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We present measurements of the capacitive coupling energy and the inter-dot capacitances in a
linear quadruple quantum dot array in undoped Si/SiGe. With the device tuned to a regime of
strong (>1 GHz) intra-double dot tunnel coupling, as is typical for double dot qubits, we measure a
capacitive coupling energy of 20.9± 0.3 GHz. In this regime, we demonstrate a fitting procedure to
extract all the parameters in the 4D Hamiltonian for two capacitively coupled charge qubits from
a 2D slice through the quadruple dot charge stability diagram. We also investigate the tunability
of the capacitive coupling energy, using inter-dot barrier gate voltages to tune the inter- and intra-
double dot capacitances, and change the capacitive coupling energy of the double dots over a range
of 15-32 GHz. We provide a model for the capacitive coupling energy based on the electrostatics of
a network of charge nodes joined by capacitors, which shows how the coupling energy should depend
on inter-double dot and intra-double dot capacitances in the network, and find that the expected
trends agree well with the measurements of coupling energy.

I. INTRODUCTION

Electron spins in semiconductor quantum dots are
a promising platform for quantum computation [1–3].
Quantum dots formed in Si/SiGe heterostructures have
many advantages, including high electron mobility, low
natural abundance of spinful isotopes in Si, and com-
patibility with industrial Si-based fabrication techniques
[4]. Such devices were initially realized in doped het-
erostructures [5], but the transition to undoped, fully
gated structures [6–9] has led to improved charge stabil-
ity. Undoped Si/SiGe heterostructures have now hosted
many qubit architectures, with recent demonstrations of
single dot qubits such as the Loss-DiVincenzo qubit [10–
15]; double dot qubits such as the singlet-triplet qubit
[9, 16, 17], quantum dot hybrid qubit [18, 19], and valley
qubit [20, 21]; and triple dot qubits such as the exchange-
only qubit [22].

Two-qubit gates in semiconductor quantum dots have
been demonstrated through use of the exchange coupling
in Loss-DiVincenzo qubits [12, 13, 15, 23–26] and through
use of the capacitive coupling in singlet-triplet qubits
[27, 28] and charge qubits [29]. For double dot qubits, the
capacitive interaction arises when the individual qubit
states, |0〉 and |1〉, have different admixtures of the eigen-
states of electron position, |L〉 and |R〉. This difference
can be described as an effective dipole moment for each
qubit, leading to a dipole-dipole interaction between the
qubits. The maximum such interaction energy between
two double dot qubits is equal to the shift in detuning
experienced by one double dot qubit due to the complete
transfer of an electron between dots in the neighboring
qubit. This interaction energy can be obtained by mea-
suring the shift in the polarization line of one double dot
due to a change in polarization of the other double dot
[30–33]. The resulting energy shift is the coupling term
g in the Hamiltonian for two double dot qubits that in-
teract capacitively. We refer to this energy from here on

as the capacitive coupling.
In this work, we report measurements of the capacitive

coupling in a quadruple quantum dot device in undoped
Si/SiGe. We tune the device to a regime of strong intra-
double dot tunnel coupling (t > 1 GHz in both double
dots), to match the conditions of typical double dot qubit
experiments, and measure the capacitive coupling to be
20.9± 0.3 GHz. In this regime, we demonstrate a fitting
procedure with which we obtain, from a 2D slice through
the quadruple dot charge stability diagram, all the pa-
rameters in the 4D Hamiltonian for capacitively coupled
charge qubits. We investigate the tunability of the ca-
pacitive coupling in situ, using barrier gate voltages to
change the inter-double dot (inter-DD) and intra-double
dot (intra-DD) capacitances in the quadruple dot array,
and find the capacitive coupling changes over a range of
15-32 GHz, in a way that trends positively with inter-DD
capacitance and negatively with intra-DD capacitances.
We interpret the range of inter-dot capacitances observed
here in terms of changes in inter-dot spacing and estimate
that the changes we make to the barrier gate voltages
shift the positions of the quantum dots by tens of nm.
We provide a simple model based on the electrostatics
of a system of charge nodes joined by capacitors to il-
lustrate how the capacitive coupling should depend on
inter-DD and intra-DD capacitances, and we find that
the expected trends from the model agree well with the
trends in the measured data.

