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We investigate the dynamic behavior and topology of quasiperiodic resonant metastructures. We
show that the quasiperiodic arrangement of resonators introduces frequency bandgaps in addition
to the locally resonant bandgap defined by the natural frequency of the resonators. The concept is
illustrated on a beam with an array of mechanical resonators. Numerical evaluation of the spectrum
as a function of the quasiperiodic arrangement of resonators reveals a structure reminiscent of a
Hofstadter butterfly and allows the study of key topological properties. Results illustrate the occur-
rence of additional bandgaps that are topologically non-trivial and that host edge localized modes
in finite structures. The occurrence of these gaps and of the associated edge states is demonstrated
experimentally by measuring the frequency response of the beam and by evaluating the spatial dis-
tribution of selected operational deflection shapes. The results unveil the potential of deterministic
quasiperiodic structural designs to induce wave localization and attenuation over multiple frequency
bands, which may find applications in vibration isolation and energy harvesting, among others.

I. INTRODUCTION

Locally resonant (LR) metamaterials and metastruc-
tures have been broadly investigated in the past decades.
Theoretical and numerical studies have shown that lin-
ear local resonators produce sub-wavelength frequency
bandgaps which enable low frequency attenuation of
sound and vibrations [1–7]. Most investigations have
considered nominally identical resonators that are reg-
ularly, or periodically, placed within the structure. In
these cases, the LR bandgap center frequency is defined
through the natural frequency of the resonators, while
its width is mostly determined by the added inertia [7].
Attempts at extending the resonant gap through non-
uniform resonators, both in terms of their natural fre-
quency and of their spacing, can be found in [3, 8, 9],
among others. Parallel to these efforts, there is consider-
able interest on the conditions that govern the onset of
localization [10–12]. Vibration localization can be both
beneficial in terms of isolating components and limiting
exposure, but can also be the source of catastrophic fail-
ures [13], and therefore is of great relevance to the engi-
neering community.
Inspired by the discovery of topologically non-trivial

phases in electronic [14] and photonic [15] systems, var-
ious classes of topological phenomena such as quantum
Hall and quantum spin Hall effects have been studied and
realized in acoustic and mechanical systems [16]. These
works exploit defect-immune modes localized at edges or
interfaces for robust acoustic/elastic waveguiding. Re-
cently, topological phases have also been explored in
lower physical dimensional systems by exploiting virtual
dimensions in relevant parameter spaces [17–20]. In par-
ticular, quasi-crystalline or quasiperiodic structures have
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been linked to topological insulators [21–23]. Quasiperi-
odicity defines a broad class of geometrical patterns, of
which periodic assemblies are particular cases. Thus, the
study of quasiperiodic (QP) arrangements of inclusions
can extend the range of capabilities of periodic metama-
terials and metastructures [24].

A recent line of work considers a framework to inves-
tigate QP systems based on the evaluation of their spec-
tral properties, the evaluation of the density of states,
and the estimation of topological invariants that may
characterize non-trivial gaps and the onset of associated
edge states [25–28]. For example, recent work in me-
chanics [25] has demonstrated that topological bound-
ary modes can emerge solely from the patterning of a
metamaterial, in a manner that is entirely independent
upon the structure of the resonators and their coupling.
The experimental observations in [25] also show the on-
set of localized modes at the boundary of finite arrays of
discrete mechanical resonators, implemented in the form
of a chain of magnetically-coupled spinners. Topologi-
cal boundary and interface modes in QP acoustic waveg-
uides are also observed in [26], while reconfigurable QP
acoustic crystals [27] are employed to experimentally ob-
serve their spectrum in the form of a Hofstadter but-
terfly [29]. Furthermore, the numerical results in [28]
have shown how an Hofstadter spectrum also charac-
terizes continuous structural beams supported by a QP
array of ground springs, and how localized modes can
be predicted through topological considerations on such
spectrum. The studies referenced above provide insights
into modes that are localized at edges or interfaces and
suggest new methodologies for wave transport and local-
ization. Also, this body of work generally contributes
to the literature that regards QP geometries as projec-
tions of higher dimensional manifolds onto lower dimen-
sional lattices, and that explores topological properties of
higher dimensional periodic systems, to assess properties
in the lower dimensional physical space.
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FIG. 1. Projection operation for placement of the local res-
onators according to the procedure described in [25]).

