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Nonlinear processes in the quantum regime are essential for many applications, such as quantum-
limited amplification, measurement and control of quantum systems. In particular, the field of
quantum error correction relies heavily on high-order nonlinear interactions between various modes
of a quantum system. However, the required order of nonlinearity is often not directly available
or weak compared to dissipation present in the system. Here, we experimentally demonstrate a
route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear
processes, using a generalization of the Raman transition. In particular, we show a transformation
of four photons of a high-Q superconducting resonator into two excitations of a superconducting
transmon mode, and vice versa. The resulting six-quanta process is obtained by cascading two
fourth-order nonlinear processes through a virtual state. We expect this type of process to become
a key component of hardware efficient quantum error correction using continuous-variable error
correction codes.

I. INTRODUCTION

Encoding quantum information in the large Hilbert
space of a harmonic oscillator allows for hardware-
efficient quantum error correction [1–5]. A further in-
crease in hardware efficiency can be achieved by pro-
tecting the information using an autonomous feedback
mechanism. It is possible to achieve such autonomous
quantum error correction by employing nonlinear driven-
dissipative processes to create a decoherence-free mani-
fold of quantum states, within the Hilbert space of the
oscillator [6–18]. In particular, a stabilized manifold
spanned by four coherent states of a harmonic oscilla-
tor has been proposed for the implementation of a hard-
ware efficient logical qubit [3, 11]. Autonomously pro-
tecting the logical qubit against dephasing errors requires
a four-photon driven-dissipative process, which forces
the harmonic oscillator to gain and lose photons in sets
of four. Combining such stabilization with correction
against photon loss errors via quantum nondemolition
parity measurements [5, 19–21] results in complete first-
order quantum error correction (QEC).

One approach for engineering the required four-photon
driven-dissipative process has been proposed in [22]. The
idea is to implement a six-quanta process that exchanges
four photons of a high-Q resonator mode a (destruction
operator a) with two excitations of a transmon mode b
(eigen states |g〉, |e〉, |f〉) and vice versa, corresponding
to an effective interaction given by a4|f〉〈g| + a†4|g〉〈f |
(see Fig. 1a). Adding a two-excitation drive and dis-
sipation on the transmon, by employing a combina-
tion of techniques demonstrated in references [13, 23],
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will then result in a four-photon driven-dissipative pro-
cess on the high-Q resonator. The implementation of
a4|f〉〈g|+a†4|g〉〈f | interaction requires a Raman-assisted
cascading [24] of two four-wave mixing interactions, each
of which exchanges two resonator photons with a vir-
tual (non-energy-conserving) excitation in the transmon
mode and a pump photon, and vice versa. This transi-
tion through the virtual state plays a vital role of cascad-
ing the two nonlinear processes, and giving an effective
higher-order process. On the other hand, mediating the
transition through an eigen-state of the system will result
in two individual processes in series, instead of a higher-
order nonlinearity. Additionally, the virtual state also
helps in suppressing the decoherence errors induced by
the finite life-time of the transmon mode.

Raman transitions using linear processes [24, Ch. 6]
or a combination of one linear and one nonlinear pro-
cess [25] have been previously demonstrated. Our imple-
mentation of the a4|f〉〈g|+a†4|g〉〈f | interaction, however,
requires the cascading of two nonlinear multi-quanta pro-
cesses. In our experiment we show that not only the
Raman-assisted cascading of nonlinear processes is fea-
sible, but also the magnitude of the effective interaction
can be made much larger than the damping rates of the
high-Q modes, hence, generating a useful interaction for
QEC. In principle, the same driven-dissipative process
could instead be realized by utilizing a six-wave mix-
ing term in the Josephson cosine potential, addressed
using an off-resonant pump. However, the currently
achievable magnitude of the six-wave mixing term, ob-
tained from expanding the Josephson cosine potential,
is small compared to the dissipation rates of the system
and other spurious terms present in the Hamiltonian (see
appendix C). Hence, Raman-assisted virtual cascading
of low-order mixing processes is essential for enhancing
the strength of the desired four-photon driven-dissipative
process for hardware efficient QEC.

This paper is organized as follows: Section II develops
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FIG. 1. Schematic of Raman-assisted nonlinear pro-
cesses and their experimental implementation. (a) The
target six-quanta process that exchanges four photons of a
high-Q resonator (magenta) with two excitations of a trans-
mon mode (green) and vice versa. (b) Energy level diagram of
a high-Q storage resonator at frequency ωa coupled to a trans-
mon mode at frequency ωb (called conversion mode). The first
three transmon eigenstates (denoted by |g〉, |e〉 and |f〉) and
the first five eigenstates of the storage resonator (denoted by
|0〉 to |4〉) are considered. Starting in |g0〉, the system is pre-
pared in |f0〉 by applying |g〉 → |e〉 and |e〉 → |f〉 Rabi pulses
(green arrows). A pump at frequency ωp1 (blue) connects |f0〉
to a virtual (non-energy-conserving) state, represented by the
dashed line, detuned from |e2〉 with a detuning ∆. This vir-
tual state acts as an intermediate metastable excitation of the
transmon. A second pump at frequency ωp2 (brown) connects
the virtual state to |g4〉, thus converting the two transmon
excitations into four resonator excitations. (c) Frequencies of
the pumps and the transitions involved in the scheme. (d)
Schematic of the implementation. The high-Q storage mode
is formed by an aluminum λ/4-type 3-dimensional supercon-
ducting resonator (magenta), which is dispersively coupled to
the conversion transmon (green) and the tomography trans-
mon (red). The two λ/2 stripline resonators coupled to the
transmons are used for performing single-shot readout of the
respective transmons.

