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Theoretical models allow design of acoustic traps to manipulate objects with radiation force. Here, a model 

of the acoustic radiation force by an arbitrary beam on a solid object was validated against measurement. 

The lateral force in water of different acoustic beams was measured and calculated for spheres of different 

diameter (2-6 wavelengths λ in water) and composition. This is the first effort to validate a general model, 

to quantify the lateral force on a range of objects, and to electronically steer large or dense objects with a 

single-sided transducer. Vortex beams and two other beam shapes having a ring-shaped pressure field in 

the focal plane were synthesized in water by a 1.5-MHz, 256-element focused array. Spherical targets 

(glass, brass, ceramic, 2-6 mm dia.) were placed on an acoustically transparent plastic plate that was 

normal to the acoustic beam axis and rigidly attached to the array. Each sphere was trapped in the beam 

as the array with the attached plate was rotated until the bead fell from the acoustic trap because of gravity. 

Calculated and measured maximum obtained angles agreed on average to within 22%.  The maximum 

lateral force occurred when the target diameter equaled the beam width; however, objects up to 40% larger 

than the beam width were trapped. The lateral force was comparable to the gravitation force on spheres 



up to 90 mg (0.0009 N) at beam powers on the order of 10 W. As a step toward manipulating objects, the 

beams were used to trap and electronically steer the spheres along a two-dimensional path. 

 

I. INTRODUCTION 
 

The 2018 Nobel Prize in Physics was awarded to Ashkin for his seminal work on optical 

tweezers  [1,2] to trap and to move an object with a beam of light. To create this effect, a laser was focused 

on a transparent object that refracted the beam such that the net radiation force on the object pushed or 

pulled the object to a specific point in the beam. While early work used refraction as a primary means to 

produce trapping, radiation force can also be produced by scattering or absorption of the wave by the 

object. Optical tweezers have enabled manipulation of living cells  [3,4]  to measure cell properties and 

unfold DNA  [5],  as well as to trap atoms  [6,7] in order to, for example, improve the accuracy of atomic 

clocks  [8].  

Similar to electromagnetic waves, acoustic waves can apply radiation forces  [9–11] to trap and 

to manipulate objects. Moreover, as radiation force is proportional to the power of the wavefield incident 

on an object divided by the wave speed  [12], radiation forces in acoustics are orders of magnitude larger 

than in optics. Acoustic traps are versatile; they can be employed in different media, such as air  [13–15], 

and water  [16,17] for a variety of applications, such as cell sorting  [18,19] and targeted drug 

delivery  [20]. Therefore, there is an increasing interest in understanding and expanding the conditions for 

which acoustic traps can be employed.  

Here, we report the first experimental validation of a general theoretical model for designing 

acoustic tweezers, the first measurement of the lateral trapping forces from acoustic beams on a range of 

objects, and the first demonstration of electronically steering an object larger than the wavelength by such 

forces.  Early theoretical work by Gor’kov  [21] calculated the acoustic radiation forces on particles much 



smaller than the wavelength in a standing or travelling wavefield by calculating the scattered field. For 

small particles, Gor’kov recognized that the monopole and dipole terms that correspond to the 

compressibility and density of the object could accurately describe the scattered field, which is not the 

case for larger objects. Small particles have been experimentally trapped and manipulated in the pressure 

nodes of a standing wave generated by a transducer and a reflector  [22–24] or multiple transducers facing 

each other  [14].  

Single-sided trapping has also been achieved. In single-sided trapping, multi-element arrays 

generate and steer acoustic beams by controlling the phasing between the array elements. Many theoretical 

studies have focused on using vortex beams  [25–27], which are replicated experimentally by exciting the 

array elements with linearly increasing circumferential delays in order to generate an annular pressure 

field in the focal plane that can surround and trap objects. Calculations show an idealized, non-diffracting, 

vortex beam is theoretically capable of pushing, pulling  [28,29], and trapping rigid  [30] and 

elastic  [31,32] spheres. Experimentally, vortex beams have been used to trap and pull small polystyrene 

spheres (190 µm, 0.3λ) in water while recording their motion to determine the axial radiation forces  [17]. 

Beyond vortex beams, twin and bottle beams have been used experimentally to trap and to move an 

expanded-polystyrene sphere (1 mm, 0.12λ) in air  [15]. Simultaneous traps have also been created by a 

single source to steer multiple particles independently of each other  [33]. However, trapping and 

manipulation of particles in 3D space by a single-sided source have been limited to particles smaller than 

a wavelength.  

Development and experimental validation of trapping objects equal to or larger than the 

wavelength have been limited to specific conditions. Successful levitation of a large expanded polystyrene 

sphere (50 mm, 3.6λ) in air was achieved  by creating a standing wave between the sphere and a three-

element source  [34].  Similar to Ashkin’s work  [1,2], a ray acoustics model was developed  [35,36]  to 

predict the trapping forces of a focused beam on spheres with a lower sound speed than the surrounding 

fluid, which is optically equivalent to an object with greater index of refraction than the medium. The 



model was experimentally tested in the pulling of lipid droplets radially along a transverse focal plate 

toward the acoustic axis (126 μm, 2.5λ)  [37] and polystyrene microspheres (10 μm, 1.3λ)  [38] in water. 

