f

(µ)
k αk(t)â†k − f

(µ)∗
k α∗k(t)âk

]}
.

(2)
Due to the detuning δk, the wave packets associated with
joint qubit-oscillator states undergo circular phase space
trajectories proportional to the coherent displacement

αk(t) = Ω
∫ t

0
dt′e−i[δkt

′+φ(t′)]. The kth mode trajectory
returns to its starting point with a period of 2π/|δk| and
the enclosed area of all wave packet trajectories is com-
mensurate with the accumulated qubit-qubit entangling
phase. Here, φ(t) is the phase difference between the os-
cillator and the driving field, which we refer to as the
coupling phase and modulate in our approach.

Successful completion of a qubit-qubit entangling op-
eration requires the elimination of qubit-oscillator entan-
glement; for a gate of length t = τg, this is achieved
by satisfying the condition αk(τg) = 0, for each mode k.
Modulation of the coupling phase φ(t) may be used to
direct the phase space trajectories, returning each tra-
jectory to the origin in a shorter time than the typical
approach of ensuring that the gate time and drive de-
tuning are related by an integer multiple for all modes,
δkτg = 2πj, for j ∈ ±{1, 2, ...}. The ability to actively
steer these trajectories is particularly important with
large mode numbers where the gate time would other-

time
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FIG. 1. Construction of phase modulation sequences. (a)
Schematic plot of αk(t) for 0 ≤ t ≤ 2τ . Shifting the cou-
pling phase, initially φ0, by an amount −(π + δkτ) at t = τ
returns the oscillator trajectory to the origin at t = 2τ . (b)
Construction of the ΦM sequence Rδ2Rδ1r0(t; τs) from the
base sequence r0(t; τs). Each application of Rδk produces a
new sequence consisting of the original sequence (black ar-
row) followed by the entire original sequence phase-shifted
by −(π + δkτ) (gray arrow), where τ is the duration of the
original sequence. The example sequence closes the trajec-
tories of two modes k = 1, 2, shown in (c), with detunings
δ1, δ2 in four time segments of length τs = τg/4. Colors in-
dicate the varying coupling phase φn in each time segment
t ∈ [nτs, (n+ 1)τs]. (d) Example phase space trajectory (left)
and schematic showing the construction (right) of a standard
numerically optimized phase modulation sequence targeting
two modes with S = 8 phase segments of τg/8 duration each.
(e) For the robust numerical sequence, the number of phase
segments is doubled to S = 16, with each τg/16 in length.
The time-averaged position of the phase space trajectory (red
dot) lies at the origin. This condition, combined with the
constraint that ∆φn+1 = ∆φS−(n+1) results in a trajectory
symmetric about a line through the origin (dashed line).

wise grow prohibitively long, and even allows us to en-
sure effective mode decoupling in the presence of time-
dependent parameter fluctuations. The required phase
modulations may be determined through analytic calcu-
lation [19] or numerical optimization, and we now outline
the details of these two approaches.
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B. Calculation of phase modulation sequences

The key to the analytic ΦM scheme is that for any
time evolution of the kth oscillator state over the interval
t ∈ [0, τ ], its phase space trajectory can be returned to
the origin by repeating the same evolution over the inter-
val t ∈ [τ, 2τ ] with an overall shift of the coupling phase,
φ(t), equal to −(π+δkτ) (Fig. 1(a)). Using the Heaviside
function Θ(x), a segment τ of this evolution may be
represented by r(x = t; τ) = Θ(t) Θ(τ − t) e−iφ(t),
modifying the qubit-oscillator coupling as

γ
(µ)
k (t)→ γ

(µ)
k (t)r(t; τ). We define a family of op-

erators Rδk , parametrized by δk and acting on r(x; τ)
as Rδkr(x = t; τ) = r(t; τ) + ei(δkτ+π)r(t− τ ; τ). This
captures a two-segment, piecewise-constant modulation
sequence over the interval t ∈ [0, 2τ ], which returns
the trajectory of mode k to its initial state, yielding
αk(2τ) = 0. As illustrated in Fig. 1(b, c), this process
of phase-shifted concatenation may be repeated to
construct sequences that close any number of oscillator
trajectories in a desired gate time τg. In order to
decouple M oscillators, the gate is divided into 2M time
segments of length τs = τg/2

M and the phase mod-
ulation sequence is constructed as RδM ...Rδ1r0(t; τs),
where r0(t; τs) = Θ(t)Θ(τs − t) is the ‘base’ sequence
for which we take φ(t) ≡ 0. The short-hand notation
rδM ...δ1(t; τg) ≡ RδM ...Rδ1r0(t; τs) is used to refer to the
full sequence of 2M phase segments, where the phase
in each segment may be calculated exactly using a
closed-form expression [19].

ΦM sequences that provide increased robustness to
parameter fluctuations during the gate operation can
be constructed by repeated application of the opera-
tor Rδk on the base sequence r0(t; τs). The number
of times the operator is applied determines the ‘or-
der’ of noise suppression associated with decoupling
from mode k. A sequence that suppresses noise to
order (p + 1) will achieve decoupling in the presence
of noise that modifies the qubit-oscillator coupling via

γ
(µ)
k (t) → γ

(µ)
k (t)β

(p)
k (t), where β

(p)
k (t) =

∑p
j=0 βk,jt

j

is a pth-order polynomial. For example, the sequence
Rδ2Rδ2Rδ1r0(t; τs) = rδ2δ2δ1(t; τg) will decouple modes
k = 1 and k = 2, providing additional noise suppression
to second order for mode k = 2. These robust sequences
result in mode trajectories that return to the origin re-
peatedly throughout the operation and, in the presence of
noise, coherently average away deviations from the ideal
oscillator trajectories.

Numerical optimization can also be used to produce
ΦM sequences that enable multi-mode decoupling. This
approach is designed to mitigate the unfavorable expo-
nential scaling of the number of phase shifts with mode-
number M encountered in our analytic approach, trad-
ing closed-form solutions for the need to rely on nu-
meric techniques (rather than a transparent physical ar-
gument) in finding them. For a specified gate time τg,
set of drive-field detunings {δk}, and number of phase

segments S, the optimization procedure finds ΦM se-
quences that ensure all M modes exhibit residual mo-
tional displacement below an arbitrarily defined thresh-

old
∑
µ

∑
k

∣∣∣f (µ)
k αk(τg)

∣∣∣2 ≤ ε. We find empirically that

good solutions yielding ε . 10−4 are achievable using
only a linear scaling in segment number M with a small
prefactor, S = 4M (see Fig. 1(d)).

