
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Current Distribution on Capacitive Electrode-Electrolyte
Interfaces

Zhijie Chen, Lenya Ryzhik, and Daniel Palanker
Phys. Rev. Applied 13, 014004 — Published  3 January 2020

DOI: 10.1103/PhysRevApplied.13.014004

http://dx.doi.org/10.1103/PhysRevApplied.13.014004


Current Distribution on Capacitive Electrode-Electrolyte Interfaces

Zhijie Chen,1, 2, ∗ Lenya Ryzhik,3 and Daniel Palanker4,2

1Department of Electrical Engineering, Stanford University, Stanford, CA, USA
2Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA

3Department of Mathematics, Stanford University, Stanford, CA, USA
4Department of Ophthalmology, Stanford University, Stanford, CA, USA

(Dated: December 7, 2019)

The distribution of electric current on an electrode surface in electrolyte varies with time due to
charge accumulation at a capacitive interface, as well as due to electrode kinetics and concentration
polarization in the medium. Initially, the potential at the electrode-electrolyte interface is uniform,
resulting in a non-uniform current distribution due to the uneven ohmic drop of the potential in
the medium. Over time, however, the non-uniform current density causes spatially varying rate
of the charge accumulation at the interface, breaking down its equipotentiality. We developed an
analytical model to describe such transition at a capacitive interface when the current is below the
mass-transfer limitation, and demonstrated that the steady distribution of the current is achieved
when the current density is proportional to the capacitance per unit area, which leads to linear
voltage ramp at the electrode. More specific results regarding the dynamics of this transition are
provided for a disk electrode, along with an experimental validation of the theoretical result. These
findings are important for many electrochemical applications, and in particular, for proper design
of the electro-neural interfaces.

I. INTRODUCTION

Dynamics of the charge transfer across the electrode-
electrolyte interfaces is of great importance in electro-
chemistry in general, and for many applications, includ-
ing batteries, electroplating, electrolysis, chemical sen-
sors and, in particular, bioelectronics. The distribution
of current and voltage across such an interface is governed
by multiple mechanisms, including the concentration po-
larization of the reactants in the medium, the kinetics
of the electrode reactions, the ohmic drop in the bulk of
electrolyte and charging of the electric double layer. The
effects of the concentration polarization are modeled by
the Warburg impedance, which is only significant at high
current density when the reactant concentration is con-
siderably affected by the mass-transfer limitation[1, 2].
The electrode kinetics is associated with faradaic electro-
chemical reactions, and modeled by the charge transfer
resistance varying with voltage, which is considered linear
at lower current density according to the Butler-Volmer
model[1, 2]. The access resistance – the ohmic drop in the
medium – is determined only by the electrode geometry
and electrolyte conductivity. The electric double layer
is modeled as a capacitance, where the Helmholtz plane
in the electrolyte serves as the ”plate” on the electrolyte
side of this capacitive interface[3]. The double-layer ca-
pacitance is typically on the order of 10 − 20µF/cm2

for inert materials including carbon[4], platinum[5] and
gold[6]. Additionally, some materials can exhibit a range
of quasi-continuous oxidation states, enabling reversible
storage of much larger amount of charge than in a typ-
ical double-layer capacitance, and therefore known as
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pseudocapacitance[7–9]. Together, the double-layer ca-
pacitance and the pseudocapacitance are often called
supercapacitance[10].

Newman[11] calculated the primary current distribu-
tion at the interface of an equipotential (EP) disk elec-
trode. It has been pointed out that both the electrode
kinetics and the mass-transfer limitation result in sec-
ondary current distributions being more uniform than the
primary one[12, 13]. When the ohmic drop in the medium
is the dominant part of the impedance, the calculation
of the access resistance based on the EP boundary con-
dition from [11] is broadly used[14–17]. The transient
charge redistribution within the double layer on a disk
electrode made of the same material has been described
for controlled potential[18] and for controlled current[19],
respectively. The frequency dispersion of such interfaces
was studied in [20].

However, there was no theory describing the current
distribution on electrodes of all geometries or with mul-
tiple surface materials. Such theory is of interest in
many electrochemical applications involving capacitive
coupling electrodes, and especially for neural stimulation,
where various geometries and materials are used in differ-
ent applications. For neural stimulation electrodes, the
distribution of the electric current affects the stimula-
tion thresholds and tissue safety, and extra care should
be taken to avoid irreversible electrochemical reactions.
Therefore, materials of large charge storage capacity are
often used to minimize the voltage swing, and to ensure
that the charge transfer is fully reversible, i.e. pseudo-
capacitive.

In this study we demonstrate, for any electrode ge-
ometry, that in the absence of the concentration polar-
ization, the steady state current distribution is achieved
when the current density is proportional to the surface
capacitance per unit area (PCD), where the boundary
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condition is not necessarily EP and the electrode poten-
tial converges to a linear ramp. For an electrode made of
the same material, PCD implies uniform current density
(UCD). Initially, current begins to flow at a non-uniform
density from the EP surface, but over time the uneven
charge accumulation at the Helmholtz plane, as well as
that in the pseudocapacitance, begins to affect the volt-
age drop across the double layer. Such uneven potential
at the Helmholtz plane rearranges the electric field in the
electrolyte, and hence redistributes the current density,
until the system reaches the PCD steady state.
Note that we model the possibly changing equilibrium

potential of the associated electrochemical reactions by
the pseudocapacitance, while [18, 19] assumed constant
reaction potentials. Therefore, in their notion, the steady
state was resistive and unrelated to the surface capaci-
tance. More recent studies [3, 21] assumed ideally polar-
izable disk electrodes – with no faradaic reactions – and
described the transition from the primary current dis-
tribution to the steady state with finite-element models,
yielding only numerical solutions. However, without ana-
lytical description, fitting the numerical results to the RC
approximations provides only a limited understanding of
the transition, let alone that such finite-element models
are usually intractable for an arbitrary electrode geome-
try. Nevertheless, the results have been widely adopted
in practical applications[22–25].
The general model in this paper presents the transi-

tion from the initial current distribution to PCD for any
electrode geometry and material composition, while con-
sidering the effects of the supercapacitance, the electrode
kinetics and the ohmic drop. We develop a framework
to study capacitive interfaces with sinusoidal waveforms,
chronoamperometry (controlled potential) or chronopo-
tentiometry (controlled current), with the bra-ket nota-
tion. We demonstrate the application of this framework
to a disk electrode, which agrees with the previous ana-
lytical results. We also demonstrate validation of some
of these results experimentally.

