Tuning the Skyrmion Hall Effect via Engineering of Spin-Orbit Interaction

Collins Ashu Akosa, Hang Li, Gen Tatara, and Oleg A. Tretiakov

Phys. Rev. Applied 12, 054032 — Published 13 November 2019
DOI: 10.1103/PhysRevApplied.12.054032
Tuning skyrmion Hall effect via engineering of spin-orbit interaction

Collins Ashu Akosa1,2,*, Hang Li3, Gen Tatara1,4, and Oleg A. Tretiakov5†

1RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
2Department of Theoretical and Applied Physics, African University of Science and Technology (AUST), Km 10 Airport Road, Galadinwawa, Abuja F.C.T, Nigeria
3Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
4RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan and
5School of Physics, The University of New South Wales, Sydney 2052, Australia

(Dated: October 28, 2019)

We demonstrate that the Magnus force acting on magnetic skyrmions can be efficiently tuned via modulation of the strength of spin-orbit interaction. We show that the skyrmion Hall effect, which is a direct consequence of the non-vanishing Magnus force on the magnetic structure can be suppressed in certain limits. Our calculations show that the emergent magnetic fields in the presence of spin-orbit coupling (SOC) renormalize the Lorentz force on itinerant electrons and thus influence the topological transport. In particular, we show that for a Néel-type skyrmion and Bloch-type antiskyrmion, the skyrmion Hall effect (SkHE) can vanish by tuning appropriately the strength of Rashba and Dresselhaus SOCs, respectively. Our results open up alternative directions to explore in a bid to overcoming the parasitic and undesirable SkHE for spintronic applications.

I. INTRODUCTION

Over the last decade, spintronic research interest has switched towards a novel direction called \textit{spin-orbitronics} that exploits the relativistic coupling of electron’s spin to its orbit to create new and intriguing effects and materials \cite{1-3}. It turns out that spin-orbit interaction is very crucial in effects related to the efficient conversion of charge to spin current \cite{4, 5}, that is essential for spintronic applications. The former has been largely exploited for the creation of a novel class of topological materials such as chiral domain walls and magnetic skyrmions with enhanced thermal stability, low critical currents and smaller sizes. Therefore, spin-orbit related effects open up promising directions to create, manipulate, and detect spin currents for spintronic applications.

In magnetic materials with broken inversion symmetry, an atom with strong SOC can mediate an antisymmetric exchange interaction called the Dzyaloshinskii-Moriya interaction (DMI), that favors the non-collinear alignments of atomic spins \cite{6, 7}. In such materials, the competition between the DMI and other magnetic interactions notably, the exchange (that favors collinear alignment of atomic spins) is essential for the stabilization of exotic magnetic states such as helimagnets \cite{8} and magnetic skyrmions \cite{9}. The later have been widely projected as a viable contender for information carriers in the next-generation data storage and spin logic devices due to their small spatial extent, high topological protection, and efficient current-induced manipulation that allows for robust, energy-efficient, and ultra-high density spintronic applications \cite{10, 11}. However, the integration of ferromagnetic skyrmions in such applications is hindered by the undesirable SkHE, a transverse motion to the direction of current flow \cite{12, 13}.

To overcome this parasitic effect, several proposals have been put forward such as, the use of antiferromagnetic skyrmions \cite{14-17}, edge

* collins.akosa@riken.jp
† o.tretiakov@unsw.edu.au
It is known that DSOC stabilizes Bloch-type skyrmions [39–41], while RSOC stabilizes Néel-type skyrmions [42, 43]. However, recent realization of Bloch-type skyrmions in Rashba metals [44, 45] motivates us here to consider an interplay of both types of SOC in a two-dimensional skyrmionic system described by the Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m^*} + J\mathbf{m}(r) \cdot \hat{\mathbf{\sigma}} + \hat{\mathcal{H}}_R + \hat{\mathcal{H}}_D,$$

where m^* is the effective mass of electrons, \hat{p} is the momentum operator, J is the exchange interaction between the local moments in the direction of the unit vector \mathbf{m} and spins of itinerant electrons given by vector of Pauli matrices $\hat{\mathbf{\sigma}}$. The terms $\mathcal{H}_R = \beta_R(\sigma_x p_x - \sigma_y p_y)/\hbar$ and $\mathcal{H}_D = \beta_D(\sigma_x p_x - \sigma_y p_y)/\hbar$ describe the RSOC and DSOC, respectively. Furthermore, we consider J to be the dominant interaction compared to the SOCs, and since our considerations are based two-dimensional systems with strong confinement along e_z, the cubic-DSOC contribution is assumed to be small and negligible [37, 38]. To keep our analysis trackable, we consider an isolated skyrmion (antiskyrmion) with analytical ansatz without loss of generality given in spherical coordinates

