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In the area of micro/nanoresonant sensing, energy harvesting, and signal processing, the 
ability to provide resonance over a broad frequency bandwidth has been a persistent goal.  
One strategy for a broadband resonator that researchers focus on is to exploit the relatively 
large-amplitude response of micro/nanoresonators operating in the geometrically nonlinear 
dynamic regime.  Geometric nonlinearity is well-known to have a hardening effect on the 
resonance curve thereby generating a broadband resonance, the bandwidth of which is 
limited by the linearized resonant frequency (lower bound) and the drop-down bifurcation 
frequency (upper bound).  All else held constant, increasing the drop-down bifurcation 
frequency in the frequency response of a nonlinear resonator enhances the broadband 
resonance.  In this work, ultra-broadband resonance of microresonators having 
geometrically nonlinear stiffness is investigated and validated experimentally.   
Specifically, a microresonator having cubic stiffness nonlinearity is excited at its base and 
as the excitation amplitude approaches a critical level, a sudden and significant increase in 
the resonant bandwidth of the fundamental bending mode is observed. The significant 
implications of this nonlinear phenomenon in sensing, signal processing and other 
applications in the microscale are discussed. 
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I. INTRODUCTION  
 

Many micro-electro-mechanical systems (MEMS) utilize a micromechanical resonator 

under harmonic excitation, undergoing either torsional or flexural vibrations [1].  

Typically, one or more vibrational modes are driven and transduced into an electrical 

signal, which serves to provide the essential functionality of resonator-based MEMS.  The 

harmonic excitation may be applied at the base or directly to the structure from a variety 

of different actuation forces including piezoelectric, electrostatic and magnetic. 

Traditionally, these resonators were designed and studied within the framework of linear 

dynamics, and researchers focused on mitigating sources of incidental nonlinearity [2-4]. 

Over the past couple of decades, a new approach to nonlinearity in micro/nanoresonantors 

has emerged and is now an expanding, active research area.  In this approach, nonlinearity 

is intentionally incorporated into the device design in order to leverage the rich nonlinear 

behavior for practical purposes [5-8]. 

 

Considering the design of microresonators, in the ongoing thrust for enhanced 

functionality, the size of state-of-the-art resonant MEMS is becoming increasingly small. 

When the relative response amplitude compared to the characteristic size of the device 

becomes large, axial strain along the beam induces a nonlinear restoring force in the 

resonator [9].  Specifically, geometric nonlinearity associated with mid-plane stretching in 

the beam generates a cubic stiffness term in the equation governing the response of the 

fundamental bending vibration mode (i.e., the motion is characterized by the Duffing 

equation). In this sense, all beam structures have a threshold amplitude above which they 

behave nonlinearly.  As the characteristic size of the resonator decreases, this threshold 

amplitude decreases as well, and in extreme cases the linear dynamic regime may occur 

entirely below the noise floor.  Accordingly, by operating at larger amplitudes that are well 

within the nonlinear regime, the signal-to-noise-ratio (SNR) may be enhanced, which is 

one source of motivation for investigating and implementing intentional nonlinearity in 

microelectromechanical (MEM) sensors and time-keeping devices [10-16]. The broadband 

resonance associated with geometric hardening can also be utilized in MEMS energy 

harvesting and bandpass filtering applications.  A common issue in MEM energy 
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harvesting is frequency mismatch between the vibration source and the MEM harvester 

and, hence, resonant bandwidth expansion of the harvester can amplify the resulting output 

power [17-20]. It has also been shown that, through strategic design and/or coupling of 

Duffing oscillators, the nonlinear frequency response can be exploited to generate a nearly 

ideal bandpass MEM filter [21-23]. Furthermore, in certain applications, intentional 

nonlinear phenomena may result in paradigm-shifting improvements in the area of 

micro/nanoresonant sensing [24-39].  This new approach based on intentional utilization 

of nonlinearity, however, dictates predictive design and careful study of the dynamics in 

order to determine accurately the ranges of desirable and robust operation, thus avoiding 

unwanted effects (e.g., chaotic motions or dynamic instabilities) which can occur in 

nonlinear systems under external or parametric excitation [9, 40, 41]. 