II. THE SYSTEM MODEL

Typically, an equivalent circuit model of the electrode-
electrolyte interface with supercapacitance includes the
double-layer capacitance Cd, the pseudocapacitance Cp,
the Faradaic leakage resistanceRf , the charge transfer re-
sistance Rct, the Warburg impedance Zw, and the access
resistance Ra[1, 26], as shown in FIG. 1a. The complex
Warburg impedance has a constant angle of −π/4, which
is a result of the phase delay between the current and the
concentration polarization, stemming from the diffusion
of reactants. It is a special case of constant phase el-
ement (CPE). In more complicated models, more than
one CPEs may be included, whose detailed mechanisms
often remain unclear[27].
We are interested in the conditions where the current

density is below the mass-transfer limitation, and hence

Zw is insignificant. The limiting current density is given
by equation (28) of [12] for a disk electrode. We also
assume negligible Faradaic leakage. The charge trans-
fer across the interface in this case is governed by the
distributed capacitance and charge transfer resistance at
the interface, and by the ohmic drop in the medium.
Thereby, our circuit can be simplified to that shown in
FIG. 1b. The model studied in [3] is a special case when
Cp = 0 and the one in [18, 19] is when Cp −→ +∞.
For an extended electrode, the capacitance, the charge

transfer resistance and the access resistance are dis-
tributed, as illustrated in FIG. 2. Each location on
the interface is approximated by a discrete circuit in
FIG. 1b. Although illustrated with discrete components,
our mathematical treatment makes no explicit discretiza-
tion. Note that we only study half of the electrochemical
cell, assuming that the current is collected on a large
counter electrode infinitely far away.

(a)

(b)

FIG. 1: Diagrams of the equivalent circuit models of the
electrode-electrolyte interface. The other electrodes of
the electrochemical cell are omitted for simplicity. (a) A
complete circuit model with pseudocapacitance includes

the double-layer capacitor Cd, the
pseudocapacitance Cp, the faradaic leakage

resistance Rf , the charge transfer resistance Rct, the
Warburg resistance Zw and the access resistance Ra.
(b) When the contributions to the total impedance

from Rf and Zw are negligible, the circuit model can be
simplified. To model an ideally polarizable electrode, let

Cp = 0.

In FIG. 2, E denotes the subset of the 3-dimensional
space occupied by the electrolyte. Its boundary with the
electrode is denoted by A, and with an insulating surface,
denoted by D. A

⋃

D = ∂E ⊂ E. Let Φ(r, t) denote
the potential distribution in E as a function of both the
spatial variable r and time t. We choose Φ(∞) = 0, and
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define ϕ as the 2-dimensional restriction of Φ on A:

ϕ(r, t) := Φ(r, t), r ∈ A. (1)

The electrode is EP in its bulk, whose potential as a func-
tion of time is denoted as V (t). A non-uniform potential
drop across the surface, which also varies with time, is
denoted by U(r, t):

ϕ(r, t) + U(r, t) = V (t). (2)

U is the voltage across Cd, and we denote the poten-
tial drop across Cp by Up(r, t). Let Cp(r) and Cd(r) be
the pseudocapacitance and the double-layer capacitance
per unit area on A, respectively. Rct(r) is the charge
transfer resistance times unit area on A. Typically,the
pseudocapacitance is much larger than the double-layer
capacitance[10]. For an area where no electrochemical
reactions take place, we may set Cd = 0, Rct = 0 and Cp

the double-layer capacitance, so that Cp(r) ≫ Cd(r) for
∀r ∈ A.

FIG. 2: A schematic illustration of the system, overlaid
with the discretized version of the circuit diagram. The
boundary of the electrolyte E consists of the insulating
surface D and the electrode-electrolyte interface A. The
electrode has the same potential V throughout its bulk,

but the potential drop U across the interface is
generally a function of the location. Therefore, the

potential in E just next to A is also a spatially varying
function ϕ. Different locations at A have different
access resistance to a return electrode at infinity.

In E, the current density is

i(r, t) := −1

ρ
∇Φ(r, t), (3)

where ρ is resistivity of the electrolyte. On D, insulation
implies zero normal current:

i(r) · n(r) = 0, r ∈ D, (4)

where the unitary n(r) is normal to the surface at r

pointing to the electrolyte side. We choose the direction
of n(r) as positive for current flow, and define the normal
current density on A:

i(r, t) := i(r, t) · n(r), r ∈ A. (5)

Only the normal current component contributes to the
charge accumulation on A. Conceptually, we may divide
i into two components: the faradaic component ia (the
Cp–Rct path) and ib that charges the double layer (the
Cd path). By definition:

ia(r, t) + ib(r, t) = i(r, t). (6)

ia drives the voltage of the pseudocapacitance by

ia(r, t) = Cp(r)U̇p(r, t), (7)

and similarly, for ib we have:

ib(r, t) = Cd(r)U̇(r, t). (8)

The two current paths have the same potential drop:

Rct(r)ia(r, t) + Up(r, t) = U(r, t). (9)

The potential Φ satisfies the Laplace’s equation:

∆Φ = 0, (10)

with the boundary conditions (1), (4) and Φ(∞) → 0
as dist(r, A) → +∞. Given the boundary condition
value ϕ, the potential Φ is fully determined, thus so is i.
As (10) and all its boundary conditions are linear, there
is a linear mapping from ϕ to i, which we denote as a
linear operator Ŝ:

Ŝϕ = i. (11)

Because of the uniqueness of the electric field, Ŝ is re-
versible. Define R̂a := Ŝ−1. Combining (2), (6), (8) and
(11), so that (6) gives

ia = Ŝϕ− Cd(V
′ − ϕ̇). (12)

We take the derivative of (9), and use (2) and (7):

Rcti̇a + C−1
p ia = V ′ − ϕ̇. (13)

Combine (12) and (13):

R̂aRctCpCdϕ̈+
[

R̂aCd +
(

R̂a +Rct

)

Cp

]

ϕ̇+ ϕ

=R̂aRctCpCdV
′′ + R̂a(Cd + Cp)V

′.