the theoretical background for the cascaded transition
demonstrated in this article. Section III is dedicated to
the experimental demonstration. Specifically, subsection
III A describes the experimental setup, subsection III B
describes the calibration of the pump frequencies and
powers, and subsections III C, III D discuss the tomog-
raphy performed on the system. In section IV we discuss
some limitations of our current experiment, followed by
conclusions in section V.

II. THEORY

In order to demonstrate the feasibility of cascading
nonlinear processes through virtual states, our experi-
ment focuses on the Raman-assisted |f0〉 ↔ |g4〉 tran-
sition. This transition is a precursor to the aforemen-
tioned a4|f〉〈g| + a†4|g〉〈f | process which requires the
|fn〉 ↔ |g(n+ 4)〉 transitions to all occur simultaneously.
The basic principle behind the |f0〉 ↔ |g4〉 transition,
based on the application of two pumps at frequencies ωp1
and ωp2, is explained in Fig. 1b, with the help of a level
diagram. Here, we develop a basic theoretical model for
this transition. A more detailed derivation of the effec-
tive Hamiltonian is presented in appendix B.

The two pump frequencies ωp1,2 are chosen such that
they each enable a nonlinear process of the form a2b +
a†2b, where we have introduced the destruction operator
b for the transmon involved in the |f0〉 ↔ |g4〉 transition.
This interaction enables an exchange of two photons of
the cavity with a single excitation of the transmon mode
and a pump photon, and vice versa. Hence, it is a four-
wave mixing interaction. The Hamiltonian of the system
in presence of the pumps is given by

Hsys

~
=
H0

~
+
[(
g1e
−iωp1t + g2e

−iωp2t
)
a2b† + h.c.

]
(1)

where g1 and g2 are amplitudes of the pumped processes
and h.c. denotes Hermitian conjugate. The first term H0

is the diagonal part of the Hamiltonian expressed as

H0

~
=ω̃aa

†a + ω̃bb
†b− χaba†ab†b

− χaa
2

a†2a2 − χbb
2

b†2b2 ,

where ω̃a,b are Stark-shifted mode frequencies, χab is the
cross-Kerr between the modes, χaa is the anharmonicity
inherited by the resonator and χbb is the anharmonicity
of the transmon. The Stark shifts are related to the pump
amplitudes by the following relations:

ω̃a = ωa − 4
(
|g1|2 + |g2|2

)
ω̃b = ωb −

8χbb
χab

(
|g1|2 + |g2|2

)
(2)

where ωa,b are the bare frequencies of the modes. In
terms of these quantities, the pump frequencies are ex-
pressed as

ωp1 = 2ω̃a − ω̃b + χbb − 2χab + ∆ + δ

ωp2 = 2ω̃a − ω̃b + 2χab −∆ + δ . (3)

These two pumps are equally detuned from the |f0〉 ↔
|e2〉 and |e2〉 ↔ |g4〉 transitions by a detuning ∆ (see
Fig. 1c). The common shift in the pump frequencies,
given by δ (not shown in figure), helps in accounting for
the anharmonicity of the resonator and also some higher
order frequency shifts (see appendix B). The effective
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Hamiltonian of the system to the second-order in the
rotating wave approximation (RWA) [26] is given by

Heff

~
∼= g4ph (|f0〉〈g4|+ |g4〉〈f0|) , (4)

where

g4ph =
√

48g1g2

(
1

∆
− 1

χbb − 4χab + ∆

)
(5)

is the magnitude of the cascaded process. It is clear from
the effective Hamiltonian that the two pumps induce the
desired |f0〉 ↔ |g4〉 transition in the system. Note that,
the second order RWA performed in the derivation is
valid only when |g1,2| � ∆. For finite |g1,2| there is
leakage to the intermediate state |e2〉, as usual in Raman
transitions. The leakage rate is directly proportional to
| g1,2∆ |2.

III. EXPERIMENTAL DEMONSTRATION

In the last section we showed that the effective Hamil-
tonian in the presence of the two pumps gives rise to a
|f0〉 ↔ |g4〉 transition. In this section we focus on the
experimental demonstration of these oscillations. We be-
gin our discussion by describing the setup and the cali-
bration process for the two pumps. This is followed by a
characterization of the process using tomography of the
transmon-resonator system.