II. QUASIPERIODIC PATTERN GENERATION

Motivated by previous contributions, we here investi-
gate a LR beam with QP distributions of resonators. Ex-
tending the results in [28], we consider elastic beams in
transverse motion equipped with local resonators located
at positions defined by the projection operation described
in [25]. This pattern-generating procedure identifies fam-
ilies of structures ranging from periodic to QP obtained
through smooth variation of the parameters defining the
projection, which can be interpreted geometrically as
shown in Fig. 1. Accordingly, the location of resonator s
is given by:

xs = sa+R sin(2πsθ) (1)

Here, a is the distance between the centers of adja-
cent circles defining the spacing between resonators in
an underlying periodic arrangement, while the radius of
the circle R < a/2 and the angular increment θ define
the projection. Rational and irrational θ values define
periodic and QP patterns respectively. For θ = 0, the
system has periodicity of a and the resonators are placed
uniformly on the beam. For rational θ = p/q (p and q are
coprime integers), the system has periodicity of qa. In
contrast, no periodicity or translational symmetry exists
for irrational θ values. In addition, all resonators are here
assumed to have the same mass m and stiffness k. The
governing equations for the beam and the s-th resonator
are:

D
∂4w(x, t)

∂x4
+ρA

∂2w(x, t)

∂t2
−k

∑

s

ws(t)δ(x−xs) = 0 (2)

m
∂2(w(xs, t) + ws(t))

∂t2
+ kws(t) = 0 (3)

where w(x, t) is the transverse displacement of the beam
and ws(t) is the displacement of the s-th resonator rel-
ative to the beam. Also, D = EI is the beam bending
stiffness, where E is the Young’s modulus, and I is the
second moment of area of the beam cross section, while ρ
is the density and A is the cross-sectional area. We con-
sider an aluminum beam (mass density ρ = 2700 kg/m3,
Young’s modulus E = 69 GPa) of cross section 0.8×25.2
mm2. All resonators have a natural frequency of 90 Hz,

and the added mass ratio is 1.26. The added mass ra-
tio here is defined as the ratio of total mass of added
resonators to the mass of the plain beam without res-
onators. In addition, a = 5.08 cm and R = 0.3a are
chosen as fixed dimensions in accordance with the con-
sidered experimental setup described below.

III. TOPOLOGICAL BANDGAPS AND

EDGE-LOCALIZED STATES

The study is conducted in terms of variations in θ,
which is the considered free, QP parameter. We first
evaluate the spectrum of an infinite beam, which is ap-
proximated by considering all rational values of θ that
are commensurate with S = 600 cells. Periodic boundary
conditions are imposed on both ends of the beam, so that
it geometrically resembles a ring (refer to [28] for details).
Employing an analysis approach based on Galerkin’s ap-
proximation [28], we evaluate the resonant frequencies
for all configurations (θ = s/S, s = 1, 2, . . . , S), and plot
them to obtain the approximated bulk spectrum shown in
black in Fig. 2a. The resonant frequencies of the ring dis-
cretize the bulk spectrum. The density of the discretiza-
tion increases as the number of unit cells S increases.
Variation of vibrational frequencies in terms of QP pa-
rameter leads to a pattern that is reminiscent the Hofs-
tadter Butterfly [29]. In addition, estimating the spectral
properties of a finite, simply supported beam of length,
L = aS, including S = 30 unit cells leads to the finite
structure frequencies, denoted by the red dots in Fig. 2a.
Both bulk and finite spectra are characterized by a LR
bandgap that is topologically trivial, as demonstrated by
the fact that it remains constant as θ varies. Depending
on the boundary conditions of the finite structure, the
modes localized at the edge may or may not appear inside
the LR bandgap. This gap separates two spectral regions,
which feature several additional bandgaps whose center
frequencies and widths depend on the value of θ. These
additional gaps, topologically non-trivial, are crossed by
several modes of the finite structure, whose distinctive
feature is their localized nature.
The zoomed-in spectrum of Fig. 2b compares se-