II. RESULTS AND DISCUSSION

A. Fabrication and measurement

The device we study is composed of six quantum dots,
four arrayed linearly in the main channel and two in sepa-
rate channels used to sense the electron occupation of the
array. A false-colored SEM micrograph of a lithograph-
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FIG. 1. (a) False-colored SEM micrograph of a device lithographically identical to the device measured here. Plunger (P) and
barrier (B) gates used in the tuning of the 4-dot array are labeled. The charge sensor currents IL and IR are also labeled. (b)
Higher magnification image of the accumulation layer pattern showing the dimensions of the plunger gate array. (c) Schematic
of the model of the four-dot array as a network of charge nodes and capacitors. Ci is the sum of capacitances to dot i, and Cij

is the capacitance between dots i and j. Capacitances to reservoirs and gates are not shown. (d)-(f) Charge stability diagrams
for each nearest-neighbor pair of dots in the array. The indicated energy scales correspond to the dot charging energies ECi

and the electrostatic coupling energies ECij . ECi range from 2.4 to 4.4 meV, and ECij range from 120 to 680 µeV, depending
on the tuning. The data shown in (e) are a weighted sum of transconductance signals from the two charge sensor amplifiers:
βLdIL/dVP1 + βRdIR/dVP4, where β−1

L(R) is the range of the signal from the left (right) amplifier. Here, βL = 1.9 × 104 and

βR = 78. The difference in signal range is due to the difference in amplification schemes for the two charge sensors, as described
in the main text.

ically identical device is shown in Fig. 1(a). The device
is an accumulation-mode overlapping gate device with
three layers, one each for screening, accumulation, and
tunnel barrier control (see Suppl. Mat. for further details
[34]). Quantum dot chemical potentials and inter-dot
barrier potentials are primarily controlled by the plunger
(P) and barrier (B) gates, respectively. The plunger gates
are 80 nm wide with 130 nm pitch, as shown in a higher
magnification image of the accumulation layer pattern in
Fig. 1(b).

Measurements are performed in a dilution refrigera-
tor with a base temperature below 20 mK. The device
is tuned to form a quantum dot under each plunger gate

in the main channel, resulting in a linear array of four
quantum dots. Two quantum dots are also formed in
the auxiliary channels as charge sensors, with the left
(right) charge sensor mostly sensitive to double dot 1-2
(3-4). The left charge sensor is connected to a cryogenic
amplifier similar to that in Ref. [35]; the right charge
sensor current is amplified only at room temperature.
Measurements of the charge occupation of the four-dot
array are performed by modulating a plunger gate above
each double dot and measuring the charge sensor currents
with lock-in amplifiers at those modulation frequencies.
The quantum dots are set to desired electron occupa-
tions by finding the last electron transitions in the dots
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FIG. 2. Measurement of the capacitive coupling energy be-
tween two double dots from the shift of the polarization line.
The arrows indicate the magnitude of the polarization line
shift, and the dashed lines indicate where the lines would be
for g = 0. For this dataset, g = 28.4 ± 0.4 GHz. VP1 (VP4)
is used to sweep εL (εR). The data shown is a weighted sum
of transconductance signals from the two charge sensor am-
plifiers: βLdIL/dVP1 +βRdIR/dVP4, with βL = 1.6×104 and
βR = 68.

and then counting up on the charge stability diagram.
The tunnel couplings between dots are controlled with
barrier gate voltages. VB2 and VB4 are generally tuned
to be much more positive than VB3 so that the tunnel
couplings within each double dot are large while the tun-
nel coupling between the double dots is negligible. Thus,
the significant coupling between the double dots is ca-
pacitive. We note that during the experiments described
below (e.g., those in Sec. II C) no compensating voltages
on barriers to reservoirs were necessary to maintain the
tunnel rates to source and drain in the range needed for
the measurements.