A. System details

The experimental setup for testing our transition re-
quires (i) a high-Q resonator, (ii) a transmon mode for
the conversion process, and (iii) a second transmon mode
to perform tomography [27] of the resonator. In addi-
tion, we need to be able to couple pumps strongly with
the conversion transmon, while maintaining the qual-
ity factor of various modes of the system. The high-Q
storage resonator (T1 = 76µs) is realized as a high pu-
rity aluminum, λ/4-type, post-cavity [28] with frequency
ωa/2π = 8.03 GHz (see Fig. 1c). The resonator is dis-
persively coupled to two transmons as shown in Fig. 1c.
The transmon in the conversion arm has a resonance
frequency ωb/2π = 5.78 GHz, anharmonicity χbb/2π =
122.6 MHz and a cross-Kerr of χab/2π = 7.4 MHz with
the high-Q resonator. The T1 and T2 of the conversion
transmon are 50µs and 7.6µs respectively. The second
transmon is employed to perform Wigner tomography
on the storage resonator and has a cross-Kerr of 1.1 MHz
with it. Both transmons are coupled to low-Q resonators
through which we perform single-shot measurements of
the transmon state. In the case of the conversion trans-
mon, the measurement distinguishes, in single-shot, be-
tween the first three states |g〉, |e〉 and |f〉. The enclo-
sure of the high-Q resonator acts as a rectangular waveg-
uide high-pass filter with a cutoff at ∼ 9.5 GHz. Since
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FIG. 2. Pulse sequence and Rabi oscillations of the
cascading process. (a) Pulse sequence used for locating the
|f0〉 ↔ |g4〉 resonance of the system. The system is initialized
in |f0〉 by using π-pulses on |g〉 ↔ |e〉 and |e〉 ↔ |f〉 transi-
tions. Following this, the two pumps are applied with varying
frequency and duration. The frequency difference of the two
pumps is maintained constant at χbb− 4χab + 2∆. Finally an
indirect measurement of the storage resonator population is
performed using a photon-number selective π-pulse on the to-
mography transmon and a measurement pulse on the tomog-
raphy resonator. Optionally, a measurement of the conversion
transmon state can also be performed using a measurement
pulse on the conversion resonator. (b) Rabi oscillations in the
population of Fock state |0〉 (p0, colorbar). The x-axis shows
the detuning of pump 1 from the |f0〉 ↔ |e2〉 transition, the
y-axis shows the duration for which the two pumps are ap-
plied. The frequency landscape above the data explains the
origin of the two chevron like features.

the two pump frequencies, ωp1/2π = 10.397 GHz and
ωp2/2π = 10.294 GHz, are above the cutoff, they are
applied through the strongly coupled (waveguide mode
Q ≤ 100) pin at the top. The high-Q resonator and the
transmon modes are below the cutoff and are thus pro-
tected from relaxation through this pin. The remaining
system parameters are quoted in table 1 and the mea-
surement setup is described in appendix E.

B. Process calibration

In order to locate the correct pump frequencies for
the transition of interest, we use the pulse sequence
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shown in Fig. 2a. The system is initialized in |f0〉
and the two pumps are applied for a variable period of
time. The pump frequencies are swept such that the fre-
quency difference is maintained constant at ωp1 − ωp2 =
χaa − 4χab + 2∆. We choose ∆/2π = 5.1 MHz and
g1,2/2π ∼ 0.5 MHz. The rising and falling edges of the
pump pulses are smoothed using a hyperbolic tangent
function with a smoothing time of 192 ns. These pa-
rameters are empirically optimized to reduce the leakage
to the |e2〉 state while achieving a g4ph that is an or-
der of magnitude faster than the decoherence rates of
the system. The resulting resonator state is character-
ized by applying a photon-number selective π-pulse [29]
on the tomography transmon. The pulse has a gaussian
envelope of width σsel = 480 ns (total length 4σsel), re-
sulting in a pulse bandwidth of ∼ 332 kHz, which is less
than the cross-Kerr between the tomography transmon
and the high-Q resonator. As a result the tomography
transmon is excited only when the storage resonator is
in |0〉. Finally, the state of the tomography transmon is
measured. An optional single-shot measurement of the
conversion transmon can also be performed as indicated
by the dashed green measurement pulse in Fig. 2a.

The outcome of the described measurement is shown
in Fig. 2b. The population fraction of the Fock state
|0〉 is plotted as a function of the duration for which the
pump pulses are applied and the detuning of the first
pump ωp1 from the |f0〉 ↔ |e2〉 transition. The data dis-
plays Rabi oscillations arising from two processes. The
one on the left occurs when pump 1 is resonant with
the |f0〉 ↔ |e2〉 transition. The one on the right cor-
responds to the two pumps being equally detuned from
the |f0〉 ↔ |g2〉 and |e2〉 ↔ |g4〉 transitions. This is the
Raman-assisted |f0〉 ↔ |g4〉 transition of interest. The
resulting chevron pattern for this transition is narrower
since the cascaded transition occurs at a slower rate than
the |f0〉 ↔ |g2〉 transition. From the frequency of the os-
cillations we extract g4ph/2π = 0.32 MHz.