lected modes corresponding respectively to bulk and fi-
nite structure frequencies. Notably, the modes in the fi-
nite beam that appear in the bandgap are edge-localized
at the right boundary (x = L). Also, the response of the
resonators (shown in red circles) is of a localized nature
when the beam’s deflection is localized, while the relative
displacements of the resonators are in phase and out of
phase with respect to the beam at frequencies below and
above the LR bandgap, respectively. The fact that all of
the modes spanning the non-trivial gaps are localized at
the right boundary is a consequence of the way the finite
beam is constructed from the pattern defined previously
in Eq. (1). All finite beams are constructed by placing the
first resonator at the space location at x = a+Rsin(2πθ)
and adding resonators to the right boundary.
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FIG. 2. (a) Bulk (black) and finite beam (red) spectra as a function of θ. The finite beam spectrum, obtained for a finite,
simply supported beams with 30 resonators, shows the presence of modes spanning the non-trivial gaps. The blue shaded area
highlights the LR bandgap, which is estimated according to the formula derived in [7]. (b) Detail of the spectrum showing four
frequencies and corresponding bulk and edge-localized modes (the black curve represents the deflection of the beam, while the
red circles denote the displacements of the resonators). (c) Detail of spectrum showing three labeled non-trivial topological
bandgaps with increasing number of topological modes (blue dashed lines separate regions between commensurate values of θ,
while the blue shaded area highlights the region between θ = 2/30 and θ = 3/30). (d) IDS as a function of θ exhibits sharp
linear jumps at the bandgaps. The slope of three of these lines (highlighted by the white dashed lines, and corresponding to
the three gaps labeled in (c)), is equal to m = 1, 2, 3, while for the LR bandgap (highlighted by the red dashed line) is m = 0,
which indicates that this band is topologically trivial.

The existence of edge states can be predicted through
the analysis of the topological properties of the bands,
which are conveniently uncovered by estimating the In-
tegrated Density of States (IDS) for the system [25, 28].
Non-trivial gaps and the resulting onset of edge states
spanning them are associated to changes in the IDS as θ
varies. In the IDS representation of Fig. 2d, a bandgap
appears as a line, whose slope m indicates the number
of topological boundary modes that span the bandgap in
the interval between two subsequent commensurate val-
ues of θ [28]. In this case, three IDS lines corresponding
to the three topological bandgaps (labeled in Fig. 2c)

are shown as white dashed lines in Fig. 2d, whereby
m = 1, 2, 3 respectively is the slope of the correspond-
ing gaps. The red dashed IDS line related to the LR
bandgap has a slope of m = 0, which indicates its topo-
logically trivial nature and the lack of associated edge
states spanning the gap (see Fig. 2a).
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FIG. 3. (a) Bulk spectrum (black) and finite spectrum for a clamped-free beam with 30 resonators (red). (b) Numerical
frequency response function of the beam spatially averaged between 20% and 30% of the beam span: the color map evolving
from blue to red corresponds to the log scale of the magnitude. The blue regions highlight the low response ranges corresponding
to the bandgaps. (c) Numerical frequency response function of the beam spatially averaged between 90% and 100% of the
beam span: the response near the beam tip highlights the presence of resonances within the gaps which correspond to edge
states. Vertical white lines in (b,c) correspond to the values of θ = 0.175 and θ = 0.25 considered in the experiments.

IV. NUMERICAL ANALYSES: A CANTILEVER

BEAM

The finite system is implemented as a cantilever beam
with clamped-free boundary conditions, with excitation
applied at the free end. Numerical analyses (Fig. 3) are
performed to evaluate the presence of the LR bandgap
and of additional gaps, and to guide the selection of θ
values for experimental investigation. On the finite struc-
ture, bandgaps are conveniently visualized by evaluating
the frequency response function for the beam, averaged
over portion of the length. The choice of the portion of
the beam to be averaged is driven by the need to show
the response far from the excitation and not too close
to the clamped boundary, so that the LR bandgap to-
gether with other additional topological bandgaps is vis-
ible in the averaged frequency response. For example,
Fig. 3b shows frequency response, corresponding to the
ratio of magnitude of beam transverse deflection (output)
to magnitude of input (forcing), averaged between 20%-
30% of the span from the clamped end. As a result, the
color map in Fig. 3b is characterized by low response re-
gions (in blue) that highlight the attenuation occurring in
the bandgaps. This representation clearly outlines both
the LR bandgap and the additional topological gaps as
θ varies. In contrast, Fig. 3c, obtained by averaging the
beams response near the excitation, i.e. between 90%-
100% of the span, clearly highlights the modes of the
finite systems, including the resonances localized in the
gaps associated with the finite system. Of these modes,
those in the LR gap are not topological, and solely de-
pend on the considered types of boundary conditions.
Compared with the spectrum of the finite beam with
simply-supported boundaries on both ends (Fig. 2a), the

spectrum of the clamped-free beam (Fig. 3a) has defect
modes inside the trivial LR bandgap. The non-trivial
additional gaps are instead spanned by resonant modes
as θ varies regardless of the boundary conditions.