Fig. 2 shows a measurement of the capacitive coupling
between the double dots. This measurement is done
by measuring a 2D slice through the 4D quadruple dot
charge stability diagram. By simultaneously sweeping
the detuning of both double dots, we observe the shift in
the polarization line of each double dot due to the change
in polarization of the other double dot. The magnitude
of the shift is extracted by fitting line cuts of each po-
larization line, finding the center point in each line cut,
and fitting the curve describing the shift of the center
points in detuning space. The functional form used to
fit this curve is a hyperbolic tangent (tanh), based on
the expected form for the polarization of a double dot
as a function of its detuning [36]. The amplitude of this
tanh function in units of detuning energy, indicated by

the arrows in Fig. 2, is equal to the capacitive coupling
g, which for the measurement in Fig. 2 is found to be
28.4± 0.4 GHz.

At each tuning of the barrier gate voltages, the de-
tuning lever arms for both double dots are measured by
sweeping the temperature and measuring the broadening
of the polarization lines [37], which also enables an ex-
traction of the electron temperature Te = 155 mK. We
also measure the individual capacitive elements of the
quadruple dot system, shown schematically in Fig. 1(c),
including Ci, the total capacitance to dot i, and Cij , the
capacitance between dots i and j. These capacitances
are obtained from the corresponding self-charging ener-
gies ECi and electrostatic coupling energies ECij , which
can be read from the charge stability diagrams by the
dimensions labeled in Fig. 1(d)-(f) [34].

The double dots are both tuned to be near the (3,2)-
(2,3) polarization line, which is the charge qubit regime
with the first valley shell filled in all dots. Using this elec-
tron configuration enables the detection of transitions of
the inner two dots (2 and 3), which is necessary to mea-
sure the electrostatic energies indicated in Fig. 1(d)-(f).
Since these dots are not directly coupled to reservoirs,
their transitions require cotunneling through the outer
dots (1 and 4), the rate of which becomes suppressed
when the outer dots are empty and their chemical poten-
tials lie well above the chemical potentials of the inner
dots [38].

B. Capacitive coupling at strong inter-dot tunnel
couplings

The capacitive coupling measurement shown in Fig. 2
is taken with low intra-DD tunnel couplings. From lack of
tunnel broadening of the polarization lines, we determine
t12, t34 < kBTe for that measurement, where kBTe ∼ 3
GHz. Suitable values of the tunnel couplings and the ca-
pacitive coupling are important for enabling high-fidelity
single- and two-qubit gates. To enable good single-
qubit control, the intra-DD tunnel couplings should typ-
ically be on the order of ∼1-10 GHz between dots in
charge [39–41], singlet-triplet [9, 16], quantum dot hy-
brid [18, 19, 42], and valley [20, 21] qubits. Furthermore,
to couple the qubits purely capacitively, the tunnel rate
between dots 2 and 3 should be low so that the exchange
coupling between dots 2 and 3 is negligible and the prob-
ability of state leakage across B3 during control and read-
out of the qubits is low.

Taking these considerations into account, we look at an
example configuration with strong intra-DD tunnel cou-
pling and weak inter-DD tunnel coupling and measure
the capacitive coupling of the system. We set VB3 to
achieve a low inter-DD tunneling rate t23 . 1 kHz, mea-
sured by varying the lock-in frequency and tracking the
visibility of the polarization line between dots 2 and 3.
We raise VB2 and VB4 until t12, t34 > kBTe, determined
by observing tunnel broadening of the intra-DD polar-
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ization lines. In this regime, we measure g = 20.9 ± 0.3
GHz. This is reduced compared to the measurement with
weaker intra-DD tunnel coupling shown in Fig. 2, where
g = 28.4 ± 0.4 GHz, but is still expected to be strong
enough to perform high fidelity two-qubit gates for quan-
tum dot hybrid qubits [43].