(14)
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At the steady state of current distribution, by (11), ϕ
no longer changes with time:

ϕ̈ = ϕ̇ = 0. (15)

Thus at steady state we have

i(r) = Ŝϕ = RctCpCdV
′′(t) + (Cd + Cp)V

′(t). (16)

In (16), the left hand side is time-independent, implying
there is a constant v so that:

Rct

CpCd

Cd + Cp

V ′′ + V ′ = v. (17)

Therefore, V ′ converges to v with time constant
RctCpCd/(Cd + Cp), which may vary in space. The
”steady” steady state has V ′′ = 0, and yields

i(r) = [Cd(r) + Cp(r)] v. (18)

Because v is constant in space, at steady state the (nor-
mal) current density on the electrode surface is propor-
tional to the capacitance per unit area. Note that a
capacitive interface requires v 6= 0 for non-zero steady
states of current distribution.
By (14), the characteristic polynomial of the system is

p(x) = x2R̂aRctCpCd + x
[

R̂aCd +
(

R̂a +Rct

)

Cp

]

+ Î ,

(19)

where Î is the identity operator. As proven in Appendix
A, the operator Ŝ is positive-definite, and so is R̂a. Rct

and Cd are positive functions. Since Cp ≫ Cd, the coef-
ficient of the first-order term of (19) is dominated by Cp.

Therefore, we may perturb the term R̂aCd by its mag-
nitude to make the system more tractable. We define a
perturbation operator

P̂ := −R̂a

(

R̂a +Rct

)−1

, (20)

whose operator norm is bounded by 1. We perturb p(x):

p(x) ≈ p̃(x) := p(x) + xR̂aCdP̂ . (21)

Let T̂a =
(

R̂a +Rct

)

Cp, and

T̂b = R̂aRctCd

(

R̂a +Rct

)−1

. We have:

p̃(x) =
(

xT̂b + Î
)(

xT̂a + Î
)

. (22)

From (22), we know that the system has two sets of
characteristic times, {τa} and {τb}, corresponding to the

eigenvalues of T̂a and T̂b, respectively. Let {Υa} and
{Υb} be the normalized (dimensionless) eigenfunctions

of T̂a and T̂
†
b , respectively. Each of the eigenfunctions

corresponds to a eigenmode of ϕ, which is a potential dis-
tribution on A that elicits a current such that ϕ changes
proportionally to itself. As mentioned, R̂a is positive-
definite, so {τa} and {τb} are positive. Furthermore, if

the surface is uniform, viz. Rct, Cp and Cd are constant,

T̂a and T̂b are positive-definite and thus the eigenmodes
are orthogonal within each set. Because Cp ≫ Cd, {τa}
are much larger than {τb}. Thus, max{τa} is the dom-
inant time constant, and {ϕb} decay much faster than
{ϕa}. Different eigenmodes of the same operator have
different time constants because of the shape of the eigen-
modes. Intuitively, if a eigenmode oscillates more rapidly
in space, more charge transfers across small distances,
having lower resistance and hence happening faster. T̂a

may have very small eigenvalues close to 0 as well, but
the magnitudes of the corresponding eigenmodes are also
very small. This is because the eigenmodes which rapidly
oscillate in space usually don’t correlate with the shape
of the total potential distribution. We will show an ex-
ample of this in Section IV.

III. RESPONSES TO TYPICAL STIMULI

With the model developed in Section II, we study
the system responses to three typical stimuli in electro-
chemical measurements: sinusoidal waveforms in Section
IIIA, chronoamperometry (controlled potential method)
in Section III B and chronopotentiometry (controlled cur-
rent method) in Section III C. With the approximation
of (21), (14) becomes

(

T̂b∂t + Î
)(

T̂a∂t + Î
)

ϕ

=
[(

T̂b∂t + Î
)(

T̂a∂t + Î
)

−RctCp∂t − Î
]

V.
(23)

A. Sinusoidal Waveforms

A sinusoidal waveform is applied to the electrode:
V (t) = V0e

jωt, where j is the imaginary unit. Using
the time-domain Fourier transform in (23) yields

ϕ =
(

jωT̂a + Î
)−1(

jωT̂b + Î
)−1

[

−ω2T̂bT̂a + jωR̂a(Cp + Cd)
]

V0e
jωt.

(24)

It is not possible to solve (24) explicitly without assuming
a specific electrode configuration, but we can estimate the
impedance

Ẑ = V i−1 =
[

−ω2T̂bT̂a + jωR̂a(Cp + Cd)
]−1

(

jωT̂b + Î
)(

jωT̂a + Î
)

R̂a,
(25)

at the extremes of the frequency ω.
Now we use ‖·‖ to denote the Hilbert–Schmidt norm.

As explained in Section II,
∥

∥

∥
T̂a

∥

∥

∥
≫

∥

∥

∥
T̂b

∥

∥

∥
. In order of

magnitude,
∥

∥

∥
R̂a(Cp + Cd)

∥

∥

∥
is close to

∥

∥

∥
T̂a

∥

∥

∥
.



5

When ω
∥

∥

∥
T̂b

∥

∥

∥
≫ 1, Ẑ ≈ R̂a, and we have

ϕ = V, (26a)

i = ŜV. (26b)

We see from (26a) that at high frequencies the inter-
face is equipotential, and from (26b) that the current is
changing in phase with voltage, and the access resistance
associated with the EP boundary condition is measured.

When ω
∥

∥

∥
T̂a

∥

∥

∥
≪ 1, Ẑ ≈ [jω(Cp + Cd)]

−1, and we have

ϕ = jωR̂a(Cp + Cd)V, (27a)

i = jω(Cp + Cd)V. (27b)

We see from (27a) that at low frequencies, the interface
is not equipotential, and from (27b) that the current is
shifted by 90◦ and is proportional to the total surface
capacitance Cp + Cd.

Now if ω
∥

∥

∥
T̂a

∥

∥

∥
≫ 1 but ω

∥

∥

∥
T̂b

∥

∥

∥
≪ 1, we have

Ẑ ≈ C−1
p Ŝ

(

R̂a +Rct

)

CpR̂a. (28)

(28) is more intuitive when Rct and Cp are uniform, which

gives Ẑ = R̂a +Rct. Similar to high frequencies, at mid-
dle frequencies, the boundary is equipotential and the
current is in phase with voltage. The impedance is the
sum of the access resistance and the charge transfer re-
sistance.