Robustness to fluctuations in experimental param-
eters may be realized in numerically optimized ΦM
sequences by imposing the additional constraint that
the time-averaged positions of the phase space tra-
jectories for all modes lie at the origin, that is
αk,avg(τg) = 1

τg

∫ τg
0
αk(t)dt = 0. By further requiring

that the trajectories be symmetric about half the
gate time [12, 22], minimizing αk,avg(τg) is equiva-
lent to minimizing αk(τg) and the optimization con-

straint becomes
∑
µ

∑
k

∣∣∣f (µ)
k αk,avg(τg)

∣∣∣2 ≤ ε. The re-

alization of symmetric phase space trajectories may be
expressed as a condition on phase differences between
time segments in the two halves of the sequence, such
that ∆φn+1 = ∆φS−(n+1). Here, ∆φn = (φn − φn−1)
and φn is the coupling phase in the time segment
t ∈ [nτg/S, (n+ 1)τg/S]. In order to account for the
additional symmetry constraint, the number of phase
segments employed in the optimization is increased to
S = 8M , which ensures the optimizer routinely finds gate
constructions satisfying the constraints. The difference
in construction between the standard and robust numeri-
cally optimized ΦM sequences is illustrated in Fig. 1(d,e).

III. RESULTS AND DISCUSSION

A. Experimental Setup

We experimentally implement the schemes outlined
above using a system of 171Yb+ ions confined in a linear
Paul trap (similar to [31]) with center-of-mass (COM)
trap frequencies ωx,y,z/2π ≈ (1.6, 1.5, 0.5) MHz. Qubits
are encoded in the 2S1/2 ground-state manifold where we
associate the hyperfine states |F = 0,mF = 0〉 ≡ |0〉 and
|F = 1,mF = 0〉 ≡ |1〉, split by 12.6 GHz, with qubit
states |0〉 and |1〉 respectively. State initialization to |0〉
via optical pumping and state detection are performed
using a laser resonant with the 2S1/2 − 2P1/2 transition
near 369.5 nm.

A pulsed laser near 355 nm is used to drive stimu-
lated Raman transitions between the qubit states [32]
via two orthogonal laser beams in a geometry where
they only couple to the x, y radial motional modes of
the trapped ions. To implement entangling gates, a
two-tone radio-frequency signal produced by an arbitrary
waveform generator is applied to an acousto-optic mod-
ulator controlling one of these beams. This produces
a bichromatic light field that off-resonantly drives the
red and blue sideband transitions, creating the state-
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FIG. 2. Motional mode decoupling in the single ion case.
Population P1 as a function of laser detuning scanned about
two radial modes, k = 1 and k = 2 (dashed vertical lines).
Solid lines are fits to the data, with each mode’s initial average
phonon number after sideband cooling (n̄k) a free parameter.
(a) Mode frequencies split far apart. Arrows indicate detun-
ings at which δ1 = ±2π/τg and the inset shows corresponding
phase space trajectories for each mode, with n̄1, 2 = (0.2, 0.4).
(b) Mode frequencies closely spaced. The phase modulation
sequence rδ2δ1(t; τg) (purple) achieves decoupling at an arbi-
trary detuning δ1/2π = −8.5 kHz (arrow), with phase seg-
ments φ0,1,2,3 ≈ (0, 1.34, 0.343, 1.68)π. The inset compares
unmodulated and ΦM trajectories. Fits give n̄1, 2 = (1.2, 1.2)
for the unmodulated and n̄1, 2 = (2.5, 1) for the ΦM data.

dependent force used in the gate. Modulation of the
coupling phase φ(t) is achieved by adjusting the phase
difference between the red and blue frequency compo-
nents, φ(t) = [φb(t)− φr(t)] /2. The maximum achiev-
able gate Rabi frequency is Ω = 2π × 40 kHz, limited by
the available optical power.

B. Motional mode decoupling

We begin by demonstrating the ability to arbitrar-
ily decouple multiple motional modes using the analytic
ΦM scheme. A single qubit is prepared in state |0〉 and
the bichromatic Raman fields are applied for τg = 80 µs.
The Raman beams’ frequency difference is scanned over
a range including two radial modes. Here, the applica-
tion of the state-dependent force produces a purely qubit-
oscillator interaction and any residual mutual coupling
at the conclusion of the operation will result in P1 > 0,
where population Pi is the probability of i ions being

projected into state |1〉.
In Fig. 2(a), we tune the modes to have a frequency

splitting sufficiently large that the predominant inter-
action is with only a single mode. In this configura-
tion, complete decoupling is achieved for the detunings
δ1 = ±2π/τg, indicated by P1 dropping to zero symmetri-
cally about δ1 = 0 (similarly about δ1 = −70 kHz, corre-
sponding to δ2 = 0). In Fig. 2(b), the mode splitting has
been decreased via electrostatic tuning of the trap po-
tential such that both modes will become excited when
the laser is detuned close to either, illustrating the prob-
lem of mode crowding typically experienced in larger sys-
tems. For an unmodulated Raman drive, the black data
in Fig. 2(b) show a large value of P1 at intermediate de-
tunings (-17 to 0 kHz), where decoupling was previously
achievable for mode k = 1. By contrast, we may drive
P1 to zero at an arbitrarily chosen detuning (arrow) us-
ing a four-segment ΦM sequence to decouple both modes
(purple data). The resulting phase space trajectories at
this detuning are illustrated in the insets to Fig. 2(b),
showing how the modulation protocol steers both trajec-
tories back towards the origin at the conclusion of the
gate. We have achieved similar decoupling at a range of
arbitrary detunings via appropriate construction of the
ΦM sequence.