$$\mathbf{m}(r) = (\cos \Phi \sin \theta, \sin \Phi \sin \theta, \cos \theta),$$

where the azimuthal angle is given as

$$\Phi(x, y) = q \text{Arg}(x, y) + \gamma_c,$$

where $q = \pm 1$ is the vorticity, i.e., $q = +1$ for skyrmions and $q = -1$ for antiskyrmions, and c is the helicity such that $\gamma_c = 0$ or π for Néel-type and $\gamma_c = \pm \pi/2$ for Bloch-type skyrmions and antiskyrmions. To provide a very general analysis, we consider the radial angle $\theta(r)$ with properties [46]

$$\cos \theta(r)_{r \to 0} = -\cos \theta(r)_{r \to R} = p, \quad (4)$$

and

$$\sin \theta(r)_{r \to 0} = \sin \theta(r)_{r \to R} = 0, \quad (5)$$

where $R \gg r_s$, r_s being the skyrmion radius, $p = \pm 1$ is the polarity that defines the orientation of the skyrmion’s core. In this representation, the topological charge Q of the magnetic solitons is given by $Q = pq$ [47]. Before we proceed, we note that our theoretical analysis is general and does not depend on any particular ansatz that satisfy Eqs. (3), (4) and (5). However, for our numerical calculations, we consider the radial angle given as

$$\theta(r) = \pi(3 - p)/2 + 4 \tan^{-1}(e^r/r_s).$$
III. ANALYTICAL RESULTS

It is well established that when itinerant electrons traverse a smooth and slowly varying magnetic texture, \(\mathbf{m}(r) \), there is a reorientation of their spins to follow the direction of local magnetization. This process gives rise to fictitious electromagnetic fields that act on the itinerant electrons. The emergent electrodynamics resulting from the system described by Eq. (1) is derived following the standard approach, i.e., the exchange term is diagonalized via a unitary transformation \(\hat{U} = \mathbf{n} \cdot \hat{\sigma} \), where \(\mathbf{n} = \left(\cos \Phi \sin(\theta/2), \sin \Phi \sin(\theta/2), \cos(\theta/2) \right) \) in the spin-space [48, 49]. The end result being that itinerant electrons in the transformed frame are subjected to a uniform ferromagnetic state and weakly coupled to the spin gauge fields given as

\[
\mathbf{A}_{\eta,\mu}^\perp = \mathbf{A}_{\eta,\mu}^\ast \cdot \mathbf{\sigma}_\perp^\ast = \mathbf{A}_{\eta,\mu}^\ast \cdot \mathbf{\sigma}_\perp, \quad (6)
\]

where \(\eta, \mu = s, R, D \) for the texture, Rashba and Dresselhaus induced gauge fields, respectively, \(\alpha \) and \(\mu \) represent the spin and real-space indices, respectively, \(\mathbf{A}_{\eta,\mu}^\perp = (\mathbf{A}_{\eta,\mu}^s, \mathbf{A}_{\eta,\mu}^R, 0) \), and \(\mathbf{\sigma}_\perp = (\mathbf{\sigma}_x, \mathbf{\sigma}_y, 0) \). We ignore the off-diagonal component \(\mathbf{A}_{\eta,\mu}^\parallel \) that describe nonadiabatic processes which are important in the nonadiabatic regime of weak exchange and/or sharp magnetic textures [50-53] typical in dilute magnetic semiconductors [54]. In this study, we focus on the \(\mathbf{A}_{\eta,\mu}^s \) component which is diagonal and describe adiabatic processes that preserve the spin state in all parameter space considered. The origin of the spin gauge fields given by Eq. (6) represented by the subscript \(\eta \) include contributions: (i) due to the magnetic texture \(\mathbf{A}_s^\ast \), (ii) as a result of an interplay between RSOC and the magnetic texture \(\mathbf{A}_R^\ast \), and (iii) interplay between DSOC and the magnetic texture \(\mathbf{A}_D^\ast \) given by [36]

\[
\mathbf{A}_s^\ast = \frac{\hbar}{2e} \left(1 - \cos \theta \right) \nabla \Phi, \quad (7a)
\]