Fig. 3(a) shows a 2D slice of the quadruple dot stability
diagram at this configuration. As explained above, the
shift of the polarization lines in energy corresponds to
the magnitude of the capacitive coupling. Additionally,
at this tuning where intra-DD tunnel couplings are high,
each shifted polarization line acquires an increased cur-
vature due to the tunnel broadening of the opposite po-
larization line. By adopting a more sophisticated model
that incorporates the effects of tunnel coupling, electron
temperature, and capacitive coupling, we can fit this cur-
vature to extract more information about the Hamilto-
nian of the quadruple dot system. Using this analysis, the
2D dataset shown in Fig. 3(a) yields all the parameters
in the Hamiltonian for two coupled charge qubits in the
absence of noise, given a known detuning lever arm. The
procedure is as follows. We write the 4D Hamiltonian,

H =
εL
2
σz ⊗ I + tLσx ⊗ I +

εR
2
I ⊗ σz + tRI ⊗ σx

+
g

4
(I − σz)⊗ (I − σz), (1)

where εL(R) is the detuning in the left (right) double dot,
tL(R) = t12(34), g is the capacitive coupling, I is the iden-
tity operator, and σi are the usual Pauli operators. From
H, we obtain the eigenstates |ψi〉 as functions of εL, εR,
tL, tR, and g. Then, extending the method in Ref. [36]
to a two-qubit system, we calculate the expectation value
of the charge polarization of each double dot, averaged
over a Maxwell-Boltzmann distribution:

PL(R)(εL, εR; tL, tR, g) =

1

Z

4∑
i=1

〈ψi|σL(R)
z |ψi〉e−Ei/kBTe , (2)

where σL
z = σz ⊗ I, σR

z = I ⊗ σz, and Z is the partition
function. This expression yields two functions, one for
the charge polarization of each double dot as a function
of εL and εR and parametrized by tL, tR, and g. Fitting
each of these functions to the shifted polarization line
data in Fig. 3(a) yields the theoretical stability diagram
shown in Fig. 3(b) [34]. From the fit we extract the
parameters tL = 5.8 ± 0.4 GHz, tR = 7.0 ± 0.5 GHz,
and g = 20.9 ± 0.3 GHz, allowing us to write out the
complete 4D Hamiltonian for coupled charge qubits at
every point in Fig. 3(a).

C. Controlling the capacitive coupling with barrier
gate voltages

Comparison of the measurements in Fig. 2 and
Fig. 3(a) shows how a change of barrier gate voltages

tL = 5.8 ± 0.4 GHz, tR = 7.0 ± 0.5 GHz, g = 20.9 ± 0.3 GHz
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FIG. 3. (a) A 2D slice through the quadruple dot stability
diagram, taken using VP1 (VP4) to sweep εL (εR), with t23 .
1 kHz and t12, t34 > kBTe. The data shown is a weighted
sum of transconductance signals from the two charge sensor
amplifiers, with βL = 4.0 × 104 and βR = 1.4 × 102. (b) A
theoretical fit to the data based on the 4D Hamiltonian for
two coupled charge qubits. Hamiltonian parameters extracted
from the fit are listed at bottom.

that increases the intra-DD tunnel couplings results in a
significant decrease in the capacitive coupling (∼ 25%).
We further investigate the tunability of the capacitive
coupling in response to the barrier gate voltages VB2,
VB3, and VB4, by measuring the coupling energy as well
as all the parameters of the capacitance network shown
in Fig. 1(c) as a function of these voltages.

Fig. 4 shows the results of the measurements, where we
observe a range of capacitive couplings from 15-32 GHz
in response to changes in inter-dot barrier gate voltages.
Each of these barrier gate voltages tunes the capacitance
between the dots straddling that barrier. In this way,
we investigate the relationships among capacitive cou-
pling, inter-DD capacitance, and intra-DD capacitances.
In Fig. 4(a) and (c), the middle barrier voltage, VB3, is
varied with VB2 and VB4 held fixed. Panel (c) shows how
increasing VB3 increases the capacitive coupling, g. Panel
(a) shows the effect of VB3 on all the inter-dot capaci-
tances in the system. Increasing VB3 increases the inter-
DD capacitance (C23) and also decreases both intra-DD
capacitances (C12 and C34). These changes in capaci-
tance are a result of the dots’ position shifting in the
array. Making VB3 more positive decreases the poten-
tial between dots 2 and 3, resulting in these dots shifting
closer together (increasing C23) and farther from their
outer neighbors, 1 and 4 (decreasing C12 and C34). The
effects of these changes in gate voltage on the coupling g
follow the intuition for a dipole-dipole interaction, where
a decrease in the spacing between the dipoles causes an
increase in the interaction energy.