C. Flexibility in gate operation

We now validate the impact of phase modulation in
two-qubit MS entangling gates and demonstrate the flexi-
bility it affords in choice of experimental parameters. For
two qubits, there are four radial motional modes that
may be excited by the Raman laser; we denote them
from highest to lowest frequency as k = 1 to k = 4.
Starting in state |00〉, we produce the entangled Bell-

state (|00〉 − i |11〉)/
√

2 by tuning the Raman laser fields
to excite both the x-tilt (k = 2) and y-COM (k = 3)
modes in our trap, separated by ∆/2π ≈ 10 kHz (Fig. 3).
The remaining two modes are detuned by ∼ 80 kHz, far
enough to not be significantly excited. The gate time is
chosen such that when the detuning from either mode
is an integer multiple of ∆/3, the spin and motion fully
decouple, giving τg = 2π × 3/∆ (∼ 310 µs). Based on
populations P0, P1 and P2, the gate fidelity is estimated
as F = (P0 + P2)/2 + πc/2. Here, πc is the parity con-
trast of the created Bell-state observed upon scanning
the phase of an additional π/2-pulse after the gate.

To demonstrate the flexibility of the analytic ΦM
scheme, we vary the laser detuning over a range between
the y-COM and x-tilt modes, optimizing the Rabi fre-
quency Ω at each detuning to achieve a maximally en-
tangling gate. Fig. 3 compares the highest theoretically
achievable fidelity (lines) for unmodulated and ΦM-MS
gates, along with experimental measurements (markers).
For the unmodulated gate (black), maximum fidelity can
only be achieved at two particular detunings where both
mode trajectories naturally close. Elsewhere, the mea-
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FIG. 3. Maximum achievable gate fidelity as a function of
detuning. Solid lines show theoretical predictions for initial
phonon-numbers of n̄2,3 = 0 and the dashed line show pre-
dictions for n̄2,3 = 0.2. Different ΦM sequences are imple-
mented over the detuning range, with rδ2δ3(t; τg) used for
δ2/∆ ≥ −0.5 and rδ3δ2(t; τg) for δ2/∆ < −0.5. The required
Rabi frequency Ω ranges from 2π× (24− 26) kHz for the ΦM
gates and 2π×(19−26) kHz for the unmodulated gates. Error
bars are derived from quantum projection noise on the state
population estimates and a fit of the parity contrast. The in-
set shows the underlying data for the ΦM gate at δ2/∆ = −0.5
(arrow), for which F = 99.4(5)%.

sured two-qubit gate fidelity drops to as low as 50% due
to strong residual mode excitation at the conclusion of
the gate. In contrast, by implementing an appropriate
ΦM gate, maximum fidelity can be ideally achieved for
any detuning (purple line). For the ΦM data, we obtain
an average experimental Bell-state fidelity of 99.4(2)%
across the range of detunings shown, without any form
of SPAM subtraction. We estimate the contribution to
the Bell state infidelity from imperfect state estimation
to be 0.4(4)%.

D. Suppressing static gate errors

An additional benefit of ΦM gates is the ability to in-
corporate robustness to imperfections in gate implemen-
tation. We explore this phenomenology by engineering
static detuning offset errors during application of an en-
tangling gate, and measuring P1 as a proxy for gate infi-
delity associated with residual qubit-oscillator coupling.
Such offsets are a common error and may arise due to
slow drifts or incorrect calibration of the oscillator mode
frequencies.

In Fig. 4(a) we illustrate this feature by performing
two-ion ΦM-MS gates constructed analytically with dif-
ferent orders of noise suppression for the target mode
(k = 4). As the suppression order in the gate construc-

tion is increased, the range of detunings around zero
for which P1 ≈ 0 broadens, demonstrating robustness
for deviations up to ±1 kHz from the target detuning
value with third-order suppression. Data agree well with
analytic theory (detailed in Appendix E) predicting the
functional dependence of the measured P1 on detuning.
Fig. 4(b) demonstrates in the phase space picture how
the process of phase-shifted sequence concatenation re-
sults in repeated decoupling of the mode throughout the
gate, reducing residual excitation even for large detuning
errors.

Similar benefits are also observed using robust numer-
ically optimized ΦM sequences in Fig. 4(c), where we
compare the standard and robust numerical gate con-
structions, again in the presence of static detuning off-
set errors. In our experiments, the standard sequence
does not provide robustness to such offsets, and we ob-
serve that P1 as a function of the applied detuning error
behaves similarly to the unmodulated gate in Fig. 4(a).
The symmetrization procedure and requirement that the
time-averaged positions of the phase space trajectories
are approximately zero for the robust gate solution re-
duces sensitivity to detuning errors, again indicated by
the broadening of the dip in P1.

E. Reducing sensitivity to time-dependent noise

Phase-modulated gates provide a third advantage in
that they can provide robustness to time-varying exper-
imental parameters in addition to static systematic off-
sets. This is useful in circumstances where parameters
can drift or suffer from fluctuations due to, for exam-
ple, electrical interference. In the following, we experi-
mentally validate that ΦM gates may be used to provide
robustness against errors induced by fluctuations in the
motional mode frequencies and laser amplitude, which
result in a time-dependent detuning offset and coupling-
strength error, respectively.

Gate effectiveness in suppressing time-dependent noise
is conveniently captured using a filter function for-
malism [19, 28, 33, 34], which describes the noise-
susceptibility of an arbitrary control operation as a func-
tion of noise frequency. Modifications to the framework
allow us to predict infidelity solely due to residual qubit-
oscillator coupling in two-qubit entangling gates. For a
given noise spectrum, Sε(ω), the decoupling error is in-
ferred from the noise-averaged P1 population,

E [P1] ≈ 1

2π

∫ ∞
−∞

dωSε (ω)Fε (ω) . (3)

Here, the filter function Fε(ω) expresses the susceptibil-
ity or “admittance” of the gate operation to a given noise
source, with ε ∈ {Ω, δ} denoting laser amplitude or de-
tuning noise, respectively. For laser amplitude noise, the
analytic form of the filter function has been previously
described [19]. The filter function for detuning noise rep-
resents an original contribution of this work and, and for
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added offsets are 4.7× 10−3 (unmodulated) and 1.7× 10−3 (ΦM). For (a) the modulation depth is β = 0.1 with τg = 300 µs
and for (b) β = 0.29 with τg = 250 µs. The Rabi frequencies range from 2π × (14− 34) kHz and Ω is scaled in the ΦM
operations to enclose the same phase space area as the equivalent unmodulated operation. Shading indicates the measurement
floor. (c, d) Two-qubit gate fidelities with engineered (c) detuning and (d) amplitude noise. For both noise types, τg = 500 µs
and Ω ranges from 2π × (18 − 36) kHz. Here, the detuning noise is engineered by directly modulating the frequency of the
motional modes via the application of a sinusoidally oscillating voltage to the DC trap electrodes. Measured gate fidelities for
(c) are 86%, 91% and 96%, respectively, under β = 0.25. For (d), the measured gate fidelities are 82% and 87%, under β = 0.2.
Due to limitations on the experimentally achievable Rabi frequency in our setup (Ω = 2π × 40 kHz), only a second-order ΦM
sequence is performed for the amplitude noise case shown in (d).
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the case of an operation performed on a single qubit, is
given by