\[
\mathbf{A}_R^\ast = \frac{\hbar}{2e} \left(m_x e_x - m_z e_y \right) / \lambda_R, \quad (7b)
\]

\[
\mathbf{A}_D^\ast = \frac{\hbar}{2e} \left(m_x e_x - m_y e_y \right) / \lambda_D, \quad (7c)
\]

where \(\mp \) represents the spin projections i.e., \(-1(+1)\) for spin-up(down) [55] and \(\lambda_{R(D)} = \hbar^2/2m^*\beta_{R(D)} \) is the characteristic length scale of the RSOC (DSOC). While the previous studies have focused on the effect of the SOC-induced emergent electric field on the itinerant electrons (spin-motive force), here, we focus on the effect of the corresponding emergent magnetic field on the itinerant electrons (Lorentz force) which are calculated from the spin gauge fields using

\[
\mathbf{B}_\eta = \nabla \times \mathbf{A}_\eta^\ast, \quad (8)
\]

to obtain

\[
\mathbf{B}_s = \pm \frac{\hbar}{2e} \left([\partial_x m \times \partial_ym] \cdot \mathbf{m} \right), \quad (9a)
\]

\[
\mathbf{B}_R = \pm \frac{\hbar}{2e} \left(\frac{\partial_x m_x + \partial_ym_y}{\lambda_R} \right) + O(\beta_R^2), \quad (9b)
\]

\[
\mathbf{B}_D = \pm \frac{\hbar}{2e} \left(\frac{\partial_x m_y + \partial_ym_x}{\lambda_D} \right) + O(\beta_D^2). \quad (9c)
\]

It turns out that \(\mathbf{B}_s \) in the positive \(z \)-direction that tends to deflect the electrons in the negative \(y \)-direction and \(\mathbf{B}_R \) in the negative \(z \)-direction that tends to deflect the electrons in the negative \(y \)-direction. Since \(\mathbf{B}_R \) has two free parameters \(r_a \) and \(\lambda_R \), by tuning them, one can realize a condition when \(\mathbf{B}_R \) completely cancels out \(\mathbf{B}_s \) [i.e. \(\lambda_R \approx r_a/2 \) as given in Eq. (12)]. In this case, the transverse Lorentz force acting on electrons transversing the skyrmions is completely suppressed, or equivalently the Magnus force on the magnetic structure is vanishing.

To gain more insight into the physics originating from the interplay of the different contributions to emergent magnetic fields given by Eq. (9), we consider a discrete square system of size \(101 \times 101a_0^2 \), with the equilibrium skyrmion radius \(r_a = 12a_0 \), where \(a_0 = 0.3 \) nm is the lattice constant. Furthermore, we take the effective mass of electrons \(m^* = 0.4m_0 \), where \(m_0 \)
FIG. 1. Schematic illustration of the current-driven motion of Néel-type skyrmions array in the presence of SOC. Fields B_s (red) and B_R (blue) act in opposite directions, leading to the topological Hall effect (THE) on traversing electrons also in opposite directions. As such, tuning B_R through the strength of the SOC can produce current-driven motion without skyrmion Hall effect (black arrows).

FIG. 2. Schematic diagram of the spatial magnetization profile for a Néel-type skyrmion (a) and antiskyrmion (b), and their corresponding emergent magnetic fields (c, e) and (d, f), respectively, in the presence of RSOC. Is the bare mass of electrons, and the RSOC strength $\beta_R = 2.5 \times 10^{-11}\text{eV m}$ (equivalent to $\lambda_R = 3.8\text{nm}$). Then we calculate the corresponding magnetic fields for different vorticities and helicities. In Fig. 2, the results for Néel-type skyrmions ($q = +1$) and antiskyrmions ($q = -1$) are shown with the magnetization profiles given by those presented in Figs. 2(a) and (d), respectively. We see that for Néel-type skyrmions, indeed, the fictitious magnetic fields B_s [c.f. Fig. 2(b)] and B_R [c.f. Fig. 2(c)] act in opposite directions such that, it is possible to achieve a current-driven motion without SkHE by tuning the strength of the RSOC. However, in the case of a Néel antiskyrmion as shown in Figs. 2(e) and (f), even though the transversing electrons experience these fictitious magnetic fields, the effect of B_R on its trajectory cancels out by symmetry [c.f. Fig. 2(f)]. As such, only B_s influences its trajectory leading to SkHE for current-driven motion.