 

It is a well-known result that cubic nonlinearity in a hardening Duffing oscillator causes 

forward bending of the resonance curve resulting in a broadband resonance. This contrasts 

to the classical narrowband Lorentzian resonance of a linear oscillator.  For a fixed forcing 

level, the range of frequencies that constitutes the broadband resonance of a Duffing 

oscillator is determined by the linearized frequency (lower bound) and the drop-down 

bifurcation frequency (upper bound).  In a recent study [16], it was shown that, for a 

clamped-clamped microcantilever subject to harmonic base excitation, there exists a 

critical excitation amplitude above which there is no theoretically predicted drop-down 

bifurcation frequency, yielding ultra-broadband nonlinear resonance.  Physically, of 

course, it is not feasible to truly have no drop-down bifurcation in the frequency response 

curve. In practice, the inevitable drop-down bifurcation may occur due to various effects 

or unmodeled dynamics, e.g., the excitation of internal resonances yielding nonlinear 

energy transfers through modal interactions [10], shrinking of the domain of attraction of 

the upper (stable) resonance branch, perturbations of initial conditions due to noise, and/or 

nonlinear dissipative effects [42]. 

 

In this letter we present experimental evidence of ultra-broadband resonances in a flexible 

microresonator with cubic stiffness nonlinearity under harmonic base excitation. 

Specifically, we find that as the excitation amplitude approaches a critical level, the 
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resonant bandwidth of the fundamental bending mode suddenly increases substantially.  

This behavior is observed experimentally for two different microresonator systems.  

Further, we theoretically reconstruct the experimental resonance curves using a model 

having cubic stiffness nonlinearity and a two-phase damping model: linear damping is 

assumed for relatively low amplitudes whereas nonlinear damping proportional to the 

product of the displacement and the square of the velocity is assumed for large amplitudes.  

Good quantitative agreement between the experimental and theoretically reconstructed 

resonance curves is observed.  Ultimately the ultra-wide broadband resonance could be 

exploited in MEM sensing, energy harvesting and filtering applications. 

 

II. THEORETICAL PREDICTION OF ULTRA-BROADBAND RESONANCES 

 

We consider a single-degree-of-freedom (SDOF) Duffing oscillator with hardening cubic 

nonlinearity under harmonic base excitation. In previous works, e.g., [45], [47], it has been 

shown that such physics-based stiffness nonlinearity arises from geometric effects 

(nonlinear stretching) of a linear spring-damper element undergoing transverse oscillations 

(cf. also the following experimental section).  The corresponding governing equation of 

motion, in non-dimensional form, is given by, 

 

                           (1) 

 

where  is the displacement,  the base excitation amplitude,  the drive frequency,   
the linear damping coefficient, and  the cubic stiffness coefficient, with all coefficients 

and variables being nondimensionalized. 

 

In an effort to recover the drop-down frequency as a function of excitation amplitude for 

this system, we employ harmonic balance analysis [9].  Specifically, we assume an 

approximate one-term harmonic expansion of the displacement, , and 

balance the first (leading) harmonic in (1) to obtain the following approximate frequency-

  ˆ′′y + 2ζ1
ˆ′y + ŷ +α ŷ3 = âΩ2 cosΩτ

  ŷ   â Ω  ζ1

α

  ŷ = Âcos(Ωτ −ϕ )
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amplitude relationship, omitting the higher harmonics in the response which are assumed 

to be negligible in the frequency range of interest: 

 

                        (2) 

 

The drop-down bifurcation point, i.e., the frequency where a “jump” from the upper stable 

resonance branch to the lower (linearized) branch occurs, can be estimated as the 

intersection of the frequency-amplitude curve defined by (2) and the so-called backbone 

curve [9, 37].  By definition, the backbone curve is the frequency-amplitude relationship 

corresponding to the system without damping ( ) and external excitation (

), and hence, from (2) is given by: 

 

            
            (3) 

 

By combining (2) and (3), an equation defining the drop-down bifurcation frequency, , 

is recovered as follows: 

 