B. Chronoamperometric Response

To study the transient behavior, we focus on the eigen-
modes with long characteristic times, and assume that all
eigenmodes of T̂b decay infinitely fast. Explicitly, we as-
sume T̂b∂t + Î ≈ Î, and (23) becomes:

T̂aϕ̇+ ϕ = R̂aCpV̇ (29)

Without loss of generality, we assume Up(r, 0) =
U(r, 0) = 0, and V (t) = 0 when t ≤ 0. We take V (t)
of the form V (t) = V0 + vt for t > 0. Since Up(t) must
be continuous, we have:

(

Rct + R̂a

)

i(r, 0+) = V (0+). (30)

At steady state, we have ϕ̇ = 0. Together, we have:

ϕ(0+, r) = R̂ai(r, 0) = R̂a

(

Rct + R̂a

)−1

V0, (31a)

ϕ(∞, r) = R̂aCp(r)v. (31b)

Let Υa,l be the l
th normalized eigenfunction of T̂a, cor-

responding to the eigenvalue τl. We expand ϕ in the basis

{Υa}, with the coefficients {ϕl}. If Cp is uniform, {Υa}
is orthonormal, and the expansion is straightforward:

ϕl(t) = 〈Υa,l(r)|ϕ(r, t)〉 . (32)

For the more general case when Cp is not uniform, we per-
form the Gram-Schmidt orthogonalization to {Υa} with
a coefficient matrix G:











Υ̃a,1

Υ̃a,2

Υ̃a,3

...











= G











Υa,1

Υa,2

Υa,3

...











=











1
g21 g22
g31 g32 g33

· · · · · · · · · . . .





















Υa,1

Υa,2

Υa,3

...











,

(33)

such that {Υ̃a} is orthonormal. We have:










ϕ1

ϕ2

ϕ3

...











= G⊺











〈Υ̃a,1|ϕ〉
〈Υ̃a,2|ϕ〉
〈Υ̃a,3|ϕ〉

...











. (34)

Note that when Cp is uniform, G = I, the identity ma-
trix. By the principle of superposition, we have

i(r, t) = Ŝϕ(r, t)

=Cp(r)v + Ŝ
∑

l

(ϕl(0)− ϕl(∞))Υl(r)e
−
t

τl .
(35)

The solution consists of a steady state component
Cp(r)v, which is PCD, and a transient component con-
sisting of eigenmodes {ϕlΥl(r)} that exponentially de-
cay at the rates τl. We call such transient behavior the
EP-PCD transition (or EP-UCD when the interface ma-
terial is uniform), whose longest characteristic time cor-

responds to the largest eigenvalue of T̂a:

τmax = λmax

(

T̂a

)

. (36)

C. Chronopotentiometric Response

With controlled total current, (29) still holds, but
the solution is not the superposition of exponentially
decaying eigenmodes, since V̇ is no longer constant in
time. Without loss of generality, we assume Up(r, 0) =
U(r, 0) = 0, and the total current Itot(t) = 0 when t ≤ 0.
We take Itot(t) = I0 for t > 0. Denote ul the net current
flow coefficient of the lth eigenmode:

ul = 〈ŜΥa,l|1〉 , (37)

so that ϕlul is the net current of ϕlΥa,l. We expand

R̂aCp in basis {Υa} with coefficients {υl}:










υ1
υ2
υ3
...











= G⊺











〈Υ̃a,1|R̂aCp1〉
〈Υ̃a,2|R̂aCp1〉
〈Υ̃a,3|R̂aCp1〉

...











, (38)
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so that V̇ υl is the component of R̂aCpV̇ in Υa,l.
For the initial and the steady state conditions, (30) and

(31) still hold. We combine (31a) and (34), and V (0+) is
given by V0 in











u1
u2
u3
...











⊺

G⊺



















〈Υ̃a,1|R̂a

(

Rct + R̂a

)−1

1〉

〈Υ̃a,2|R̂a

(

Rct + R̂a

)−1

1〉

〈Υ̃a,3|R̂a

(

Rct + R̂a

)−1

1〉
...



















V0 = I0. (39)

We can thereby determine {ϕl(0
+)}.

Total current does not change, so we have:

∑

l

ϕ̇lul = 0. (40)

In basis {Υa}, (29) becomes:

τlϕ̇lΥa,l + ϕlΥa,l = V̇ υlΥa,l, ∀l. (41)

Let y be a vector of variables:

y⊺ =
[

V ϕ1 ϕ2 ϕ3 . . .
]

, (42)

and Γ be a matrix of coefficients:

Γ =













0 u1 u2 u3 · · ·
υl −τ1
υ2 −τ2
υ3 −τ3
...

. . .













. (43)

We combine (40) and (41), and have:

Γẏ =

[

0
I

]

y. (44)

Γ is full-rank, and solving for the transient behavior with
controlled current becomes a standard problem of homo-
geneous linear dynamic system, as in (44).

IV. SOLUTION FOR A DISK ELECTRODE

We now consider a disk electrode placed at the center
of an insulating plane, with electrolyte filling the half-
space above the plane. For simplicity of mathematical
forms, from here on, we assume uniform surface mate-
rial, with constant Rct, Cp and Cd. The majority of the
theoretical derivation has been done in [18], with the as-
sumption of constant electrochemical reaction potential
(Cp −→ ∞). As a demonstration of our more intuitive
framework developed in Sections II and III B, we apply
it to this problem in Section IVA, and then compare the
results with experimental measurements in Section IVB.

A. Theoretical Derivation

We consider a disk electrode of radius a. RP , Cp and
Cd, as defined in Section II are uniform. In the Cartesian
coordinates, we have E = {(x, y, z ≥ 0)}, A = {(x, y, 0) :
√

x2 + y2 ≤ a} and D = {(x, y, 0) :
√

x2 + y2 > a}.
Following [11], we will use the elliptic coordinate system
(ξ, η). Laplace’s equation in elliptic coordinates is

∆Φ(ξ, η) = ∂ξ
[

(1 + ξ2)∂ξΦ
]

+ ∂η
[

(1− η2)∂ηΦ
]

= 0,
(45)

with the boundary conditions

Φ(0, η) = ψ(η), (46a)

Φ(∞, η) = 0, (46b)

∂

∂z
Φ(ξ, 0)

∣

∣

∣

∣

ξ>0

= 0. (46c)

We note that














∂z|r≤a,z=0 =
1

aη
∂ξ,

∂z|r>a,z=0 =
1

a
∂η.