In order to compare the experimental results with the-
ory, accurate measurements of the pump amplitudes g1,2

are necessary. However, the pumps experience frequency
dependent attenuation due to the dispersion in the input
lines. Moreover, the coupling strengths of the pumps are
also frequency dependent, since the pumps are effectively
filtered by the resonant modes of the system. In order
to eliminate these effects, we calibrate the pump ampli-
tudes in separate experiments, by measuring the Stark
shift of the conversion transmon in presence of individ-
ual pumps (with other the pump turned off). The pump
frequencies in these measurements are the same as those
used for addressing the |g4〉 ↔ |f0〉 transition. Using
Eq. (2) we can relate the measured Stark shift, to the
pump amplitudes g1,2. The Stark shift of the conversion
transmon, due to pump 1 and pump 2, is 5.15 MHz and
4.26 MHz respectively. This results in g1/2π = 0.53 MHz
and g2/2π = 0.48 MHz. For these parameters, Eq. (5)
predicts a g4ph/2π of 0.33 MHz, in close agreement with
the measured value of g4ph/2π = 0.32 MHz.

(a)

(b)
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FIG. 3. Partial tomography of |f0〉 ↔ |g4〉 oscillations
as a function of time. The system is prepared in |f0〉 and
the two pumps are applied for a variable period of time on
resonance with the |f0〉 ↔ |g4〉 transition. Following this,
a selective pulse with a variable frequency is applied on the
tomography transmon enabling an indirect measurement of
various Fock state populations of the storage resonator. (a)
Excited state population of tomography transmon (colorbar)
versus pump duration (x-axis) and the detuning of the selec-
tive π-pulse on the tomography transmon (y-axis). The y-axis
on the right shows the frequency of the tomography transmon
(ωTn) conditioned on the number of photons n in the storage
mode.(b) From top to bottom, |0〉, |2〉 and |4〉 Fock state pop-
ulations (magenta), measured along the dashed lines shown
in panel (a). Independently measured populations in |f〉, |e〉
and |g〉 states of the conversion mode (green) are also plot-
ted, respectively, from top to bottom. The plots on the left
are experimental data and the ones on the right are obtained
from numerical simulation (see text).

C. Partial tomography of the |f0〉 ↔ |g4〉 process

Having found the desired |f0〉 ↔ |g4〉 process, we fix
our pump frequencies to be resonant with this transition
and proceed to characterize these oscillations in more de-
tail. First, we obtain the populations of different Fock
states of the storage resonator, by employing a pulse se-
quence similar to the one presented in Fig. 2a. Here,
however, the frequency of the photon-number selective
pulse on the tomography transmon is varied, whereas the
pumps are applied at a constant frequency. The result
of this measurement is plotted in Fig. 3a. The popula-
tion fractions of various Fock states are inferred by taking
cross-sections at the resonance frequency of the tomogra-
phy transmon conditioned on the number of photons in
the high-Q resonator. The resonator oscillates between
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|0〉 and |4〉 with some leakage to |2〉 due to the finite de-
tuning ∆ from |e2〉 (see the ωT0/2/4 lines in Fig. 3a). The
population appearing in |1〉 and |3〉 is due to finite energy
relaxation time of the resonator mode. Next, we indepen-
dently measure the populations of |f〉, |e〉 and |g〉 states
of the conversion transmon using the dashed-green mea-
surement pulse shown in Fig. 2a. The evolution of the
|0〉, |2〉 and |4〉 state populations of the storage resonator
and the |f〉, |e〉, |g〉 state populations of the conversion
transmon as a function of time are plotted in the first
column of Fig. 3b. The respective populations oscillate
in phase with each other as expected. The amplitude
of the oscillations is limited by the T2 of the conversion
qubit and the measurement contrast. We are also able
to resolve an envelope of fast oscillations in the popula-
tions of |e〉, |g〉 and |2〉, |4〉 states. These are expected
for a Raman transition and occur at a rate given by the
detuning ∆.

The plots in the second column of Fig. 3b show the
results of a numerical simulation of the Lindblad mas-
ter equation of the conversion transmon plus resonator
system, given by

ρ̇ =− i

~
[Hsys, ρ] + κaD [a] ρ+ κbD [b] ρ

+ Γφ,aD
[
a†a
]
ρ+ Γφ,bD

[
b†b

]
ρ . (6)

Here, ρ is the density matrix, Hsys is the Hamiltonian
given in Eq. 1, and

D[A]ρ = AρA† +
1

2

(
A†Aρ+ ρA†A

)
. (7)

The decoherence rates are given by

κk =
1

T1,k
and Γφ,k =

1

T2,k
− 1

2T1,k
,

with k = a, b. All parameters used in the simulation are
independently evaluated (see previous sections). We set
the initial state of the system as |f0〉〈f0| and simulate
Eq. (7), with the pump tones on for a variable amount of
time. The smoothed edges of the pump tones are taken
into account by inducing the same time dependence on
g1,2, and adding a time dependent Stark shift. From
the resulting density matrix we find the populations of
the various Fock states and the |g〉, |e〉, |f〉 states of the
transmon. The obtained populations are scaled such that
the maximum and minimum of each trace, matches with
the maximum and minimum of the corresponding exper-
imental data, in order to account for the measurement
contrast. The simulation reproduces the experimental
results well, including the fast oscillations found in the
data.