In Fig. 4(b) and (d), VB3 is held fixed and VB2 and VB4

are varied. Panel (d) shows how increasing VB2 and VB4

decreases g. Panel (b) shows the effect of these barrier
voltages on the inter-dot capacitances. Here, the change
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in inter-DD capacitance is small, while the intra-DD ca-
pacitances change significantly in response to VB2 and
VB4. Making these voltages more positive decreases the
potential in the middle of each double dot, shrinking the
spacing between dots in each pair (increasing C12 and
C34). The effects of these changes in gate voltage on the
coupling g again follow the intuition for a dipole-dipole
interaction, where here a decrease in intra-DD spacing
corresponds to a decrease in the size of the dipoles, which
decreases the interaction energy.

To estimate the shift in quantum dot positions associ-
ated with the changes in capacitance observed in Fig. 4(a)
and (b), we model a pair of neighboring dots as two con-
ducting discs beneath a conducting plane, which incor-
porates the screening effects from the overlapping gate
metal [34]. We assume a dot diameter equal to the
plunger gate width of 80 nm. The capacitance in this
model follows an approximate 1/d3 dependence, where d
is the center-to-center distance between the dots. Vary-
ing d from 85 to 175 nm, to cover the range over which
this spacing could vary in an array of 80 nm dots with
130 nm gate pitch, we calculate inter-dot capacitances
ranging from 1-10 aF, in good agreement with the mea-
sured capacitances in Fig. 4(a) and (b), which range from
2-13 aF. These numbers also suggest that the variations
in inter-dot capacitance observed in Fig. 4 are the result
of significant shifts in dot position, on the order of tens
of nm, with a dot pitch on the low Cij end (∼ 1 aF) of
∼ 170 nm and a dot pitch on the high Cij end (∼ 10 aF)
of ∼ 90 nm.

To further understand the contributions that the inter-
and intra-DD capacitances make to the capacitive cou-
pling, we model the quadruple dot system as a network
of four charge nodes joined by capacitors. The capacitive
coupling creates a detuning shift in one double dot due
to the change in polarization of the other double dot. We
extend the analysis from Ref. [44] from two to four quan-
tum dots and calculate this detuning shift to obtain an
analytical expression for capacitive coupling as a function
of the capacitive elements shown in Fig. 1(c) (details in
Suppl. Mat. [34]):

g =
e2

|C|
C23(C1 − C12)(C4 − C34) (3)

where e is the electron charge and |C| is the determinant
of the capacitance matrix. We can simplify the expres-
sion by approximating all Ci = C. Then, assuming inter-
dot capacitances are small compared to total dot capac-
itances, we can series expand in the ratios cij = Cij/C,
finding, to second order:

g/EC = c23 − c23c12 − c23c34, (4)

where EC = e2/C is the single-dot charging energy. The
approximate expression in Eq. 4 provides intuition for
the relative contributions that the inter-DD and intra-
DD capacitances make to the capacitive coupling and
how the capacitive coupling should trend with each. The
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FIG. 4. (a) Inter-dot capacitances as a function of the middle
barrier gate voltage, VB3, with (VB2, VB4) = (120, 70) mV.
(b) Inter-dot capacitances as a function of the average of the
two outer barrier gate voltages, VB2 and VB4, with VB3 = 0
mV. The gate voltage values for all points are, from left to
right: (VB2, VB4) = (120, 70), (140,90), and (155,90) mV. (c)
Capacitive coupling as a function of VB3. Inset: false-colored
SEM micrograph highlighting the gate whose voltage is var-
ied. (d) Capacitive coupling as a function of VB2 and VB4.
Inset: false-colored SEM micrograph highlighting the gates
whose voltages are varied. For all plots, linear fits to the data
are shown as a guide for the eye.

leading contribution of the inter-DD capacitance (c23) is
first order, while the leading contributions of the intra-
DD capacitances (c12 and c34) are second order. The
capacitive coupling depends positively on inter-DD ca-
pacitance but negatively on intra-DD capacitances. This
agrees with the correlations we observe between inter-dot
capacitances and capacitive coupling, as shown in Fig. 4,
where changes in inter-DD (intra-DD) capacitance cor-
relate positively (negatively) with changes in capacitive
coupling.