(47a)

(47b)

By [12], the solution to (45) is

Φ(ξ, η) =

∞
∑

l=0

klXl(ξ)P2l(η), (48)

with l ∈ N, kl are constant coefficients, P2l is the 2lth

Legendre polynomial of the first kind, and Xl(ξ) is the
solution to

[

(1 + ξ2)X ′
]′ − 2l(2l+ 1)X = 0. (49)

We normalize P2l, so that P̃2l :=
√
4l + 1P2l form an

orthonormal an orthonormal basis of functions in {f ∈
C∞ : [0, 1] → R, f ′(0) = 0}. kl in (48) are chosen so
Φ(0, η) matches a given ϕ(η). With Xl(0) = 1, (48)
becomes

Φ(ξ, η) =

∞
∑

l=0

|P̃2l〉Xl(ξ) 〈P̃2l|ϕ〉 . (50)

By the definition of Ŝ in (11),

Ŝϕ(η) = i(η) = −1

ρ
∂zΦ(0, η)

∣

∣

∣

∣

r≤a

. (51)

By (47a), we then have

Ŝ = − 1

ρaη

∞
∑

l=0

|P̃2l〉X ′
l(0) 〈P̃2l| . (52)

Equation [18] of [12] gave, without derivation, that

X ′
l(0) = − 2

π

[

(2l)!!

(2l − 1)!!

]2

. (53)
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A detailed derivation was provided in Section 6.9 of [28].
Appendix B provides the derivation in a more rigorous
manner, and proves the monotonicity of X(ξ). Intu-
itively, this shows that potential distribution is mono-
tonic along each hyperbolic line in the elliptic coordi-
nates.
Therefore, the operator Ŝ has the form

Ŝ =
2

πρa
η−1

∞
∑

l=0

|P̃2l〉
[

(2l)!!

(2l− 1)!!

]2

〈P̃2l| . (54)

Since Rct and Cp are uniform, we now use these two

notations as scalars. T̂a becomes

T̂a = Cp

(

Ŝ−1 +RctÎ
)

, (55)

which shares the same eigenspace with Ŝ. We define a
dimensionless operator

Â := η−1
∞
∑

l=0

|P̃2l〉
[

(2l)!!

(2l − 1)!!

]2

〈P̃2l| , (56a)

so that Ŝ =
2

πρa
Â. We have:

τa =
πρaCp

2λ
(

Â
) +RctCp. (57)

As |η| ≤ 1, the smallest eigenvalue of Â can then be

estimated as λmin

(

Â
)

≥ 1, and

max{τa} ≤
(πρa

2
+Rct

)

Cp. (58)

The numerically computed first 4 eigenfunctions of Â,
together with their respective eigenvalues, are shown in
FIG. 3. It turns out that the smallest eigenvalue of Â is
about 1.8, which gives

max{τa} = (0.864ρa+Rct)Cp. (59)

Note the similarity between Φ and the electrostatic
potential of a charged disk. Specifically, if a flat disk
in free space has charge density σ(r) = 2ε0ρi(r), then
Φ is also the potential distribution around the charged
disk. With UCD, the potential at the center of the disk
electrode is

ϕ(r = 0) =

∫ a

0

2πr × 2ε0ρi

4πε0r
dr = ρai. (60)

Although access resistance is not well defined with UCD
since the electrode surface is not equipotential, we can
define an effective access resistance as the potential at
the center of the electrode divided by the total current:

Ra,eff =
ρai

πa2i
=

ρ

πa
. (61)
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FIG. 3: The first four eigenfunctions and their
respective eigenvalues of the operator Â, in the

cylindrical coordinate r. Each eigenfunction, which is
also an eigenmode of T̂a, evolves with a time constant
determined by the corresponding eigenvalue of T̂a. The
smallest eigenvalue of Â is 1.819, corresponding to the
largest time constant (0.864ρa+Rct)Cp, dominates the

overall transition.

This value is higher than the widely accepted access resis-
tance value ρ/(4a) of an equipotential disk electrode[11].
There are different definitions of the effective access resis-
tance. For example, [29] defines Ra,eff as the average of
ϕ divided by the total current. We have chosen our def-
inition because the center of the electrode surface is the
most typical point to sample when measuring potential
in the electrolyte.
To illustrate the dynamics of the current redistribu-

tion in chronoamperometry, let ρ and vCp, defined in
Section III B, as well as the radius a, be unitary, and
let Rct = 0. To keep the total current the same at
the initial state and at the steady state, we will choose
V0 = πρηCa/4. The resulting evolution of the current
density and the potential distribution on a disk electrode
over time are shown in FIG. 4, and also as video in [31].

B. Experimental Validation

To experimentally verify whether the dynamics of the
total current on a capacitive electrode-electrolyte inter-
face matches the solution described by (35), we per-
formed chronoamperometric measurements. From here
on, all potentials are referred to the Ag/AgCl electrode,
unless noted otherwise. In order to sustain higher cur-
rent within the relatively low voltage window, we used
an electrode coated with a sputtered iridium oxide film
(SIROF) – a material known for its large charge injec-
tion capacity (CIC)[32]. The continuous iridium valency
of SIROF between 0 to 0.8V[33], together with its porous
surface[34], enables a large capacitance.
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FIG. 4: Top panel: the current density on a disk
electrode at four different time points. Here, τmax is the

time constant of the slowest decaying
eigenmode, 0.864ρaCp. Bottom panel: the electric

potential on a disk electrode at the same time points as
in the top panel. The cyan asterisks are the analytical
solution to the electrostatic potential of a uniformly
charged disk given by [30], which is mathematically

equivalent to the potential distribution under the UCD
boundary condition.

We used an electrochemical cell of the 3-electrode con-
figuration. The working electrode is a 80µm-diameter
platinum disk coated with 400nm of SIROF. The elec-
trode was treated with 4% NaClO solution and plasma
cleaning, following the protocol of [35] (Sections 2.15 and
3.3). A large (> 1 cm2) platinum grid was used as the
counter electrode. The reference was an Ag/AgCl elec-
trode in 3M KCl solution. The electrolyte is 6-time di-
luted phosphate buffered saline (PBS) solution, whose
resistivity is 353Ω · cm, measured with an electrical con-
ductivity meter.