D. Coherence of the |f0〉 ↔ |g4〉 process

Finally, in order to demonstrate that the oscillations
are coherent, we stop the oscillations after a quarter of
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FIG. 4. Conditional Wigner tomography of the stor-
age resonator after a quarter period of the |f0〉 ↔ |g4〉
oscillation. After quarter period of |f0〉 ↔ |g4〉 oscillation
the system is in the state (|f0〉+ |g4〉) /

√
2. (a, b) show exper-

imental Wigner function of the storage resonator after post-
selecting the conversion mode in the |g〉 and |e〉 states. This
leaves the storage resonator in Fock states |4〉, |0〉 respec-
tively. (d, e) show the ideal Wigner functions of Fock states
|4〉, |0〉 for comparison. (c) Wigner function of the resonator
after photon-number selective π-pulses from |f0〉 to |e0〉 and
|e0〉 to |g0〉 (indicated by Usel) and post-selecting the conver-
sion transmon in |g〉. Comparing (c) with the ideal Wigner
function of (|0〉+ |4〉)/

√
2 state in (f), shows that the storage

resonator is in a coherent superposition of |0〉 and |4〉, thus
indicating that the |f0〉 ↔ |g4〉 oscillations are coherent.

a period (372 ns). This is expected to prepare a coher-

ent superposition of |f0〉, |g4〉 given by (|f0〉+ |g4〉) /
√

2.
We experimentally characterize the state of the system
by performing Wigner tomography of the resonator, con-
ditioned on conversion transmon states. As expected, the
resonator ends up in Fock state |4〉 (|0〉) when the con-
version transmon is post-selected in |g〉 (|f〉) as shown
by Fig. 4a (4b). Moreover, applying a photon number
selective f → g pulse on the conversion transmon, con-
ditioned on zero photons in the storage resonator, dis-
entangles the transmon from the resonator, leaving the
system in |g〉 ⊗ (|0〉+ |4〉) /

√
2. The Wigner function of

the resonator after post-selecting the conversion trans-
mon in |g〉, shown in Fig. 4c, depicts a (|0〉+ |4〉) /

√
2

state, thus proving that the oscillations are coherent.
For comparison, the ideal Wigner functions of |4〉, |0〉
and (|0〉+ |4〉) /

√
2 are shown in panels d, e and f of

Fig. 4 respectively. It is also interesting to note that
(|0〉+ |4〉) /

√
2 is one of the logical states of binomial

QEC codes [30].

IV. DISCUSSION

While we have demonstrated a six-quanta |g4〉 ↔
〈f0| transition, autonomous QEC requires a a4|f〉〈g| +
a†4|g〉〈f | process, where all of the |fn〉 ↔ |g(n + 4)〉
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transitions are resonant simultaneously. This can be ac-
complished by making the strength of the pumped pro-
cesses (g1,2) higher than the cross-Kerr terms χab be-
tween the storage resonator and the conversion transmon.
However, such pump strengths are not achievable in our
current system, due to spurious transitions induced by
strong pumps, similar to those seen in references [31, 32].
This limitation, however, should not discourage future
applications, since, there have been proposals to increase
tolerance for the pump strengths by shunting the trans-
mon with a linear inductor [33] or using flux-biased cir-
cuits to cancel cross-Kerr between modes [34].

The leakage to the intermediate state |e(n − 2)〉
could be another limitation for QEC applications. In
future iterations of our experiment, this leakage can be
minimized by increasing the detuning and making the
pulses more adiabatic, albeit at the cost of making the
overall process slower. It is also possible to use pulse
shaping techniques like stimulated Raman adiabatic
passage (STIRAP) [24, Ch. 6.2.3] to implement this
transition without any leakage. The effect of this leakage
on the error-correction protocol is discussed at length in
Ref. [22]. Moreover Ref. [18] details an alternative QEC
scheme which uses a similar driven-dissipative process,
however, it is insensitive to leakage to the |e, n−2〉 state.

V. CONCLUSION

In conclusion, we have shown that nonlinear processes
can be cascaded through a virtual state to engineer
higher-order nonlinear Hamiltonians. The rate of this
highly nonlinear transition is faster than the decoherence
rates. The oscillations are coherent and follow the theo-
retical predictions closely. The demonstrated |g4〉 ↔ |f0〉
oscillations are a precursor to the implementation of the
complete a4|f〉〈g| + a†4|g〉〈f | Hamiltonian, which is an
important component of hardware efficient quantum er-
ror correction using Schrödinger cat-states.