   
                                                                               (4)        

 

From (4), we see that for fixed system parameters, the drop-down frequency is real-valued 

only for excitation amplitudes below the critical level of .  For 

excitation levels above this critical level, there is no theoretically predicted drop-down 

bifurcation in the resonance curve. Physically, there must be drop-down bifurcations for 

excitation levels above the critical level but they are not captured by equation (1).  In other 

words, the inevitable drop may be caused by unmolded dynamics such as the excitation of 

internal resonances [10], shrinking of the domain of attraction of the upper (stable) 

  
3
4
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resonance branch, perturbations of initial conditions due to noise, and/or nonlinear 

dissipative effects [42]. 

 

The drop-down frequency as a function of excitation amplitude is plotted in Fig. 1 for a 

Duffing oscillator with a linear resonant frequency of , a Q-factor of 

 and a nondimensional cubic stiffness of . For these 

parameters the critical excitation amplitude is .  Here we see that the drop 

frequency increases at an increasing rate as the excitation amplitude increases and as the 

excitation amplitude approaches the critical level, the drop frequency increases without 

bound.  In a physical system, it is not reasonable to expect the drop frequency to increase 

up to several orders of magnitude as shown in Fig. 1b, but we should expect to see that 

drop frequency increase suddenly and substantially as the excitation amplitude approaches 

the critical level.  

 

To better understand this nonlinear dynamical phenomenon from a physical perspective, it 

is constructive to consider the case where harmonic excitation applied directly to the 

oscillator rather than to the base.  The equation of motion in this case is, 

 

                  (5) 

 

where  is the fixed forcing level.  The drop-down frequency is then given by: 

 

                              (6) 

 

		f0 =51kHz

		Q =1/(2ζ1)=1,515 	α = 9,173
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Figure 1. Computational curve of the drop-down frequency as a function of the excitation 

(a) amplitude and (b) force for a Duffing oscillator under harmonic (a) base excitation and 

(b) direct excitation.  These results correspond to a Duffing oscillator having a linear 

resonant frequency of , a Q-factor of  and a 

nondimensional cubic stiffness of .  

 

Hence, for a given value of the forcing level, , there exists a drop-down frequency, and 

as  increases, the drop-down frequency also increases.  The drop-down frequency as a 

function of excitation force, , is shown in Fig. b. Reconsidering now the case of base 

excitation, the forcing level is not fixed, but rather is proportional to the base excitation 

amplitude and the square of the drive frequency as seen in equation (1).  Therefore, at a 

given base excitation amplitude, as the drive frequency is swept forward the corresponding 

forcing level also increases, yielding an increase of the drop-down frequency according to 

equation (6).  The net effect is that, in the case of base excitation, as the drive frequency is 

swept forward, the drop-down frequency increases continuously, and for sufficiently large 

		f0 =51kHz 		Q =1/(2ζ1)=1,515

	α = 9,173

 q

 q

	q

 

(a) 

(b) 
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base excitation amplitudes (i.e., above a critical threshold), the instantaneous drop-down 

frequency is always greater than the instantaneous drive frequency.  The minimum base 

excitation amplitude required to achieve this effect is the critical excitation amplitude. A 

more detailed discussion of this phenomenon is presented in [16]. 

 

 
Figure 2: The experimental nonlinear microresonator: (a) An SEM image of the system 
[43] consisting of a Si micro cantilever grounded to the base via a polymer attachment; 
(b) The lumped parameter model of the system.  The flexural motion of the Si cantilever is 
modeled by a linear damped harmonic oscillator with effective stiffness k1, effective mass 
m, and effective damping coefficient c1, where the displacement of the effective mass 
corresponds to the displacement of the tip of the cantilever.  The effective mass is 
constrained by a horizontal viscoelastic element with stiffness k2 and damping coefficient 
c2, which models the nonlinear effect of the polymer attachment.  The large flexural 
displacement of the cantilever induces axial stretching in the polymer attachment resulting 
in geometric nonlinearity in the system’s dynamics. The horizontal (nonlinear) damper 
does not play a significant role when y is relatively small and hence, the nonlinear damping 
is ignored in the theoretical reconstruction (see Fig. 3) within this dynamic regime.  On 
the other hand, the vertical (linear) damper does not a play a significant role when y is 
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relatively large because the nonlinear damping effect is dominant and therefore, the linear 
damping is ignored within the large amplitude dynamic regime. 
 