Similar arguments can be used to explain the characteristics of Bloch-type skyrmions and antiskyrmions as shown in Fig. 3, with the magnetization profiles as depicted in Figs. 3(a) and (d), respectively. It turns out that unlike in the Néel-type case, the SOC-induced fictitious magnetic field B_D, does not influence the trajectory of electrons traversing Bloch-type skyrmions, since the latter cancels out by symmetry [c.f. Fig. 3(c)]. As such the trajectory of traversing electrons are detected by B_s [c.f. Fig. 3(b)] leading to SkHE for current-driven motion. However, in the case of Bloch-type antiskyrmions, B_s [c.f. Fig. 3(e)] and B_D [c.f. Fig. 3(f)] act in the opposite directions and as a result, by tuning the strength of DSOC and/or the r_s via material engineering, it is possible to achieve a SkHE-free current-driven motion of Bloch antiskyrmions [i.e. $\lambda_D \approx r_s/2$ as given in
FIG. 3. Schematic diagram of the spatial magnetization profile for a Bloch-type skyrmion (a) and antiskyrmion (b), and their corresponding emergent magnetic fields (c, e) and (d, f), respectively, in the presence of DSOC.

A straightforward calculation of emergent magnetic fields given in Eq. (9) using the general ansatz in Eqs. (3), (4) and (5) yields

\[
B_s = \mp \frac{qh}{2e} \frac{d\theta}{dr} \sin \theta, \quad (10a)
\]

\[
B_R = \pm \frac{\hbar}{2e\lambda_R} \left(\frac{d\theta}{dr} \cos \theta + \frac{q}{r} \frac{\sin \theta}{r} \right) \cos \left(\Phi - q\Phi - \gamma_c \right) + \mathcal{O} \left(\beta_R^2 \right), \quad (10b)
\]

\[
B_D = \pm \frac{\hbar}{2e\lambda_D} \left(\frac{d\theta}{dr} \cos \theta - q \frac{\sin \theta}{r} \right) \sin \left(\Phi + q\Phi - q\gamma_c \right) + \mathcal{O} \left(\beta_D^2 \right), \quad (10c)
\]

from which the following inference is immediately drawn: (i) a Néel (\(\gamma_c = 0\) or \(\pi\)) skyrmion (\(q = +1\)) in the present of RSOC experiences and equal but opposite emergent magnetic field as Bloch (\(\gamma_c = -\pi/2\) or \(\pi/2\)) antiskyrmion (\(q = -1\)) in the present of DSOC. (ii) due to the symmetry of \(\Phi\) as defined by Eq. (3), the spatial average of RSOC-induced emergent magnetic field for Néel antiskyrmions [c.f. Eq. (10b)] and DSOC-induced emergent magnetic field for Bloch antiskyrmions [c.f. Eq. (10c)] vanishes.

Since we focus on the half-metallic and strong adiabatic regimes in which spin-flip processes are not relevant, the THE can be quantified by the average fictitious magnetic fields. However, we note that such description in the ballistic regime, especially in the weak exchange limit is subtle [50, 53]. The average fictitious magnetic fields are calculated as \(\langle B_\eta \rangle_{av} = Eq. (12)\). Therefore, our analysis shows that, depending on the vorticity and chirality of ferromagnetic solitons, it is possible to achieve a current-driven motion of the latter without SkHE via the engineering of the spin-orbit interaction in the system. Although the heuristic analysis presented above, captures the important physics, in what follows, we provide a more rigorous argument based on the average emergent magnetic field that electrons traversing magnetic skyrmions experience.
\[\int B_y \, d^2 r / \int d^2 r \text{ from Eq. (10), so that} \]

\[\langle B_s \rangle_{av} = \pm \frac{2pq\hbar}{eR^2}, \quad (11a) \]

\[\langle B_R \rangle_{av} = \pm \frac{\hbar(1 + q)r_s}{2e\lambda_R R^2} \cos \gamma_c + \mathcal{O}(\beta_R^2), \quad (11b) \]

\[\langle B_D \rangle_{av} = \pm \frac{\hbar(1 - q)r_s}{2e\lambda_D R^2} \sin \gamma_c + \mathcal{O}(\beta_D^2). \quad (11c) \]