V. EXPERIMENTAL INVESTIGATIONS

For the experiments, θ = 0.175 and θ = 0.25 ensure
a well defined separation between the modes associated
with the LR gap and the additional bandgap. The se-
lected two cases are highlighted in white lines in Fig.
3b and Fig. 3c for reference. The experimental inves-
tigations are presented to confirm the existence of the
topologically non-trivial bandgaps and the occurrence of
edge-localized modes.
The finite system is physically implemented by employ-

ing a 1.524 m long aluminum cantilever beam with 30
resonators (Fig. 4). Each resonator consists of a 8.26 cm
long strip of spring steel, which is 0.5 mm thick and 6.35
mm wide. Each strip is clamped symmetrically along
the beam, thus forming two identical cantilevers. Two
6.35 mm3 permanent magnets are placed at the tip of
each cantilever, to add a tip mass of 3.6 g. The result-
ing natural frequency of each resonator is measured to
be around 90 Hz. The beam is clamped vertically on one
end, and is excited by an electrodynamic shaker at the
free end (Fig. 4c). The force applied by the shaker is
recorded by a force transducer, while the beam’s velocity
field is mapped by a scanning laser Doppler vibrometer
(SLDV) over a grid of 158 points along the beam length
(from the clamped boundary at top, x = 0, to the free
end at bottom, x = L), which corresponds to a spatial
resolution of 9.65 mm.
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FIG. 4. Experimental setup: cantilever beam with 30 res-
onators. (a) Front view of the beam, (b) close-up of the res-
onators, and (c) view of the tip of the beam, excited by a
electrodynamics shaker.

Experimental frequency response of the beam and
measured spatial distributions of selected operational de-
flection shapes are shown in Fig. 5b-d for θ = 0.175 and
in Fig. 5f-g for θ = 0.25. The spatial distributions are
normalized with respect to the displacements at the free
end, w(L). The LR bandgap and the topological bandgap
are clearly observed from on the measured frequency re-
sponse averaged between 20% and 30% of the beam span,
ie. away from the excitation location. Overall, the fre-
quency location and frequency width of these bands agree
well with the theoretical predictions shown as green and
red shaded areas in Fig. 5b and 5f. Both center frequency
and width of the topological bandgap increase as the QP
pattern parameter θ varies from 0.175 to 0.25, which also
agrees with the theoretical trend. Furthermore, the mea-
sured frequency response average near the free end, i.e.
between 90% and 100% of the beam span, shows the pres-
ence of the localized modes which correspond to response

peaks within the gap highlighted in Fig. 5c and 5g. As
expected from theoretical predictions, the measured lo-
calized mode (red circle) for each case appears within
the topological bandgap, and the localized nature at the
edge is well confirmed by the corresponding operational
deflection shape plotted in red, and labeled ‘II’ in Fig. 5d
and 5h. In addition, for each θ value considered, 3 bulk,
non-localized modes are also presented to illustrate their
global deflection patterns. These modes are labeled ‘I’,
‘III’ and ‘IV’ in the figure, and their corresponding fre-
quencies are part of the bulk spectrum, respectively in
the frequency range before the LR bandgap, between the
LR and topological bandgap, and after the topological
bandgap. To be noticed, unlike the cluster of several
modes between LR bandgap and the above additional
non-trivial bandgap shown in the simulations (Fig. 3b),
experimental measurements capture one distinguishable
mode III (blue square), which can be due to the damp-
ing effect. The measured deflection shape of the beam at
mode III has deflections at both the free end and close to
the clamped boundary, confirming itself as a bulk mode.

VI. CONCLUSIONS

In conclusion, we investigated locally resonant metas-
tructures in the form of beams with QP distributions
of resonators. By varying the parameter θ defining the
locations of the resonators, additional non-trivial topo-
logical bandgaps are created. In finite metastructures,
these bands host modes that are localized at the bound-
ary and whose frequency can be chosen through proper
selection of the QP parameter defining the location of the
resonators. The onset of the LR bandgap, and of the ad-
ditional non-trivial bandgaps with associated edge states
is demonstrated through numerical simulations, and in
experiments conducted on a cantilever beam carrying an
array of 30 resonators. The findings of the study sug-
gest the application of QP placement of resonators, or in
general of mechanical inclusions, as a potentially effec-
tive way to achieve vibration attenuation over multiple
sub-wavelength frequency bands. In addition, the ability
to induce vibration localization at frequencies defined by
the placement of resonating inclusions may find applica-
tions in vibration isolation and energy harvesting.