III.  EXPERIMENTAL RESULTS AND THEORETICAL RECONSTRUCTION 

 

To verify the theoretical predictions presented in Fig. 1, we experimentally investigate the 

dynamics of the device shown in Fig. 2 in a frequency range in the neighborhood of its 

fundamental bending mode. The system consists of a Si microcantilever that is connected 

by a polymer bridge to a fixed base.  The nonlinear stretching of the polymer bridge 

resulting from the transverse motion of the tip of the microcantilever generates the desired 

nonlinear stiffness effects in this microresonator. 

 

As discussed in a previous study in [43], by design the Si cantilever has a significantly 

lower bending stiffness than the polymer attachment and, as a result, transverse loading 

induces a relatively larger bending deflection of the Si cantilever as compared to the 

polymer attachment.  Similarly, the axial stiffness of the polymer bridge is designed to be 

considerably smaller than that of the Si cantilever so that an axial force primarily stretches 

the polymer bridge and not the Si cantilever. As a result, harmonic excitation near the 

microcantilever’s first bending mode induces large flexural motion of the Si cantilever and 

relatively large axial stretching of the polymer attachment.  Accordingly, under harmonic 

excitation from the base, the Si cantilever behaves as a linear, damped SDOF harmonic 

oscillator, which is constrained in the transverse direction by a viscoelastic element (see 

Fig. 2b).  Hence, in the frequency range considered in the experiment, the amplitudes of 

the higher cantilever modes are small and their effects on the measured dynamics 

negligible.  Details regarding the fabrication of this device and experimental setup are 

presented in [43]. 

 

Moreover, it has been shown in [39, 43, 47] that the SDOF reduced-order model shown in 

Fig. 2b captures well the geometrically nonlinear effects due to the stretching of the 

polymer attachment. By applying either the Newtionian or Lagrangian method to the 

reduced order system depicted in Fig. 2b, and retaining only leading order nonlinear terms 

for small oscillations (i.e., 𝑦/𝐿 ≪ 1), the following equation of motion is recovered, 
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          (5) 

where the parameters used in equation (5) are defined in Fig. 2b. Specifically, as the 

effective mass m moves, the force imparted to the mass by the viscoelastic element 

representing the polymer attachment is an essentially nonlinear function (i.e. having no 

linear component) of the displacement y.  To leading order, this force is of the form 

.  On the other hand, the elastic and dissipative forces imparted on the mass 

by the lumped-parameter model representing the cantilever, are linear.  As a result, when 

the microbeam system is harmonically driven from the base with an excitation amplitude 

of a, the equation of motion in (5) characterizes well the leading order dynamics of the 

microresonator in the neighborhood of the fundamental bending mode of the 

microcantilever. Finally, by introducing the following normalizations,  

 

                                (6) 

 

equation (5) can be written in the following form, 

 

                                                          (7) 

 

Note that equation (6) differs from equation (1) only in the presence of an additional 

nonlinear damping term proportional to the product of the velocity and the square of the 

displacement. The theoretical analysis showed that the combined effect of nonlinear 

hardening (i.e. forward bending of the resonance curve towards higher frequencies) and 

base excitation results in significant bandwidth expansion as the excitation amplitude 

approaches the critical level.  Indeed, the microresonator of Fig. 2 has been shown to 

exhibit strong nonlinear hardening in the fundamental resonance [43].  Hence, it is 
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reasonable to expect the theoretically predicted ultra-broadband resonance of the 

microresonator (1) should also be exhibited by the experimental system of Fig. 2, under 

harmonic base excitation.   