Fδ(ω) =
∑
k

Tk

∣∣∣∣Ωf (1)
k

∫ τg

0

dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣2 . (4)

Here we have defined Tk = 2 (n̄k + 1/2), which incorpo-
rates the average phonon occupancy for each mode, n̄k.
The filter function for a targeted entangling operation be-
tween a pair of qubits in an N -qubit system is described
in Appendix F.

To probe gate sensitivity under application of the two
noise types described above with the highest possible
measurement fidelity, we perform a gate-equivalent oper-
ation on a single ion in the presence of engineered noise
in the respective quadrature. The gate detuning is set
such that the motional interaction predominantly occurs
with a single mode, and the decoupling condition is met
(δ1 = 2π/τg). We experimentally implement a system-
identification procedure [33] in which a single-frequency
‘noise’ modulation is applied and produces an effective
spectrum S(ωmod) = β2(δ(ω − ωmod) + δ(ω + ωmod))/4,
where β quantifies the strength of the modulation. A
measurement of E [P1] under this phase-averaged noise
spectrum then gives a direct probe of the filter function
at a single frequency, ωmod. We then vary ωmod and
measure E [P1] at each value, effectively reconstructing
the frequency-dependent filter function of the underly-
ing gate operation. This approach is possible as the fil-
ter function Eq. (4) is only dependent on the residual
qubit-oscillator coupling and independent of any entan-
gling phase that would be acquired with two or more
ions.

We engineer detuning noise via frequency-modulation
of the two-tone RF signal producing the bichromatic gate
beam; this has an effect on the gate interaction equivalent
to fluctuating motional mode frequencies and modifies
the laser detuning as δk → δk(1 + β sin(ωmodt+ φmod)),
where ωmod quantifies the frequency of the modulation
and φmod its phase. In a similar manner, laser amplitude
noise is engineered by a direct modulation of the overall
laser intensity via an acousto-optic modulator, yielding
Ω→ Ω(1 + β sin(ωmodt+ φmod)).

The noise-suppressing properties of ΦM gates are ex-
perimentally validated in Fig. 5(a,b). In these experi-
ments, we perform frequency-dependent system identifi-
cation on an unmodulated and an analytic ΦM sequence
constructed to exhibit second-order suppression of both
detuning and laser-amplitude noise. Experimentally, we
observe that the ΦM gate (blue) exhibits lower mea-
sured error across the range of applied noise frequencies
until a crossover is reached near the inverse gate time
ωmodτg/2π ≈ 1. This behavior indicates a trade-off be-
tween low frequency error suppression and sensitivity to
noise near the inverse gate time, consistent with obser-
vations for single-qubit operations [33].

We find good agreement between experimental mea-
surements and an empirical model combining the pre-
diction for gate error from the filter function with a

frequency-independent error offset extracted from mea-
surement (solid lines). For both noise types, the filter
function predictions for ΦM gates (dashed lines) show
decreased noise sensitivity in the regime ωmodτg/2π < 1,
captured by an enhanced slope on a log-log plot. In the
case of detuning noise shown in (a), the base filter func-
tion prediction for the unmodulated gate exhibits broad-
band sensitivity to noise, manifested in the saturation of
E [P1] towards lower noise frequencies. For the unmod-
ulated gate exposed to amplitude noise as shown in (b),
the filter function prediction drops towards zero in the
low frequency regime, as a quasi-static error will simply
result in a scaling of the Rabi frequency and will not
affect the closure of the phase space trajectories.

The error offset employed in our empirical model may
arise in the experiment due to uncompensated noise from
some uncontrolled source, or potentially from higher-
order modulation-frequency-dependent terms in the filter
function [34, 35] (i.e. higher-order sensitivity to the ap-
plied single-frequency noise source). In error-suppressing
gates we have previously observed that when studying
agreement between measurements and filter function pre-
dictions, higher-order filter function contributions grow
in importance when leading-order error terms are can-
celled by a compensating pulse [33]. However, in these
measurements we find larger error offsets associated with
unmodulated gates, consistent with the presence of an
intrinsic noise process to which the unmodulated gate is
more susceptible.

We next demonstrate that ΦM gates provide error-
suppression in two-qubit entangling operations subjected
to time-dependent noise, measuring the full gate fidelity.
As in the system-identification routine above, we apply a
single-frequency noise modulation, with a normalized fre-
quency ωmodτg/2π = 0.1. Here, the noise modulation is
sufficiently strong to reduce the unmodulated (no ΦM)
gate fidelity below 90%. This fidelity-loss can be sub-
stantially recovered though use of ΦM; replacing an un-
modulated gate with a ΦM construction (Fig. 5(c,d)), we
observe an increase in gate fidelity as the order of error
suppression is increased for both noise types.

F. Scaling to larger systems

When performing ΦM gates in systems with a large
number of oscillator modes, one needs to consider the
associated growth in the number of phase segments re-
quired to achieve mode decoupling. In ion trap systems,
every additional ion contributes one axial and two radial
modes to the spectrum. Increasing the number of phase
segments typically results in trajectories that enclose a
smaller phase space area, necessitating either an increase
in the Rabi frequency or gate time in order to accumu-
late the desired entangling phase. Ideally, both of these
quantities should be minimized, reducing sensitivity to
error sources such as photon scattering [36] or, in the case
of increased gate time, motional heating and motional
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dephasing. To explore the relevant scaling behavior for
both analytic and numerically optimized constructions,
we consider the case of a fixed maximum Rabi frequency
and calculate the shortest achievable gate time realized
in the two approaches, as a function of ion number in a
linear chain.