D. Discussion

As discussed in section II A, these experiments are
performed around the (3,2)-(2,3) transition with 5 elec-
trons in each double dot. Many double dot qubit exper-
iments are perfomed at lower electron occupancy, with
one, two, and three electrons per double dot being typ-
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ical for charge qubits, singlet-triplet qubits, and quan-
tum dot hybrid qubits (QDHQs), respectively. We note
that the fitting procedure demonstrated in Fig. 3 applies
equally well when both double dots are in a fewer-electron
regime. The electrostatics model which generates Eq. 4
does not depend on absolute charge number and assumes
only that charge is quantized, i.e., that the dots are in
Coulomb blockade. The capacitively mediated dipole-
dipole interaction that arises from the movement of sin-
gle charges does not depend explicitly on actual charge
number but depends on the capacitance matrix of the
system.

The results in Fig. 4 demonstrate a large degree of
control over the capacitive coupling using the inter-dot
barrier voltages to change the inter-dot capacitances in
the array. When this device is tuned to a realistic regime
for performing two-qubit experiments, where intra-DD
tunnel coupling is high (t12, t34 > 1 GHz) and the inter-
DD tunnel coupling is very low (t23 . 1 kHz), we find a
capacitive coupling of ∼ 20 GHz, which corresponds to a
fast 2-qubit entangling time of ∼ 20 ps when both qubits
have equal admixtures of |L〉 and |R〉 states. Based on
the trends observed in Fig. 4(c), if an even higher ca-
pacitive coupling rate were desired, we expect the cou-
pling could be increased further in this device by rais-
ing VB3 to increase C23 while raising VB2 and VB4 to
maintain strong intra-DD tunnel couplings. This would
raise the inter-DD leakage rate across B3, but for many
semiconductor qubits, this rate could be brought into
the MHz range without surpassing the operation rate of
the qubits themselves. The ability to raise C23 while
keeping t23 low could also be enhanced further by mak-
ing the barrier potential between dots 2 and 3 higher
and narrower, which could be achieved by a straightfor-
ward lithographic change of decreasing the gap between
plunger gates P2 and P3. We note also that a propor-
tional decrease of all distances in the dot array leads to
increased values of g, which is consistent with the larger
values of g (∼ 50 GHz) that have been measured in a dot
array with a smaller (100 nm) pitch [33].

When the intra-DD tunnel couplings and capacitive
coupling are set to appropriate values using the approach
described above, the measurement and analysis shown in
Fig. 3 can provide a useful framework for setting up two-
qubit gates. In the case of two coupled quantum dot
hybrid qubits (QDHQs), in the far detuned regime, the
energies of the |0〉 and |1〉 states become close to parallel
as a function of detuning ε, giving protection from charge

noise and also enabling single-qubit operations that do
not depend on the state of the other QDHQ. For detun-
ings closer to the polarization line, the QDHQ states |0〉
and |1〉 acquire slightly different charge components, and
thus the QDHQ develops a charge dipole whose magni-
tude is tunable with ε. When both QDHQs are tuned
to the regime in which non-zero charge dipoles exist, the
capacitive coupling g causes the phase of the four two-
qubit basis states to evolve in a manner consistent with
a controlled-phase gate [43].

III. CONCLUSION

We measure the capacitive coupling and all inter-DD
and intra-DD capacitances in a linear array of four quan-
tum dots in the few-electron regime at a range of tunings.
We tune to a regime of strong intra-DD tunnel coupling
and measure the capacitive coupling to be g = 20.9± 0.3
GHz, which is strong enough to be able to implement
high-fidelity two-qubit operations. We demonstrate a fit-
ting procedure to extract all the parameters of the 4D
Hamiltonian for two capacitively coupled charge qubits
from a 2D slice through the quadruple dot stability dia-
gram. We tune the capacitive elements in the quadruple
dot array with inter-dot barrier gate voltages and see the
capacitive coupling change over a range of 15-32 GHz.
We provide a simple model based on a system of charge
nodes joined by capacitors to illustrate how capacitive
coupling should depend on the inter-DD and intra-DD
capacitances of the system and find the model agrees
well with the trends in the measured data.
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