 

Aiming to experimentally verify the occurrence of the ultra-broadband resonance 

phenomenon due to geometric nonlinearities, we obtained experimental frequency 

response curves for this device at various constant excitation amplitudes.  The specific 

device tested incorporates a 500 µm × 100 µm × 20 µm Si cantilever, and a 40 µm × 20 

µm × 3 µm polymer attachment. A piezoelectric shaker attached to the base of the 

microbeam system was used to provide the required harmonic base excitation, and the 

shaker was carefully chosen so that the operational frequencies were well outside the 

resonance of the shaker.  This allowed us to assume that the shaker responded linearly to 

the excitation.  Concerning the prescribed base motion, the excitation of the shaker with a 

fixed voltage level corresponded to a fixed excitation amplitude of the resulting base 

oscillation, but not to a fixed forcing level.  In fact, the resulting forcing level was 

proportional to the product of the drive frequency squared and the excitation amplitude 

(see the right-hand side of equation (5)).  The shaker was excited with an AC voltage at 

peak-to-peak values ranging from 3V to 20V provided by a function generator.  The 

dynamic response of the microbeam was measured by a laser Doppler vibrometer (LDV; 

Polytec OFV-534 sensor and OFV-5000 controller), with the laser pointed at the free end 

of the Si cantilever in order to measure its maximum transverse deflection.  The measured 

signal was delivered to a computer via an oscilloscope (Tektronix DSOX4034A) where it 

was post-processed in LabView. The excitation frequency was incrementally swept 

forward, and for each value of the frequency, the numerical Fast Fourier Transform (FFT) 

of the steady-state motion of the cantilever tip was computed, and the measured amplitude 

at the fundamental harmonic digitally recorded. 

 

 

 
(b) (a) 



12	
	

    
 

      
 

Figure 3: Experimental (a) and theoretically reconstructed (b) resonance curves (only 

forward sweeps) for varying excitation amplitudes in volts, and experimental (b) and 

theoretically reconstructed (c) drop-down frequencies as functions of excitation amplitude 

for the microresonator of Fig. 2. Note the ultra-broadband nonlinear resonance occurring 

at excitation voltages above 7V.  

 

In Fig. 3a, the experimental resonance curves of the microresonator near its fundamental 

bending mode are shown and in Fig. 3c, the corresponding experimental drop-down 

frequency as a function of the excitation amplitude (in Volts) is shown.  We start by 

performing a forward frequency sweeps at the fixed excitation voltage (amplitude) of 20V, 

which produces the experimental resonance curve at that excitation amplitude. Following 

that, we decrease the excitation voltage at the increments shown in the plot of Fig. 3a, 

performing similar forward sweeps at each (fixed) excitation amplitude. The smallest 

(d) (c) 
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voltage is 3V, at which point the microresonator behaves approximately linearly. We see 

that, as the excitation voltage increases from 3V to 7V, the drop-down frequency increases 

steadily, but from 7V to 8V, the drop-down frequency abruptly increases substantially; and 

from 8V to 20V, the drop-down frequency steadily increases but at a lower rate. The abrupt 

increase in the drop-down frequency between 7V and 8V caused by a small increase in the 

excitation voltage near 7V is evidence of the critical excitation amplitude that was 

theoretically predicted in Section II, denoting the initiation of ultra-broadband nonlinear 

resonance. Qualitatively similar results were observed for a different microresonator 

system having a 500 µm × 100 µm × 20 µm Si cantilever, and a 40 µm × 20 µm × 3 µm 

polymer attachment and are presented in the supporting information. It is important to note 

that no significant peak in the FFT of the steady-state motion was found other than the 

dominant peak at the drive frequency throughout all the experimental range. As such, 

internal resonance was not excited in any cases. 

 

In a final step, we estimate the Q-factor, linear resonant frequency and nondimensional 

cubic stiffness in order to theoretically reconstruct the resonance curves.  By theoretically 

fitting the experimental resonance curve at an excitation voltage of 0.1V (where the 

response is in the linear dynamics regime) the linear resonant frequency and Q-factor are 

simultaneously estimated to be , and , respectively. 