As a concrete example, we consider an entangling
operation between the two outermost adjacent ions in
an N -ion chain of 171Yb+ ions. For each N , we fix
Ω = 2π × 100 kHz and perform a discretized search over
detuning and gate time, choosing the ΦM sequence that
results in a maximally entangled pair in the shortest time
τB . The ΦM sequences are constructed to decouple from
all M = 2N radial motional modes such that ε . 10−4.
As shown in Fig. 6(a), with increasing N , the numer-
ically optimized sequences scale more favourably than
those calculated analytically. For the standard numeri-
cally optimized sequences, we find the shortest gate time
is constant (140 µs) for up to N = 10 ions. In the ro-
bust case, τB is slower than the standard sequences by a
small offset and grows gradually with ion number from
170 µs (N = 2) to 210 µs (N = 10). The rapid increase in
τB for the analytic gate construction, combined with the
simultaneous exponential growth in the required number
of phase segments (2M ), ultimately render it less suitable
for larger systems than the numerically derived alterna-
tive. Also, despite the fact that a specific analytic ΦM
sequence may be calculated in closed form, the process of
choosing the best analytic construction from all possible
permutations of rδM ...δ1(t; τg) sequences can add com-
putational complexity, as the ordering of mode closure
represents an additional degree of freedom that impacts
gate time. To avoid this computational overhead, for the
analytic data shown in Fig. 6(a), we consider only a sin-
gle permutation corresponding to mode closure in order
from largest to smallest detuning. This ordering tends to
minimize the error-contribution from far-detuned modes
by keeping their trajectories close to the origin, while
also producing trajectories for the strongly excited modes
that result in a larger accumulated entangling phase.

These observations also hold for entangling operations
performed on arbitrary ion pairs within a larger chain,
where spatial variation in ion-motion coupling across the
chain provides an additional consideration in gate con-
struction. In Fig. 6(b), we investigate the dependence of
τB on the choice of target ion pair within an N = 10 ion
crystal for standard numerically optimized gates, again
requiring decoupling from just the radial motional modes.
Assuming a 2π × 100 kHz maximum Rabi frequency, τB
ranges from 120 µs to 175 µs. This variation highlights
the fact that the rate at which entanglement is accu-
mulated between ions µ, ν will depend on how strongly
the ions are coupled to the dominant excited modes, as

quantified by the Lamb-Dicke parameters η
(µ)
k , η

(ν)
k . For

example, a particular mode may involve a large displace-
ment of the outer ions, while the central ions remain
almost stationary. This mode would therefore be un-
suitable for use in entangling gates attempting to induce
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FIG. 6. Scaling to larger qubit systems. (a) Shortest achiev-
able gate time (τB) as a function of the number of qubits,
decoupling from all M = 2N radial modes. The number of
phase shifts for each ΦM approach is fixed at: S = 2M (ana-
lytic), S = 4M (standard numerical) and S = 8M (robust nu-
merical). The mode spectrum is calculated using COM trap-
ping frequencies of ωx,y,z/2π = (1.62, 1.54, 0.15) MHz with
the maximum Rabi frequency limited to Ω = 2π × 100 kHz.
(b) Shortest achievable gate time (τB) represented as a col-
orscale for standard numerically optimized entangling gates
between different target pairs in an N = 10 ion chain, decou-
pling from the radial modes. Black represents the median gate
time, red indicates slower gates and blue indicates faster. (c)
Schematic depiction of the equilibrium positions for a N = 10
ion chain and corresponding radial mode spectrum. Vertical
bars positioned at the frequency of each mode k indicate the

value of |η(µ)k η
(ν)
k |, which is |η(µ)k η

(ν)
k | normalized to the max-

imum value of |η(µ)k η
(ν)
k | for all k. Arrows indicate the detun-

ings corresponding to τB for two target pairs: 1,4 (red) and
5,6 (blue).

coupling between central and outer ions. Such variability
in the coupling strength across a chain is shown for two
different ion pairs in Fig. 6(c), where we plot the mag-
nitude of the Lamb-Dicke parameters across a complex
multi-mode spectrum.

Considering this additional complexity, the flexibil-
ity provided by ΦM sequences to set the detuning arbi-
trarily within the mode spectrum enables the leveraging
of entangling-phase contributions from multiple modes

where
∣∣∣η(µ)
k η

(ν)
k

∣∣∣ is greatest for the given ion pair. As

such, the use of ΦM gates also offers speed advantages
relative to conventional techniques where the detuning
would simply be fixed close to a COM mode and the gate
speed limited by the requirement that the other modes
are not significantly excited. Using phase modulation,
we are free to set the detuning arbitrarily for gates im-
plemented between different target ion pairs; the arrows
in Fig. 6(c) show the detuning values corresponding to
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τB for gates between two different ion pairs. Without
phase modulation, the detuning could not be set arbitrar-
ily while still achieving a high-fidelity gate (see Fig. 3).

IV. CONCLUSION

We have demonstrated that phase modulation pro-
vides a robust and flexible framework for performing
high-fidelity entangling gates in qubit-oscillator systems,
validated using trapped ions. We have implemented
two-qubit entangling gates with an average fidelity of
99.4(2)%, achieving maximum fidelity for arbitrary laser
detunings, including settings where unmodulated gates
cannot be achieved with high fidelity. In addition, we
have shown that the ΦM framework provides robustness
to static and time-dependent errors in the laser amplitude
and gate detuning, captured through a new theoretical
model in the filter function framework.

The ΦM approach to constructing oscillator-mediated
entangling gates gates holds several practical advantages
relative to alternative modulation approaches [16, 18].
First, the amplitude and frequency of the driving field
remain fixed throughout the gate operation, meaning ex-
perimental - often duty-cycle-dependent - nonlinearities
and the effect of time-dependent AC Stark shifts need not
be considered. Next, the ΦM technique is also readily ex-
tensible to multi-qubit entangling gates in larger systems,
where we have shown that numerical optimization may
be utilized to exponentially reduce the number of phase
shifts required to decouple from an increasing number of
modes, and flexibility in gate detuning can be used to
extract speedups in gate implementation. We hope that
the ΦM techniques demonstrated here may be employed
beyond ion trap systems to improve gate fidelity in other
architectures that utilize oscillator-mediated operations.
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APPENDIX A: MAXIMUM-LIKELIHOOD
PROCEDURE FOR STATE ESTIMATION