First, we validated that the electrode kinetics is invari-
ant within the potential range, and that concentration
polarization is not the dominating factors in the elec-
trode impedance. As shown in FIG. 5, the black solid
line in the top panel represents a step voltage pulse. The
corresponding total current is shown by the black solid
line of the bottom panel (Trial 1). To show that the
electrode kinetics is not varying with potential, we off-
set the voltage pulse up and down by 100mV (Trials 2
and 3), and observed that the current did not change.
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0.2

0.3

0.4

0.5

0.6

P
o

te
n

ti
a

l 
(V

 v
s
 A

g
/A

g
C

l)

0 2 4 6 8 10 12 14 16 18 20

Time (ms)

-10

-8

-6

-4

-2

0

2

C
u

rr
e

n
t 
(

A
)

Trial 1

Trial 2

Trial 3

Trial 4

FIG. 5: Validation that electrode kinetics is invariant
within the potential range, and that concentration
polarization is negligible at the selected settings. A

curve in the top panel and the curve of the same style
in the bottom panel represent the voltage and current
measured, respectively. Trial 1 is the baseline. Trial 2
and 3 show that the electrode kinetics is not varying
with potential, while Trial 4 shows linear scaling with

the voltage step amplitude, indicating that
concentration polarization has no effect on the circuit.

To check whether the concentration polarization affects
the current amplitude, we scaled the voltage pulse by a
factor of 2. The current nearly doubled as well, indicat-
ing that concentration polarization is negligible since the
concentration overpotential does not scale linearly with
the current density.

We observed very small charge transfer resistance on
this electrode, which allows to neglect the effect of Rct

and combine Cp and Cd into one supercapacitance Cs.
To confirm, we performed electrochemical impedance
spectroscopy (EIS), and used the Levenberg-Marquardt
method to fit the Bode plot to the circuit diagram in
FIG. 6a. The measurement and the fitting curves are
plotted in FIG. 6b. From the fitting, Rct+Ra = 22.3kΩ,
within 2% error range of the EP access resistance pre-
dicted by ρ/(4a) = 22.0kΩ. Per the discussion in Sec-
tion III A, we confirm that Rct is negligible. We also
found Cs = 8.52mF/cm2 from the fitting.

A voltage waveform including a step and a ramp, with
V0 = −100mV and v = −3.24V/s, as defined in Sec-
tion III B, was applied to the SIROF electrode (top panel
in FIG. 4). Note that this waveform is different from the
one used in FIG. 4, and hence the total current at the
initial and the steady states is not the same either. The
resulting current waveform is shown in the same panel.

One competing theory is that the surface instantly ex-
changes charge laterally, so the charge accumulation in
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FIG. 6: (a) Circuit diagram of the fitting model. (b)
EIS Bode plot of the 80µm-diameter SIROF disk

electrode.

the capacitor is uniform and the interface is always EP.
This is the assumption behind the RC fitting in [3, 17, 21].
To compare the experimental results with predictions of
the constant EP theory and of the EP-UCD transition,
time derivative of the total current was calculated and
plotted for both models and the measurement. The EP-
UCD perdiction is from (35), while the constant EP per-
diction is a simple RC process. As can be seen in the
bottom panel of FIG. 7, the measurement matches our
theory rather than the constant EP assumption.

V. DISCUSSION

A highly conductive electrode is always equipoten-
tial in its bulk, but this equipotentiality is often con-
fused with the surface layer of electrolyte at the inter-
face, which is the boundary typically modeled as the
Helmholtz plane. Electrode kinetics and concentration
polarization are the two mechanisms previously consid-
ered to cause uniform secondary current distribution.
Another important mechanism is the charge accumula-
tion on the interface, which is often under-appreciated in
applications since it is not reflected in the initial current
distribution. Previously, this effect has only been mod-
eled for disk electrodes of uniform surfaces, assuming con-
stant reaction potentials ([18, 19]) or no electrochemical
reactions ([3, 21]).
As we show in Section II, for any geometry and any
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FIG. 7: Top panel: voltage waveform applied to the
SIROF electrode and the measured current.

Bottom panel: time derivative of the current from the
measurement, and the theoretical predictions calculated
with two different theories: EP-UCD transition and

constant EP.

combination of surface materials, the current density
eventually reaches the PCD steady state (or UCD if the
capacitance per unit area is the same over the whole elec-
trode). Redistribution of the current from the initial non-
uniform spread at an equipotential state is driven by the
uneven charge accumulation at the capacitive interface
until it reaches the PCD, when the potential of all parts
of the interface rises at the same rate. This transition is
described by the superposition of exponentially decaying
eigenmodes, each of which has a different time constant.
Each eigenmode is a surface potential distribution that
elicits the circuit response to change itself proportionally.
The shorter the time constant is, the faster the eigenmode
decays. For a disk electrode of radius a and with uni-
form surface capacitance C, the dominant (longest) time
constant is 0.864ρCa, only 10% larger than the simple
RC time constant τEP = πρCa/4 = 0.785ρCa, where
the EP access resistance REP = ρ/(4a) is assumed. In
an earlier finite element modeling[3], the total current
was fit to one simple RC process, resulting in 8.7% in-
crement of the time constant compared to τEP , which
roughly matches our result. Strictly speaking, there are
two sets of eigenmodes and time constants, dominated
by the pseudocapacitance Cp and the double-layer ca-
pacitance Cd, respectively. However, since the latter is
faster than the former, when studying the transient be-
havior, we consider the latter to be instant with negligi-
ble effect on the circuit behavior. This requires Cp ≫ Cd

everywhere, which may not be true if a surface consists
of both electrochemically active parts and inert parts,
but we can avoid this subtlety by choosing, nominally,
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Cd = 0, Rct = 0 and Cp the double-layer capacitance.
Empirically, the inverse time constants of different eigen-
modes are separated almost evenly, which is equivalent
to an asymptotic approximation conjectured by Troesch
and Troesch[36] in a solution of a problem in fluid dy-
namics, and confirmed computationally up to the 200th

time constant[28].