Further, by fitting the theoretical backbone to the experimental resonance curves below 

8V, the nondimensional cubic stiffness is estimated to be .  Finally, by fitting 

the drop frequencies corresponding to excitation voltages between 3V and 7V using 

equation (4), the sensitivity of the piezo shaker was found to be 0.064nm/V. A detailed 

description of this fitting is presented in the supplementary material [48].  Note that because 

nonlinear damping does not play a role in the dynamics within the linear dynamic regime, 

the estimation of  and  are independent of the nonlinear damping model. Additionally, 

since dissipative effects do not affect the backbone, the estimation of  is independent of 

the damping model.  

 

		f0 =51kHz 		Q =1/(2ζ1)=1,515

	α = 9,173

  f0  Q

α
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In order to reconstruct the forward frequency sweeps, we assume linear damping in the 

low-amplitude regime corresponding to excitation voltages of 3V to 7V, and assume a 

nonlinear damping model in the high-amplitude regime corresponding to excitation 

voltages of 8V-20V.  Specifically, for excitation levels 8V to 20V, nonlinear damping of 

the form  is imposed with  (note this is the nonlinear damping model from 

(7)).  In other words, a two-phase damping model is used to theoretically reconstruct the 

resonance curves in which linear damping is used when the oscillation amplitude is 

relatively small for excitation levels in the range 3V-7V while nonlinear damping of the 

form  is used when the oscillation amplitude gets abruptly high in the range 8V-

20V.  The physical reason for this two-phase damping model is that the nonlinear damping 

does not play a significant role when  is small whereas the linear damping does not a 

play a significant role when  is large (since the nonlinear damping effect is dominant).  

The theoretically reconstructed forward frequency sweeps and drop-down frequency as a 

function of excitation amplitude in volts, are shown in Figs. 3b and 3d. Here we see 

reasonable quantitative agreement with the corresponding experimental results shown in 

Figs. 3a and 3c. 

 

IV. CONCLUSION 

 

In a recent study [16] it was theoretically and computationally shown that a Duffing 

oscillator (i.e., an oscillator with cubic stiffness in addition to linear stiffness) subject to 

harmonic excitation applied to the base rather than as a body force can support ultra-

broadband resonances owing to a newly reported nonlinear phenomenon termed the no-

drop phenomenon.  In contrast to direct force excitation, the forcing level is not fixed for 

base excitation, but rather is proportional to the product of the excitation amplitude and the 

drive frequency squared.  It was shown by Potekin et al. (2018) that above a critical base 

excitation amplitude, there is no theoretically predicted drop-down bifurcation point in the 

resonance curve.   

 

  ζ 2 ˆ′y ŷ2
 ζ 2 = 30

  ζ 2 ˆ′y ŷ2

 y
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In this study, we experimentally investigated this phenomenon by considering the 

dynamics of a Si microcantilever restricted at its free end by a polymer bridge and subject 

to base harmonic excitation.  It has previously been shown that in the frequency range close 

to the fundamental bending mode, strong hardening (i.e. forward bending) of the frequency 

response occurs due to geometric nonlinearity in the beam.  Experimental resonance curves 

of this nonlinear microresonator at different excitation amplitudes were obtained.  We 

observed an abrupt and significant increase in the resonant bandwidth above a certain 

critical excitation threshold. This signified the initiation of nonlinear ultra-broadband 

resonance in this device.  Moreover, quantitative agreement was observed between the 

experimental resonance curves and the corresponding theoretically reconstructed curves. 

 

Ultra-broadband resonances in micro-scale resonators are expected to be beneficial in 

many MEMS applications for signal processing, energy harvesting, sensing, RF 

electronics, and frequency control. There are several different ways one might go about 

increasing the bandwidth of a microresonator.  For example, one can aim to reduce 

damping and/or increase the forcing level; however, these techniques have their limitations.  

The results shown in this paper along with the results presented in [16] illustrate an 

unconventional strategy for resonant bandwidth expansion in microresonators. Apart from 

enhanced MEMS applications, we anticipate that the nonlinear ultra-broadband 

phenomenon can be effective in diverse fields, e.g., in new types of nonlinear multi-

frequency AFM measurement techniques, and nonlinear acoustic metamaterials with 

heretofore unattainable dynamical and acoustical properties. 
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