Hyperfine qubits such as 171Yb+ are susceptible to
leakage between the qubit states from off-resonant excita-
tions during the laser-induced fluorescence measurement.
We employ a maximum-likelihood state estimation proce-
dure [16], which reduces measurement error by account-
ing for the effect of state decay based on independent cali-
brations. In a given two-qubit experiment, we would like
to determine the resultant state populations Pi, which
are the probabilities for measuring i ions in the |1〉 state.
To do this, the ions are illuminated with a 369 nm laser,
projecting each qubit into either the |1〉 (bright) or |0〉
(dark) state. The experiment is repeated n times and
the number of photon counts measured on an avalanche
photodiode (APD) for each repetition is recorded. The
resultant count rates are plotted in a histogram and by
setting two count rate thresholds c1 and c2 between the
resulting distributions, each repetition is assigned a out-
come of ‘i ions bright’, where i ∈ {0, 1, 2}. We denote
the number of repetitions assigned to each outcome as
xi, with x0 + x1 + x2 = n. Due to state decays, there
will be an overlap in the count rate distributions, mean-
ing the true probabilities Pi are not simply the propor-
tion of repetitions assigned to outcome i. Instead, we
define a linear map relating the measured probabilities
P ′i = xi/n to the true probabilities Pi, which takes the
form P ′i =

∑
j P (i|j)Pj . Here, P (i|j) is the probability

of classifying a repetition as ‘i ions bright’ given the ions
were prepared in the state ‘j ions bright’. The proba-
bilities P (i|0) and P (i|2) are obtained by preparing and
measuring the states |00〉 and |11〉, respectively, in cali-
bration experiments. Without the ability to individually
address ions, it is not possible to prepare the state |01〉
or |10〉, hence to determine the probabilites P (i|1), we
assume P (2|1) = 0 (which is a fair assumption given our
detection duration and laser powers) and utilize a single
ion to obtain P (0|1) and P (1|1). For a given set of repe-
titions, we compute the log-likelihood function f(P1, P2)
for discretized values of P1, P2 between 0 and 1. The
values of P1, P2 that maximize f(P1, P2) are the most
probable given the data [16].

f(P1, P2) = log

(
(n+ 1)(n+ 2)n!P ′1(P1, P2)x1P ′2(P1, P2)x2(1− P ′1(P1, P2)− P ′2(P1, P2))n−x1−x2

x1!x2!(n− x1 − x2)!

)
(5)

Note that Eq. (5) only depends on populations P1 and
P2 as normalization always enables P0 to be expressed
as 1− P1 − P2. In order to make f(P1, P2) computable,

Stirling’s approximation (log(n!) ≈ n log(n) − n) must
be used as terms such as n! diverge too rapidly to be
calculated for large n.
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APPENDIX B: BELL STATE MEASUREMENT
FIDELITY

To calculate how the measured Bell state fidelity is
affected by imperfect state estimation via the maximum
likelihood (ML) scheme, we follow an approach similar
to the one outlined in [37]. By preparing and measuring
known input states, we again construct a linear map
relating the true populations Pi to the population
outcomes determined by the ML procedure P

′′

i . In this
case, the values P (i|j) represent the probability that the
ML procedure assigns some population ‘i ions bright’
to the measurement outcome, given that a state with
population ‘j ions bright’ is prepared.

As described in the main text, the application of the
MS gate results in the Bell state (|00〉+ i |11〉)/

√
2, the

fidelity of which may be expressed as

F =
P0 + P2

2
+
πc
2
. (6)

Here, πc is parity contrast of the resultant state, mea-
sured by varying the phase of an additional π/2 anal-
ysis pulse at the conclusion of the gate. Assuming a
Bell state with perfect fidelity, πc may be expressed
as half the difference in parity between two states
|E〉 = (|00〉 − i |11〉)/

√
2 and |O〉 = (|01〉 + i |10〉)/

√
2

with parities P = 1 and P = −1, respectively. Hence
the expression for the fidelity (Eq. 6) becomes

F =
P0,E + P2,E

2

+
(P0,E + P2,E − P1,E)− (P0,O + P2,O − P1,O)

4
,

(7)

where Pi,k indicate the populations for the ideal Bell
states |k〉, with k ∈ {E,O}.

We model the effect of imperfect state estimation by
substituting the true populations Pi,k in Eq. 7 with the

measured populations P
′′

i,k, which are related to the true
populations by the linear map. As an example, we may
calculate the measured populations P

′′

i,E as

P
′′

0,E

P
′′

1,E

P
′′

2,E

 =

P (0|0) P (0|1) P (0|2)
P (1|0) P (1|1) P (1|2)
P (2|0) P (2|1) P (2|2)

1/2
0

1/2


=

P (0|0) + P (0|2)
P (1|0) + P (1|2)
P (2|0) + P (2|2)

 .

(8)

Re-expressing Eq. 7 in terms of the probabilities P (i|j),
we arrive at an expression for the Bell state fidelity in-
corporating imperfect state estimation.

F = 1− 1

2
[P (0|1) + P (1|2) + P (1|0) + P (2|1)]

= 1− ε
(9)

Hence the contribution to the measured infidelity due to
state estimation is given by

1−F = ε =
1

2
[P (0|1) + P (1|2) + P (1|0) + P (2|1)] .

(10)
The matrix below shows typical values of P (i|j),

which inserted into Eq. 10 give an error contribution of
ε ≈ 0.4(4)%. The quoted uncertainties are the standard
deviation over multiple calibration measurements.