It is important to note that the measurements of the
access resistance using electrical impedance spectroscopy
(EIS) correspond to the high end of the frequency range.
At frequencies exceeding the inverse time constants of the
current redistribution, the interface remains practically
equipotential. Therefore, the access resistance measured
in EIS is associated with the EP boundary condition.
In the middle of the frequency range, we should see the
sum of the EP acess resistnace and the charge transfer
resistance, if Cp and Cd are separated sufficiently apart.

Under the constant EP boundary condition, the cur-
rent in response to a voltage step with a ramp is a sim-
ple exponential decay to the steady state, with a time
constant of RC. Distinguishing this curve from a plot
corresponding to our theory is not easy since the dom-
inant time constant is only slightly longer than in the
constant EP theory, and the magnitude of the slowest
eigenmode is the largest. Therefore, the bottom panel in
Figure 7 compares the time derivative of the total cur-
rent. Since the constant EP theory has only one decaying
mode, while the EP-UCD transition has infinitely many
and much faster decaying eigenmodes, total current de-
creases faster at the beginning of the pulse, as can be
seen in the plot.

At steady state, the PCD boundary condition enables
control of the current distribution on various parts of the
interface by selecting electrode materials of different ca-
pacitance per unit area. For example, if a part of the Au
electrode is coated with SIROF, and the pulse duration
exceeds the characteristic EP-PCD transition time, the
current will flow primarily through the SIROF area, while
the Au surface will be practically passive since its capac-
itance is about 1000 times smaller than that of SIROF.
This effect was discovered in [37] but only analyzed us-
ing a discrete circuit approximation. The phenomenon of
PCD greatly simplifies the 3-D electrode fabrication by
electroplating: the side walls of the Au-electroplated elec-
trode do not have to be coated with an insulator. They
can remain exposed to the liquid since the SIROF on top
of these walls will collect vast majority of the current[38–
40]. Similarly, leads to a high-capacitance electrode do
not have to be well-insulated from the medium as long as
their capacitance is much smaller than that of the target
electrode. For example, the electrodes used in [41].

Understanding the distribution of electric field in the
medium is particularly important for proper design of
the electro-neural interfaces. For example, if the pulse
duration is significantly shorter than the EP-PCD tran-
sition time, the electric current will flow primarily from
the electrode edges. This will result in highly enhanced
electric field in these areas, which may stimulate and even

damage the nearby cells much more than the average cur-
rent density calculated by dividing the total current by
the total electrode area[42]. The edge effect can be ef-
fectively avoided if the electrode capacitance is selected
such that the characteristic transition time is below the
intended pulse duration. In addition, the electrode ca-
pacitance can be gradually reduced toward the edges, for
example, by decreasing the SIROF thickness using par-
tial shadowing techniques.

VI. CONCLUSIONS

We provided an analytical solution describing the
dynamics of the current redistribution on capacitive
electrode-electrolyte interfaces and validated our theory
experimentally. We demonstrated that current and volt-
age redistribute over time from the initial non-uniform
spread to the steady state, where the current density at
the surface is proportional to the capacitance per unit
area. This transition can be described as a superposition
of the exponentially decaying eigenmodes. The slowest
and dominant eigenmode of a disk electrode has a time
constant similar to RC of the electrode. We also note
that since the EIS based measurements of the access re-
sistance are performed at high frequencies, they corre-
spond to equipotential boundary condition, which is dif-
ferent from the access resistance at low frequencies. To
avoid the strong edge effects on large electrodes, the ca-
pacitance of the electrode material should be selected so
that the EP-PCD transition time does not significantly
exceed the intended pulse duration.
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Appendix A

Here we show that the operator Ŝ defined in (11) is
positive-definite.

Proof. Let Φ and Ψ be two non-zero potential distribu-
tions in E and define

φ0(r) := Φ(r), r ∈ A, (A1a)

φ1(r) := Φ(r), r ∈ D, (A1b)
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with similar definitions for ψ0 and ψ1. By (4) and (5)

∇Φ(r) · n(r) = 0, r ∈ D, (A2a)

∇Φ(r) · n(r) = −ρŜφ0, r ∈ A. (A2b)

We may now write

〈ψ0, Ŝφ0〉 =
∫

A

ψ0

(

Ŝφ0

)

dS

=− 1

ρ

∫

A

Ψ∇Φ · ndS = −1

ρ

∫

A
⋃

D

Ψ∇Φ · ndS.
(A3)

The last equality above used (A2a). By the divergence
theorem and (10), we now have

−
∫

A
⋃

D

Ψ∇Φ · ndS =

∫

E

∇ (Ψ∇Φ) dV

=

∫

E

∇Ψ · ∇ΦdV +

∫

E

Ψ∆ΦdV

=

∫

E

∇Ψ · ∇ΦdV,

(A4)

thus

〈ψ0, Ŝφ0〉 =
1

ρ

∫

E

∇Ψ · ∇ΦdV. (A5)

It follows that Ŝ is Hermitian, which is the result of the
Lorentz reciprocity. Furthermore, as

∫

E

‖∇Φ‖2dV > 0. (A6)

we have

〈φ0, Ŝφ0〉 > 0, ∀φ0 6= 0, (A7)

and it follows that Ŝ is positive-definite.

Appendix B

The general solution to (49) is

Xl(ξ) = c1P2l(jξ) + c2Q2l(jξ), (B1)

where j =
√
−1, c1, c2 ∈ C are coefficients and Q2l is

the 2lth Legendre polynomial of the second kind. The
boundary conditions are

X(0) = 1, (B2a)

X(+∞) = 0. (B2b)

As Q2l(0) = 0, by (B2a) we have c1 = 1
P2l(0)

. By equa-

tion (12.216) in [43], we also have

Q2l(z) =
P2l(z)

2
ln

1 + z

1− z
+R2l−1(z), (B3)

where R2l−1 is a polynomial of degree (2l− 1) with only
odd-order terms, thus

Xl(ξ) =
P2l(jξ)

P2l(0)
+ c2 (jP2l(jξ) arctan ξ +R2l−1(jξ))

(B4a)

=

(

1

P2l(0)
+ jc2 arctan ξ

)

P2l(jξ) + c2R2l−1(jξ).