We immediately deduce from Eq. (11) that up to the linear order in SOC, the average SOC-emergent magnetic field: (i) vanishes for Néel antiskyrmions [c.f. \(q = -1 \), in Eq. (11b)] and Bloch skyrmions [c.f. \(q = +1 \), in Eq. (11c)] (ii) is finite and is opposite to \(B_s \) for Néel skyrmions [c.f. \(q = +1 \), in Eq. (11b)] and Bloch antiskyrmions [c.f. \(q = -1 \), in Eq. (11c)]. As a result, since the topological Hall effect of itinerant electrons as they traverse magnetic skyrmions is governed by these average fictitious magnetic fields, we recover the conclusions discussed in our heuristic analysis above. Interestingly, these average additional fictitious magnetic fields are proportional to \(\beta_{R,D} r_s \), and since the DMI has a subtle dependence on \(\lambda \), the mobility of skyrmions \[\text{c.f. calculated from Eq. (11)} \]

\[\langle B_{R(D)} \rangle_{av} = \langle B_s \rangle_{av} \]

\[\lambda_{R,D} = r_s / 2. \quad (12) \]

Eq. (12) is very important and should act as a guide for material engineering of topological transport in magnetic solitons.

An interesting extension, which is however out of the scope of the present work, would be to directly investigate this effect via micromagnetic simulations. This is achievable via for example, taking into account the effect of the spin torques induced by the fictitious magnetic fields in Eq. (9). Indeed, previous studies have incorporated the textured-induced magnetic and electric fields and shown that this gives rise to the so-called topological torque and topological damping that directly influence the mobility of skyrmions [60, 61].

\[\text{FIG. 4. Schematic diagram of four-terminal setup made up of a central region containing a magnetic skyrmion in the presence of SOC attached to four ferromagnetic leads L, T, R, B. The system is subject to a longitudinal voltage bias of } eV \text{ while the transverse leads measure the Hall respond of the system.} \]

IV. NUMERICAL RESULTS

We corroborate our analytical predictions via numerical calculations of the THE of electrons as they traverse an isolated skyrmion in the presence of RSOC or DSOC. Our considerations are based on a two-dimensional tight-binding model on a square lattice, described by the Hamiltonian

\[H = \sum_i \epsilon_i \hat{c}_i^\dagger (\hat{c}_i + J_{m_i} \sigma) - \sum_{<i,j>} \hat{c}_i^\dagger t_{ij} \hat{c}_j, \quad (13) \]

where \(\epsilon_i \) and \(\hat{c}_i^\dagger (\hat{c}_i) \) are the onsite energy and the spinor creation (annihilation) operators on site \(i = (i_x, i_y) \), respectively. \(J \) is the exchange energy that couples the spin of electrons \(\sigma \) to local magnetization \(m_i \), and \(t_{ij} \) is the nearest-neighbor hopping that incorporates the spin-
orbit interaction and is given by

\[
t_{ij} = \begin{cases}
t_0 + it_R \sigma_y + it_D \sigma_x, & j = i \pm (1, 0), \\
t_0 - it_R \sigma_x - it_D \sigma_y, & j = i \pm (0, 1).
\end{cases}
\] (14)

Here \(t_0 \) is the hopping in the absence of SOC, \(t_{R(D)} = \beta_{R(D)}/a_0 \) and \(a_0 \) is the lattice constant. We note that at low band filling, there is direct correspondence between the continuous and discrete Hamiltonians given in Eq. (1) and Eq. (13), respectively for \(t_0 = h^2/2m^*a_0^2 \) [62]. An isolated skyrmion of radius \(r_s = 10a_0 \) embedded in a ferromagnetic background to which four ferromagnetic leads are attached as depicted in Fig. 4. We employ the Landauer-Büttiker formalism [63] to investigate the coherent charge transport in our system which we subject to a longitudinal bias voltage across the left (L) and right (R) leads and measure the transverse responds via the top (T) and bottom (B) leads. The terminal current of the \(\mu \)-lead is calculated as

\[
I_\mu = \frac{e^2}{2\pi \hbar} \sum_{\mu \neq \nu} (T_{\mu\nu} V_\mu - T_{\nu\mu} V_\nu),
\] (15)

where \(V_\mu \) is the voltage at the \(\mu \)-lead and \(T_{\mu\nu} \) is the transmission coefficient for electrons from the \(\mu \)-lead to the \(\nu \)-lead, which is calculated via the use of the KWANT software package [64]. The terminal voltages are calculated following Ref. 46, from which the THE is quantified via the topological Hall angle defined as

\[
\theta_{TH} = \frac{V_T - V_B}{V_R - V_L}.
\] (16)