Moreover, while three- and four-wave mixing processes
have played a key role in cQED applications [35–41],
many proposals will benefit from increasingly higher-
order nonlinear interactions [14, 18, 42, 43]. We have
accomplished a deeper goal of verifying that higher-order
nonlinear interactions can indeed be engineered by cas-
cading lower-order nonlinear processes. As shown in ap-
pendix A, it is possible to cascade any two processes
through a virtual state, as long as the commutator of the
operators that describe the processes is the operator de-
scribing the desired higher-order process. Therefore, such
cascading could be useful for the broader field of quan-
tum optics and quantum control. Additionally, the pos-
sibility of cascading indicates that advanced techniques
like GRAPE (gradient-ascent pulse engineering) [44, 45]
could utilize pulses addressing nonlinear processes to gain
additional control knobs over the system, thus potentially
increasing the speed and fidelity of the engineered uni-

tary operations.
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Appendix A: Designing a Raman-assisted
higher-order process

In this section we use the expressions for second-order
rotating wave approximation (RWA) [26] to obtain some
pointers towards designing Raman-assisted higher-order
processes. Consider a Hamiltonian in an interaction pic-
ture with respect to the diagonal part, given by

HI(t)

~
=
Hc

~
+ g1e

i∆tA1 + g∗1e
−i∆tA†1

+ g2e
−i∆tA2 + g∗2e

i∆tA†2. (A1)

Here, Hc is time-independent part of HI(t) and A1, A2

are operators describing off-diagonal interactions avail-
able in the system. The specific expressions for A1 and
A2, in the case of our experiment, are considered in a
latter section. In the given rotating frame of HI(t), the
two processes are detuned by +∆ and −∆ respectively.
The effective Hamiltonian to the second-order in RWA is
given by

HRWA = HI(t)− iH ′I(t)
∫

dtH ′I(t), (A2)

where

H(t) = lim
T→∞

1

T

∫ T

0

dtH(t),

and H ′I(t) = HI(t)−HI(t).

Applying this to the Hamiltonian in Eq. A1 we obtain

Heff

~
=
Hc

~
+
|g1|2
∆

[
A1,A

†
1

]
− |g2|2

∆

[
A2,A

†
2

]
+
g1g2

∆
[A1,A2]− g∗1g

∗
2

∆

[
A†1,A

†
2

]
. (A3)

This reveals effective interactions, given by the commu-
tation relations of the operators A1 and A2. Therefore,
in order to design a Raman-assisted higher-order process
we have to use the following three principles.

• Select the lower-order processes such that their
commutation relation is a non-zero operator de-
scribing the required higher-order process.
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• Design the lower-order processes to be oscillating
with equal and opposite frequencies ∆ so that their
product survives the second order RWA.

• Engineer the time independent part HC in Eq. (A1)
to cancel the effect of the unwanted resonant terms
in Heff as well as effects arising at higher-orders in
perturbation theory (not shown).

Another issue to keep in mind is the validity of second-
order RWA. Eq. A3 is a good approximation only when
|g1|
∆ , |g2|∆ � 1. In general, along with the interactions

given in Heff , the two individual processes described by
A1, A2 are also off-resonantly enabled, leading to leakages
corresponding to A1, A2 transitions. These leakages can

be minimized by selecting smaller values of
|g1,2|

∆ albeit
at the cost of slowing the desired effective process as well.

Appendix B: Detailed calculations for the |f0〉 ↔ |g4〉
process

Here we present a more detailed version of the calcu-
lations presented in section II of the main text. Follow-
ing the analysis in [22], the Hamiltonian of a transmon-
resonator system in presence of off-resonant pumps is
given by

H

~
= ωaa

†a + ωbb
†b− EJ

~

[
cos (Φ(t)) +

Φ2(t)

2!

]
, (B1)

where b is the destruction operator corresponding to the
conversion transmon and Φ(t) is the phase across the
Josephson junction of the conversion transmon. The ex-

pression for Φ(t) is given by

Φ(t) =φa
(
a + a†

)
+ φb

(
b + b†

)
+ φb

∑
k=1,2

ξk exp (−iωpkt) + ξ∗k exp (iωpkt) ,

and EJ is the Josephson energy. The ratios φa,b and
ξ1,2 are the dimensionless participation amplitudes of the
respective modes and the pumps in the junction. The
typical magnitudes of φa,b are φ2

a ∼ 10−3 and φ2
b ∼ 10−1

respectively. The two pump frequencies are mentioned
in Eq. 3. For the purpose of this calculation, we have
assumed that the pumps only couple to mode b. This
assumption does not lead to any loss of generality since
the coupling to mode a can be effectively absorbed in the
time dependent part of Φ(t) with a slight modification to
ξk.

Expanding the Hamiltonian in Eq. B1 to the fourth
order in cosine expansion and keeping only the terms that
will survive after second order RWA leads us to Eq.(1)
quoted in section II. The pump amplitudes g1,2 in terms
of ξ1,2 are given by

g1,2 = −EJφ
2
aφ

2
b

2
ξ1,2 = −χab

2
ξ1,2. (B2)

and the expressions for the Stark shifted frequencies of
the modes are

ω̃a = ωa −
(
|ξ1|2 + |ξ2|2

)
χab

ω̃b = ωb − 2
(
|ξ1|2 + |ξ2|2

)
χbb (B3)

where ωa,b are the bare frequencies. Combining Eq. (B2)
and Eq. (B2) leads to a direct relation between Stark
shift and g1,2 quoted in Eq. (2). This relation is useful
for calibrating the pump strengths in section III B.