(B4b)

Using (B2b), we conclude that

lim
ξ→+∞

(

1

P2l(0)
+ jc2 arctan ξ

)

= 0. (B5)

and

c2 =
2j

πP2l(0)
. (B6)

By Theorem 1 below, a solution satisfying (B2) exists
and it must be of the form

Xl(ξ) =
1

P2l(0)

(

P2l(jξ) +
2j

π
Q2l(jξ)

)

. (B7)

Now because P ′
2l(0) = 0, it follows that

X ′
l(0) =

2j

πP2l(0)

d

dξ
Q2l(jξ)

∣

∣

∣

∣

ξ=0

(B8a)

= − 2

πP2l(0)
Q′

2l(0) (B8b)

= − 2

π

1
(−1)l(2l−1)!!

(2l)!!

(−1)
l
(2l)!!

(2l − 1)!!
(B8c)

= − 2

π

[

(2l)!!

(2l− 1)!!

]2

. (B8d)

Theorem 1. A monotonically decreasing solution to
(49) satisfying the boundary conditions (B2) exists.

Proof. When l = 0, Xl(ξ) = 1 − 2
π
arctan ξ is a valid

solution. so we assume l ≥ 1.
Let Xn be a sequence of solutions to (49), defined on

0 ≤ ξ ≤ n, with the boundary conditions

Xn(0) = 1, (B9a)

Xn(n) = 0, (B9b)

Choosing c1 = 1/P2l(0) and c2 = −P2l(in)/Q2l(in) gives
an explicit form for Xn.
We claim that Xn monotonically decreases in (0, n),

and prove this by contradiction.
Indeed, (49) gives

(1 + ξ2)X ′′(ξ) + 2ξX ′(ξ) = 2l(l+ 1)X(ξ). (B10)

If Xn is not monotonic, there exists a local extremum
ξ0 ∈ (0, n) such that X ′

n(ξ0) = 0. We see from (B10)
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that X ′′
n(ξ0) has the same sign as Xn(ξ). Thus, if

Xn(ξ0) > 0, then ξ0 is a local minimum. Therefore,
there exists a local maximum ξ1 ∈ (ξ0, n) such that
Xn(ξ1) > 0. However, at ξ1, which is also an ex-
tremum, X ′′

n(ξ1) and Xn(ξ) have different signs, which
is a contradiction. Similarly, assuming Xn(ξ0) < 0 leads
to a contradiction as well. Therefore, Xn monotonically
decreases in (0, n).
We also claim that Xn(ξ) is increasing in n, that is,

if m > n then Xm(ξ) ≥ Xn(ξ) for 0 ≤ ξ ≤ n. Indeed,
monotonicity of Xm(ξ) in ξ implies that Xm(n) > 0,
thus Z = Xm(ξ) − Xn(ξ) satisfies (49) with Z(0) = 0
and Z(n) > 0. By the same argument, Z can not attain
a negative minimum, thus Z(ξ) > 0 for all 0 < ξ < n.
Therefore, the limit

Xl = lim
n→+∞

Xn, (B11)

exists, and Xl ≥ 0 is monotonically decreasing. We claim

that

lim
ξ→+∞

Xl(ξ) = 0, (B12)

and prove this by contradiction.
Assume there exists ǫ > 0 such that Xl(ξ) ≥ ǫ for all

ξ ≥ 0. The integral of the left side of (49) yields

∫ t

0

[

(1 + ξ2)X ′
l

]′
dξ = (1 + t2)X ′

l(t)−X ′
l(0) ≤ −X ′

l(0).

(B13)
The integral of the right side of (49) yields

∫ t

0

2l(l+ 1)Xl(ξ)dξ ≥ 2l(l+ 1)ǫt. (B14)

As t → +∞, we have 2l(l + 1)ǫt > −X ′
l(0), which is a

contradiction, and (B12) follows.
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E. Morallón, D. Cazorla-Amorós, and A. Linares-Solano,
Role of surface chemistry on electric double layer capac-
itance of carbon materials, Carbon 43, 2677 (2005).

[5] T. Pajkossy and D. Kolb, Double layer capacitance of pt
(111) single crystal electrodes, Electrochimica acta 46,
3063 (2001).

[6] T. R. Gore, T. Bond, W. Zhang, R. W. Scott, and I. J.
Burgess, Hysteresis in the measurement of double-layer
capacitance at the gold–ionic liquid interface, Electro-
chemistry Communications 12, 1340 (2010).

[7] W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami,
and Y. Takasu, Evaluation of the pseudocapacitance in
ruo2 with a ruo2/gc thin film electrode, Electrochimica
Acta 49, 313 (2004).

[8] J. M. Soon and K. P. Loh, Electrochemical double-layer
capacitance of mos2 nanowall films, Electrochemical and
Solid-State Letters 10, A250 (2007).

[9] A. A. F. Grupioni, E. Arashiro, and T. A. F. Lassali,
Voltammetric characterization of an iridium oxide-based
system: the pseudocapacitive nature of the ir0. 3mn0.
7o2 electrode, Electrochimica acta 48, 407 (2002).

[10] M. S. Halper and J. C. Ellenbogen, Supercapacitors: A
brief overview, The MITRE Corporation, McLean, Vir-
ginia, USA , 1 (2006).

[11] J. Newman, Resistance for flow of current to a disk, Jour-
nal of The Electrochemical Society 113, 501 (1966).

[12] J. Newman, Current distribution on a rotating disk be-
low the limiting current, Journal of the Electrochemical
Society 113, 1235 (1966).

[13] A. C. West and J. Newman, Current distribution near an
electrode edge as a primary distribution is approached,
Journal of The Electrochemical Society 136, 2935 (1989).

[14] W. J. Albery, M. L. Hitchman, and W. J. Albery, Ring-
disc electrodes (Clarendon Press Oxford, 1971).

[15] J. C. Weaver and Y. A. Chizmadzhev, Theory of electro-
poration: a review, Bioelectrochemistry and bioenerget-
ics 41, 135 (1996).

[16] A. Lasia, Electrochemical impedance spectroscopy and
its applications, in Modern aspects of electrochemistry
(Springer, 2002) pp. 143–248.

[17] D. Boinagrov, X. Lei, G. Goetz, T. I. Kamins, K. Math-
ieson, L. Galambos, J. S. Harris, and D. Palanker, Photo-
voltaic pixels for neural stimulation: circuit models and
performance, IEEE transactions on biomedical circuits
and systems 10, 85 (2015).
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