We consider the strong exchange limit with \(J = 5t_0 \), and investigate the dependence of \(\theta_{TH} \) on the strength of RSOC (\(t_R \)) for Néel-type and DSO SOC (\(t_D \)) for Bloch-type skyrmions and antiskyrmions. Furthermore, to rule out any possibility that our results stem from size-effect, we perform a systematic study with different system sizes \(L \times L \), for \(L = 101a_0, 161a_0, 181a_0 \) and an optimal (to ensure smooth enough magnetization variation from system to leads [61]) skyrmion radius of 10\(a_0 \). Our numerical results as shown in Fig. 5, confirm the physics underscored by our analytical derivations i.e., the existence of an optimal strength of RSOC (DSOC) at which the THE vanishes in Néel-skyrmions (Bloch antiskyrmions). Furthermore, the green arrow in Figs. 5 (a) and (b) shows that the value of \(t_R \) for Néel skyrmion and \(t_D \) for Bloch antiskyrmion at which the THE vanishes (green arrow) is independent on the system size as such, we rule out the possibilities that the observe results are artifact from size effect.

Finally, based on our analytical prediction given by Eq. (12), the estimate for the strength of the RSOC/DSOC at which the THE vanishes (\(t^*_{R(D)} \)) for a skyrmion of radius \(r_s = 10a_0 \) is predicted to be \(t^*_{R/D} = 0.2t_0 \). This value is very close to what we obtained numerically (\(t^*_{R/D} = 0.17t_0 \)) using similar sets of parameters. We attribute the small discrepancy to nonlinear corrections, and most importantly, to the fact that our model does not take into account the explicit dependence of the skyrmion size on the SOC. The latter which is out of the scope of this work, can be investigated via, for example using micro-magnetic simulations.

We conclude this study by investigating the effect of disorder which are unavoidable in real materials. We model nonmagnetic impurity scattering via the randomization of the onsite energy given in Eq. (13) i.e., \(\epsilon_i \to \epsilon_i + \delta \epsilon_i \), where \(\delta \epsilon_i \in [-(W/2), (W/2)] \), with \(W \) being the strength of the disorder and taking average over 50,000 disorder configurations. We calculated the THE in the presence of nonmagnetic impurity scattering for different impurity strength for which the transport of electrons remains adiabatic (the adiabaticity condition might be lost in the diffusive regime), since our analysis is based on the adiabatic limit of the spin of electrons following the direction of the local magnetization. Our result as depicted in Fig. 5 (c) shows that for impurity strength of \(W = 0.5t_0, 0.75t_0, 1.0t_0 \) and \(1.25t_0 \) which correspond to mean-free-path (\(\lambda \)) of \(\lambda = 140a_0, 66a_0, 38a_0 \) and 21\(a_0 \), respectively, disorder scattering does not affect our conclusions in the preceding section. Therefore, our proposal...
of tuning the THE in magnetic solitons is robust against impurity scattering provided that transport of electrons remains adiabatic.

V. CONCLUSIONS

Magnetic skyrmions are hugely considered as a contender for information carriers in future spintronic applications. However, the parasitic SkHE constitutes a technological challenge for the integration of the former in such applications. Several theoretical proposals, which focus on suppressing the Magnus force that gives raise to this detrimental SkHE, have been put forward. In this study, we focus on exploring the possibilities of overcoming the SkHE via tuning spin-orbit interactions that are inherent in skyrmionic systems. Starting from the emergent electrodynamics in the latter in the presence of SOC, we demonstrate that the additional SOC-induced emergent fictitious magnetic fields can be used to tune the SkHE. Our calculations show that by tuning the strength of RSOC in Néel skyrmions or DSOC in Bloch antiskyrmions, it is possible to achieve a current-driven motion without SkHE in these systems. Our findings open up promising perspective on overcoming the SkHE.

C. A. A. thanks M. Ishida for technical assistance and A. Abbout for stimulating discussions. This work was supported by Grant-in-Aid for Exploratory Research (No. 16K13853) and Grant-in-Aid for Scientific Research (B) (No. 17H02929) from Japan Society for the Promotion of Science (JSPS). H. L. acknowledges support from HeNan University (Grant No. CJ3050A0240050) and National Natural Science Foundation of China (Grants No. 11804078). O. A. T. acknowledges support by the Cooperative Research Project Program at the Research Institute of Electrical Communication, Tohoku University and by UNSW Science International Seed grant.