P (i|j) =

 0.997(4) 0.001(3) 0.0002(6)
0.002(4) 0.997(3) 0.003(6)
0.0002(4) 0.001(1) 0.996(6)

 (11)

APPENDIX C: MØLMER-SØRENSEN TIME
EVOLUTION

The Hamiltonian (1) describes a system of N qubits
coupled to M oscillator modes via an external driving
field. It results in the unitary evolution

Û(t) = exp

{
i

N∑
µ,ν=1

ϕµν(t)σ̂(µ)
x σ̂(ν)

x +

N∑
µ=1

σ̂(µ)
x B̂µ(t)

}
,

(12)

which is obtained from the Magnus expansion, where all
higher order terms are identically zero. This evolution
has two key components: for N > 1 qubits, the first term
describes pairwise entanglement between qubits µ, ν,
captured by the phase

ϕµν(t) = Im

[
M∑
k=1

∫ t

0

dt1

∫ t1

0

dt2γ
(µ)
k (t1)γ

(ν)
k

∗
(t2)

]
,

(13)
and the second term describes a qubit-state-dependent
displacement of the oscillator modes, via the displace-
ment operators D̂k,

exp

{
N∑
µ=1

σ̂(µ)
x B̂µ(t)

}
(14)

= exp

{
N∑
µ=1

σ̂(µ)
x

M∑
k=1

(
f

(µ)
k αk(t)â†k − f

(µ)
k

∗
αk(t)

∗
âk

)}

=

M∏
k=1

D̂k

(
N∑
µ=1

σ̂(µ)
x f

(µ)
k αk(t)

)
. (15)
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The N -qubit system can be described by 2N eigen-
states in the [σ̂x]⊗N -basis. Under the action of the dis-
placement operator, the wave packet associated with the
kth oscillator splits, as each component becomes entan-
gled with one of the qubit eigenstates and is coherently
displaced along a trajectory in phase space proportional
to

αk(t) = Ω

∫ t

0

dt
′
e−i[δkt

′+φ(t′)]. (16)

In our system, the state-dependent displacement of the
collective ion motion is produced by a bichromatic laser
field, with frequency components tuned below (red) and
above (blue) the bare qubit transition, offset from the
motional mode frequencies by the detuning δk. This
detuning is defined to be δk = ∆ωb − ω0 − ωk, where
∆ωb is the frequency difference between the two Ra-
man beams for the blue component of the bichromat,
ω0 is the qubit frequency, and ωk the frequency of
the kth motional mode. The qubit interaction basis
σ̂s is determined by the optical phases φr and φb of
the red and blue components respectively, such that
σ̂s = cos [φr+φb

2 ]σ̂x + sin [φr+φb

2 ]σ̂y. By setting φr =
−φb, we fix the interaction basis to be σ̂s = σ̂x.

In the context of trapped ions, the hardware-specific

coupling factor f
(µ)
k that relates the coupling of the kth

motional mode to the µth ion is captured by the Lamb-

Dicke parameter η
(µ)
k ,

f
(µ)
k =

−iη(µ)
k

2
=
−i
2
b
(µ)
k ∆k cos θ

√
~

2mωk
. (17)

The Lamb-Dicke parameter incorporates the relevant

normal mode eigenvector element, b
(µ)
k , as well as the

overlap of the spatial orientation of the motional mode
with the effective wavevector of the driving field [38].
Here, ∆k is the net wavevector of the two Raman beams,
θ is the angle between the wavevector and the mode ori-
entation, ωk is the angular frequency of the mode, and
m is the mass of a single ion.

APPENDIX D: CALCULATION OF
OBSERVABLES AFTER MØLMER-SØRENSEN

EVOLUTION

We expand on the approach presented in [29], [30] to
calculate analytic expressions for observable quantities
after the application of the Mølmer-Sørensen time evolu-
tion operator (12). For a two-qubit (N = 2) system, we
assume an initially separable qubit-oscillator state with
the qubits initialized to |00〉 and each oscillator in a ther-
mal state with mean phonon number n̄k. To calculate
expressions for the expectation value of the populations,
Pi(t), we use the projection operators P̂lm = |lm〉 〈lm|,
l,m ∈ {0, 1}, to obtain

P0(t) = 〈P̂00(t)〉 =
1

8

(
2 + e−4

∑
k |(f

(1)
k +f

(2)
k )αk(t)|2(n̄k+1/2) + e−4

∑
k |(f

(1)
k −f

(2)
k )αk(t)|2(n̄k+1/2)

+ 4 cos[4ϕ(t)]e−4
∑

k |f
(1)
k αk(t)|2(n̄k+1/2)

)
(18a)

P1(t) = 〈P̂01(t)〉+ 〈P̂10(t)〉

=
1

4

(
2− e−4

∑
k |(f

(1)
k +f

(2)
k )αk(t)|2(n̄k+1/2) − e−4

∑
k |(f

(1)
k −f

(2)
k )αk(t)|2(n̄k+1/2)

)
(18b)

P2(t) = 〈P̂11(t)〉 =
1

8

(
2 + e−4

∑
k |(f

(1)
k +f

(2)
k )αk(t)|2(n̄k+1/2) + e−4

∑
k |(f

(1)
k −f

(2)
k )αk(t)|2(n̄k+1/2)

− 4 cos[4ϕ(t)]e−4
∑

k |f
(1)
k αk(t)|2(n̄k+1/2)

)
. (18c)

The expression for P1(t) is used to plot the theory lines
in Fig. 4. The expressions for P0(t) and P2(t) are incorpo-
rated in the prediction for the Bell State fidelity (Fig. 3),
given by F = (P0 + P2) /2 + πc/2. The additional quan-
tity, πc (the parity contrast), in the formula for the fi-

delity corresponds to the magnitude of the off-diagonal
elements of the density matrix describing the final two-
qubit electronic state. Combining these elements, the
full expression used in Fig. 3 for the predicted Bell State
fidelity is
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F =
1

8

(
2 + e−4

∑
k |(f

(1)
k +f

(2)
k )αk(t)|2(n̄k+1/2) + e−4

∑
k |(f

(1)
k −f

(2)
k )αk(t)|2(n̄k+1/2)

+ Abs
[
e−4

∑
k |(f

(1)
k +f

(2)
k )αk(t)|2(n̄k+1/2) − e−4

∑
k |(f

(1)
k −f

(2)
k )αk(t)|2(n̄k+1/2)

−4ie−4
∑

k |f
(1)
k αk(t)|2(n̄k+1/2) sin [4ϕ(t)]

])
. (19)

In the case of a single ion initialized to |0〉, the expres-
sions for the populations after MS time evolution are the
following

P0(t) =
1

2

(
1 + e−4

∑
k |f

(1)
k αk(t)|2(n̄k+1/2)

)
(20a)

P1(t) =
1

2

(
1− e−4

∑
k |f

(1)
k αk(t)|2(n̄k+1/2)

)
. (20b)

APPENDIX E: NUMERICAL OPTIMIZATION
OF ΦM SEQUENCES.