Going into the rotating frame with respect to H0/~ +
χaa

2 a†2a2 − δb†b we get the Hamiltonian in the interac-
tion picture

HI

~
=− 6χaa|g4〉〈g4| − (χaa + δ) |e2〉〈e2| − 2δ|f0〉〈f0|

+
√

4 [g1 exp (i∆t) + g2 exp (−i(χbb − 4χab + ∆)t)] |f0〉〈e2|+ h.c.

+
√

12 [g1 exp (i(χbb − 4χab + ∆)t) + g2 exp (−i∆t)] |e2〉〈g4|+ h.c. . (B4)

Comparing this expression with the expression given in
Eq. (A1), we can infer that the first row is the time inde-
pendent part Hc and, |f0〉〈e2|, |e2〉〈g4| are the individual
A1, A2 processes in Eq. (A1). The other terms in the

Hamiltonian do not contribute after second order RWA
and hence, are ignored. Finally, performing the RWA as
specified in appendix A, we get the effective Hamiltonian
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Heff

~
= g4ph (|g4〉〈f0|+ |f0〉〈g4|)

+

(
12|g2|2

∆
− 12|g1|2
χbb − 4χab + ∆

− 6χaa

)
|g4〉〈g4|

−
(

12|g2|2 + 4|g1|2
∆

− 4|g2|2 + 12|g1|2
χbb − 4χab + ∆

+ χaa + δ

)
|e2〉〈e2|

+

(
4|g1|2

∆
− 4|g2|2
χbb − 4χab + ∆

− 2δ

)
|f0〉〈f0| . (B5)

The first row in the above equation is the desired effective
interaction. The magnitude of g4ph has been quoted in
Eq. (5). The other terms in the Hamiltonian are higher-
order frequency shifts introduced by the pumps. We com-
pensate for these shifts in the experiment by sweeping the
pump frequencies while keeping the difference between
them constant at χbb− 4χab + 2∆. This common shift of
pump frequencies given by δ, amounts to

δ = 3χaa +

(
2|g1|2 − 6|g2|2

∆
+

6|g1|2 − 2|g2|2
χbb − 4χab + ∆

)
. (B6)

It can be seen that for this value of delta, the higher-order
frequency shifts introduced in |f0〉 and |g4〉 states are
equal, thus making the |f0〉 ↔ |g4〉 transition resonant.

Appendix C: Comparison with the magnitude of
six-wave mixing process

As mentioned in the main text, the four-photon driven-
dissipative process required to stabilize a manifold of
four-component Schródinger cat states can, in principle,
be implemented in two distinct ways. The first way is
through Raman-assisted cascading, which is the topic of
exploration for our article. The other way is using the
six-wave mixing capabilities of a Josephson junction. The
idea is to exchange four photons of a storage resonator
with a single excitation of a Josephson junction mode
such as transmon, SQUID, SNAIL [40] etc., accompa-
nied by a release of pump-photon, and vice versa; a five-
quanta process. In this section we compare the estimated
magnitude of this six-wave mixing process with that of
the Raman-assisted cascading.

The magnitude of the six-wave mixing process can be
estimated by expanding the cosine potential in Eq. (B1)
to the sixth-order. The expression for the rate of this
interaction is

g6−wave =
EJ
24~

φ4
aφ

2
bξ0 =

φ2
a

24
χabξ, (C1)

where ξ0 is the strength of the pump addressing the five-
quanta process. On the other hand, using the expressions
in [22], one gets the rate of the Raman-assisted a4b†2 +

a†4b2 process as

gRaman =
χabξ

20

(
1− 5χabξ

χbb − 4χab + 5χabξ

)
. (C2)

Here we have substituted g1 = g2 = χabξ/2 and ∆ =
10g1,2 = 5χabξ. This maintains ∆ � g1,2 for the RWA
to be valid. In order to estimate the relative strength of
the processes, we use ξ0 = ξ1 = ξ2 ∼= 0.2 and φ2

a
∼= 0.002

obtained by using the parameters of our system as a
guide. These are representative of the typical parame-
ters achievable in resonators coupled to transmon modes.
The pump strengths are chosen based on an empiri-
cally observed limit, imposed by the chaotic behavior of
high-Q transmon-resonator system, at high pump pow-
ers [31, 32]. Using Eq. (C1) and Eq. (C2), we estimate
that the Raman-assisted process will be stronger than
the six-wave mixing process by about two-orders of mag-
nitude. Moreover, assuming the validity of these rate
expressions at higher pump-powers, the Raman transi-
tion dominates the six-wave mixing process till the pump
strength ξ ≥ 600. In reality the expressions shown here
break down at such high pump strengths [33] and, in
high-Q devices, these regimes have not been experimen-
tally achieved yet.