ACKNOWLEDGMENTS

The authors acknowledge the funding support from
the National Science Foundation through EFRI 1741685
grant and Army Research Office through grant W911NF-
18-1-0036.

[1] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan,
and P. Sheng, Locally resonant sonic materials, Science

289, 1734 (2000).



6

FIG. 5. (a,e) Detail of numerical bulk spectrum with vertical magenta lines corresponding to θ = 0.175 and θ = 0.25. The
green and red dash lines show the theoretical boundaries of the LR and non-trivial topological bandgaps respectively. (b-d)
Experimental results for θ = 0.175. (f-h) Experimental results for θ = 0.25. Magnitude of beam frequency response spatially
averaged between 20% and 30% (b,f), and between 90% and 100% (c,g) of beam span. Green and red shaded areas highlight
the theoretical LR and topological bandgaps. (d,h) Measured deflection shapes of the beam. Modes ‘I’, ‘III’ and ‘IV’ are
bulk modes at frequencies respectively before the LR gap, between the LR and topological bandgap, and after the topological
bandgap. The corresponding frequencies are marked by the green diamond, blue square and magenta asterisk in (b,c,f,g). The
mode labeled as ‘II’ in (d,h) is edge-localized, and its frequency falls in the topologically non-trivial gap, and it is marked by
red circle in (c,g).

[2] D. Yu, Y. Liu, H. Zhao, G. Wang, and J. Qiu, Flexural
vibration band gaps in euler-bernoulli beams with locally
resonant structures with two degrees of freedom, Physical
Review B 73, 064301 (2006).

[3] H. Sun, X. Du, and P. F. Pai, Theory of metamate-
rial beams for broadband vibration absorption, Journal
of Intelligent Material Systems and Structures 21, 1085
(2010).

[4] M. Oudich, M. Senesi, M. B. Assouar, M. Ruzenne, J.-
H. Sun, B. Vincent, Z. Hou, and T.-T. Wu, Experimen-
tal evidence of locally resonant sonic band gap in two-
dimensional phononic stubbed plates, Physical Review B
84, 165136 (2011).

[5] M. B. Assouar, M. Senesi, M. Oudich, M. Ruzzene, and
Z. Hou, Broadband plate-type acoustic metamaterial for
low-frequency sound attenuation, Applied Physics Let-

ters 101, 173505 (2012).
[6] R. Zhu, X. Liu, G. Hu, C. Sun, and G. Huang, A chi-

ral elastic metamaterial beam for broadband vibration
suppression, Journal of Sound and Vibration 333, 2759
(2014).

[7] C. Sugino, S. Leadenham, M. Ruzzene, and A. Erturk,
On the mechanism of bandgap formation in locally res-
onant finite elastic metamaterials, Journal of Applied
Physics 120, 134501 (2016).

[8] D. Cardella, P. Celli, and S. Gonella, Manipulating waves
by distilling frequencies: a tunable shunt-enabled rain-
bow trap, Smart Materials and Structures 25, 085017
(2016).

[9] P. Celli, B. Yousefzadeh, C. Daraio, and S. Gonella,
Bandgap widening by disorder in rainbow metamateri-
als, Applied Physics Letters 114, 091903 (2019).



7

[10] C. Hodges, Confinement of vibration by structural irreg-
ularity, Journal of Sound and Vibration 82, 411 (1982).

[11] C. Hodges and J. Woodhouse, Vibration isolation from
irregularity in a nearly periodic structure: theory and
measurements, The Journal of the Acoustical Society of
America 74, 894 (1983).

[12] D. M. Photiadis and B. H. Houston, Anderson local-
ization of vibration on a framed cylindrical shell, The
Journal of the Acoustical Society of America 106, 1377
(1999).

[13] C. Pierre and E. Dowell, Localization of vibrations by
structural irregularity, Journal of Sound and Vibration
114, 549 (1987).

[14] M. Z. Hasan and C. L. Kane, Colloquium: topological
insulators, Reviews of modern physics 82, 3045 (2010).

[15] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
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