The numerical optimization of ΦM Mølmer-Sørensen
gates is performed utilizing MATLAB’s inbuilt con-
strained optimization routine fmincon. For the optimiza-
tion, we consider a targeted entangling operation between
two ions µ, ν in an N ion chain with 2N radial mo-
tional modes. The motional frequency spectrum is either
numerically calculated using the desired x-COM and y-
COM frequencies, or manually input from experimental
measurements. We specify the number of phase segments
S, drive field detunings {δk}, gate time τg and maximum
Rabi frequency Ωmax. For these parameters, the opti-
mization procedure finds ΦM sequences that maximize
the acquired entangling phase between the two target
ions ϕµν(τg). This optimization occurs subject to the
constraint that the residual motional displacement re-
main below a threshold of 10−4, that is

∑
i=µ,ν

M∑
k=1

∣∣∣∣12η(i)
k αk(τg)

∣∣∣∣2 ≤ 10−4. (21)

The optimization procedure will converge once the con-
straint (21) has been satisfied and the improvement in
ϕµν(τg) between successive iterations drops below a set
threshold, chosen to be 10−4. A maximally entangling
gate may be successfully achieved if ϕµν(τg) ≥ π/8. For
ΦM sequences that exceed this value, the Rabi frequency
may be scaled down to exactly achieve the target phase
ϕµν(τg) = π/8.

APPENDIX F: DERIVATION OF FILTER
FUNCTION FOR DETUNING NOISE

The filter function framework presented in [28] and
experimentally validated in [33] captures the sensitivity
of an operator to time-varying noise processes. The ex-
pected infidelity of an operation due to a noise process ε
can be calculated from the overlap of the noise spectrum,
Sε(ω) and the operation’s filter function Fε(ω),

Iav =
1

2π

∫ ∞
−∞

dωSε(ω)Fε(ω). (22)

The fidelity of the MS gate is captured by two quanti-
ties: (1) the residual qubit-oscillator coupling, and (2)
the qubit-qubit entangling phase, ϕµν(τg). The former
should ideally be zero at the gate’s conclusion, whilst
maximal qubit-qubit entanglement necessitates that the
latter be ϕ(τg) = π/8. Here, we modify the filter func-
tion framework to derive a filter function Fδ(ω) that
predicts infidelity solely due to residual qubit-oscillator
coupling caused by noise on the mode frequencies (a
time-dependent detuning error). As the residual qubit-
oscillator coupling will be independent of any entangling
phase acquired with two or more ions, we proceed by
considering a gate-equivalent operation performed on a
single ion.

If the residual motional displacement is small, that is∑
k |f

(1)
k αk(τg)|2 � 1, then from (20) we see that it can

be directly inferred from a measurement of P1,

P1 ≈ 2
∑
k

|f (1)
k αk(τg)|2(n̄k + 1/2)

=:
∑
k

Tk

∣∣∣f (1)
k αk(τg)

∣∣∣2 . (23)

We model trap frequency noise by modifying the laser de-
tuning as δk → δk + ε(t), where ε(t) is a zero-mean noise
process, altering the phase space trajectories to

αk(τg) = Ω

∫ τg

0

dte−i[(δk+ε(t))t+φ(t)]. (24)

The assumption that the residual motional displace-
ment remains small requires ‘weak’ noise, that is
E
[
ε(t)2

]
τg

2 � 1. In experiment, we can only consider
noise-averaged measurements, thus we take the ensemble
average over this noise process, yielding
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E[P1] ≈ E

[∑
k

Tk

∣∣∣f (1)
k αk(τg)

∣∣∣2]

≈
∑
k

Tk

∣∣∣Ωf (1)
k

∣∣∣2 ∫ τg

0

dt1

∫ τg

0

dt2e
−i[δk(t1−t2)+φ(t1)−φ(t2)]E

[(
1− iε(t1)t1 −

ε(t1)2t21
2

)(
1 + iε(t2)t2 −

ε(t2)2t22
2

)]
=
∑
k

Tk

∣∣∣Ωf (1)
k

∣∣∣2 ∫ τg

0

dt1

∫ τg

0

dt2e
−i[δk(t1−t2)+φ(t1)−φ(t2)]E [ε(t1)ε(t2)] t1t2 (25)

where to arrive at the second line we only consider terms
up to E

[
ε(t)2

]
t2 ≤ E

[
ε(t)2

]
τg

2. Assuming that the gate
has been constructed to decouple from all modes in the
absence of noise, we simplify further by ignoring all terms
dependent on only one integration variable, as they will
be multiplied by exactly zero due to the complete mode
decoupling condition in the other integral. The Wiener-
Khinchin Theorem then relates the autocorrelation func-
tion in the noise ensemble expectation to the noise spec-

trum in the frequency domain,

E [ε(t1)ε(t2)] =
1

2π

∫ ∞
−∞

dωSδ(ω)eiω(t1−t2). (26)

Applying this, we can rewrite the expectation of P1 in
terms of the noise spectrum Sδ(ω) and the filter function,
Fδ(ω):

E[P1] ≈ 1

2π

∫ ∞
−∞

dωSδ(ω)
∑
k

Tk

∣∣∣Ωf (1)
k

∣∣∣2 ∫ τg

0

dt1

∫ τg

0

dt2e
−i[(δk−ω)(t1−t2)+φ(t1)−φ(t2)]t1t2

=
1

2π

∫ ∞
−∞

dωSδ(ω)
∑
k

Tk

∣∣∣∣Ωf (1)
k

∫ τg

0

dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣2
=:

1

2π

∫ ∞
−∞

dωSδ(ω)
∑
k

Fδ,k(ω)

=:
1

2π

∫ ∞
−∞

dωSδ(ω)Fδ(ω). (27)

The total filter function Fδ(ω) is defined as a summation
of the individual ‘modal filter functions’, Fδ,k(ω). This
spectral overlap predicts the expected value of P1 (and
thus the residual motional displacement) in the presence
of a given noise spectrum Sδ(ω), allowing us to compare

the performance of ΦM gates with different levels of noise
suppression for each motional mode.

Following a similar procedure, we can also derive Fδ(ω)
for a targeted entangling operation between a pair of ions
µ, ν in an N ion chain:

Fδ(ω) =
∑
k

Tk

(∣∣∣f (µ)
k

∣∣∣2 +
∣∣∣f (ν)
k

∣∣∣2) ∣∣∣∣Ω ∫ τg

0

dte−i[(δk−ω)t+φ(t)]t

∣∣∣∣2 . (28)
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