Appendix D: Sample fabrication

All the modes of the system are simulated using AN-
SYS HFSS and the Hamiltonian of the system is in-
ferred using energy participation ratio black-box quan-
tization technique [46]. The cavity enclosure is machined
into a single block of high purity aluminum in order
to make a seamless re-entrant cavity [28]. The trans-
mons are fabricated as Al/AlOx/Al Josephson junctions
on a c-plane double-side polished sapphire wafer using
bridge-free electron beam lithography [47]. The low-Q
resonators are realized as stripline λ/2 resonators defined
lithographically. The coupling pins shown in the Fig. 1d
and Fig. S1 are coaxial couplers whose coupling strength
is tuned by adjusting the length of their exposed pin.
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Conversion
resonator

Conversion
transmon

Storage resonator
Tomography
transmon

Tomography
resonator

Conversion
resonator

f: 9.93 GHz
κ: 5.32 MHz

χ: 5.7 MHz NA NA NA

Conversion
transmon

χ: 5.7 MHz

f: 5.78 GHz
T1: 50 µs
T2: 7.6 µs
χself : 122 MHz

χ: 7.4 MHz NA NA

Storage resonator NA χ: 7.4 MHz

f: 8.03 GHz
T1: 72 µs
T2: 56 µs
χself : 122 kHz

χ: 1.1 MHz NA

Tomography
transmon

NA NA χ: 1.1 MHz

f: 6.36 GHz
T1: 38 µs
T2: 8.8 µs
χself : 264 MHz

χ: 0.9 MHz

Tomography
resonator

NA NA NA χ: 0.9 MHz
f: 7.53 GHz
κ: 0.38 MHz

TABLE I. System parameters. Diagonal elements specify the frequencies (f) and the relaxation rates (T1) of the respective
modes. The dephasing rates (T2) and the self-Kerrs (χself) are also specified for the high-Q modes. Off diagonal elements are
the cross-Kerrs (χ) between two modes. In particular it is noteworthy that the modes for which the cross-Kerr are listed as
NA, are indeed isolated from each other physically, and hence, have negligible cross-Kerr between them.

Appendix E: Measurement setup

The principles of our measurement setup are similar
to those shown in [17]. A detailed wiring diagram has
been shown in Fig. S1. The upper half contains the
room temperature wiring (above 300 K dashed line) of
the experiment and the lower half shows the wiring
inside the dilution refrigerator. As mentioned in the
main text, we have two transmon qubits and the ability
to perform single-shot measurement on both qubits. The
low-Q resonator coupled to the conversion transmon has
a frequency of 9.93 GHz as mentioned in table I. This
is above the cutoff frequency of the waveguide enclosure
and hence, this mode couples to the transmission line
through the strongly coupled pin situated at the top of
the waveguide. This coupling pin serves the dual purpose
of measurement pin for the conversion transmon as well
as the pin through which the off-resonant pumps are
applied. Moreover, the coupling pin only addresses the
waveguide mode with the polarization along the length
of the pin. Hence, the applied pumps only couple to
the conversion transmon while leaving the tomography
transmon unperturbed. All the tones applied on this
pin are combined using a directional coupler and routed
to the coupling pin using a circulator. The directional
coupler also sends most of the pump signal back to
room temperature, hence effectively attenuating the
pump tones without heating up the base plate of the
dilution refrigerator. The circulator directs the reflected
signal from the waveguide pin towards a Josephson
parametric converter (JPC) which amplifies the signal
at the conversion resonator frequency and sends it
back to room temperature via circulator, isolators and
a high electron mobility transistor (HEMT) amplifier
placed at 4K. The coupling pin situated close to the

conversion arm is weakly coupled to the system and is
used to drive the conversion transmon. The pin situated
on the tomography arm, however, is strongly coupled
to the tomography resonator and is used for three
purposes. Firstly, it is used to readout the tomography
resonator in reflection. The signal is routed using two
circulators to a SNAIL parametric amplifier (SPA) [48]
and the amplified signal is routed through the circulator
towards the output chain. The other two purposes of
the tomography arm coupling pin are to address the
tomography qubit as well as the storage resonator. In
fact, the relaxation time of the storage resonator is
limited because of the coupling to the environment via
this pin. At room temperature, we have five generators
to address the system and two more for powering the
amplifiers. The generators addressing the conversion
resonator and the storage resonator are also combined
to produce a tone close to the frequencies of the pumps
thus phase locking the two modes with the pumps. The
other three generators are used to address the pumping
resonator, the tomography qubit and the tomography
resonator.

Appendix F: Wigner tomography

The Wigner tomography of the storage resonator is
performed in a similar manner to [19, 20]. After prepar-
ing the storage resonator in the desired state, we apply
a displacement pulse on the storage resonator, displac-
ing it by β. Following this, we perform a non-demolition
measurement of the parity of the storage resonator using
the tomography transmon. A narrow unselective gaus-
sian pulse (σ = 20 ns) puts the transmon in the su-



10

perposition of ground and excited state irrespective of
the state of the storage resonator. Next, the transmon
undergoes free evolution under the dispersive coupling
with the resonator. By choosing the evolution time to
be π/χtransmon,resonator = 416 ns and performing another
π/2 pulse on the transmon, we map the parity of the res-
onator on the state of the transmon. Finally the state

of the transmon is measured. The average of this mea-
surement is the expectation value to the parity. Fig. 4
shows the average parity of the storage resonator as a
function of the real and imaginary part of the applied
displacement β which is the Wigner function of the stor-
age resonator.
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