Most recently, successful trapping of a large expanded polystyrene sphere (16 mm, 1.85λ) in air using a 

vortex beam was demonstrated  [39]. Although these studies have shown the feasibility of achieving 

control of large spheres in specific cases, a more general development and experimental verification of 

acoustic tweezers to manipulate large particles has not been performed.  

Most theoretical solutions have been obtained for radiation forces on spheres in specific beams. 

The models in short come down to calculating the scattered field and then integrating over this field around 

the sphere to obtain the radiation forces. The scattered field and corresponding radiation forces have been 

calculated for idealized fields, such as, plane waves  [10,40,41], or non-diffracting beams  [42–46]  

including unfocused vortex beams  [28–32]. Sapozhnikov and Bailey published the first modeling 

algorithm  [47] (SB model) that resolved the acoustic radiation forces produced by an arbitrary acoustic 

field on a spherical elastic object of any size at any location in the field using an angular spectrum 

approach. Baresch et al. [48] and Jerome et al.  [49] have developed similarly capable models. Baresch et 

al. derived similar solutions using spherical coordinates and reported agreement with the SB model in 

quantifying the radiation forces on spheres smaller than the wavelength  [17]. Jerome et al. used 

Lagrangian coordinates  [49], while the SB model uses Eulerian coordinates, and also reported agreement 

with SB model.  

This paper reports on work to synthesize various acoustic beams in water and to use the SB 

model and measurement to quantify the lateral acoustic radiation forces on solid spherical targets of 

different composition and diameter. Furthermore, stable trapping and steering of these large targets is 

demonstrated towards a more general development of acoustic tweezers.  

 
 
 
 
 
 



 
II. METHODS 
 

A brief summary of the theoretical basis for the SB model is presented. The experimental setup 

for the measurement and validation of the lateral acoustic radiation forces is described. Lastly, details of 

the stable trapping and dynamic steering experiment are explained.  

A. Theoretical model 
 

 In the SB model, the angular spectrum formulation is used to decompose the incident 

acoustic beam to a sum of plane waves. The net scattered field is found from the summation of the 

scattering of each plane wave from a spherical object using the classical expression for the spherical 

harmonic scattering  [50,51]. The incident and scattered fields are summed and integrated over a spherical 

surface that surrounds the object in order to calculate the change in the wave momentum and resulting 

radiation force. 

 Wave attenuation and viscous effects are not included here. While attenuation of the acoustic 

wave can be accounted for in the SB model by using a complex wavevector k, attenuation loss for a plane 

wave passing a plate of the thickness and composition of the spheres in this study is less than 7% [52]. 

Viscous losses around targets are also negligible since the viscous boundary layer δ is smaller than λ by 

approximately four orders of magnitude (δ = 0.46 μm)  [11]. While only spheres are used in this study, 

radiation force may be calculated for a non-spherical objects following the same formalism with, for 

example, a finite element approach  [53,54]. 

 Figure 1 shows example calculations, where the axial FAz and lateral FAx components of the 

acoustic radiation force are calculated for two spheres of one composition but different radii at different 

radial positions.  



 

FIG. 1. Simulation illustrating the acoustic radiation force from the same vortex beam on 3-mm (a-d)  and 4-mm (e-h) diameter solid 

glass spheres located near the acoustic beam axis. The acoustic wave propagates from left to right in the z direction, and with the color 

pattern displays the distribution of the instantaneous pressure. The location of the center of the sphere is indicated by xs in mm. The 

arrow indicates the direction and magnitude of the acoustic radiation force, which comprises x and y components. Depending on the 

sphere’s radial location, the resulting acoustic force either restores the sphere toward the center of the beam as in (b & f) or pushes 

the sphere out of the beam as in (d & h).  

B. Lateral force measurement 
 
 The transducer used in our experiments is a piezocomposite, 1.5-MHz, 256-element, focused array 

(Imasonic, Voray sur l’Ognon, France)  [55] with the elements  arranged in 16 spirals of 16 elements each. 

The diameter of each element is 7 mm with inter-element gaps of 0.5 mm. The transducer has a 12-cm 

radius of curvature, 15-cm aperture, and 4-cm diameter of the central opening. The face of the transducer 

is acoustically matched to water through a quarter-wavelength matching layer. The array elements have 

been electrically matched with inductors at 1.5 MHz and driven using a Verasonics Data Acquisition 



System (V1, Verasonics, LTD., Kirkland, WA), a research ultrasound engine with a 1200-W external 

power source (QPX600DP, Aim-TTI, Cambridgeshire, UK). Acoustic holography and a radiation force 

balance have been used previously to equalize the vibrational output for each element and to characterize 

the acoustic power and focal pressure of the array  [56]. For reference, the maximum acoustic power used 

in any of our experiments was 12.8 W, the maximum peak pressure was 1.2 MPa, and the maximum 

spatial peak pulse-averaged intensity was 62 W/cm2.   

Three different acoustic beams were generated by varying the phase of each element of the array. 

The beams were designed to create a null pressure region on the array axis in the focal plane surrounded 

by a ring or rings of pressure. The beams, named here ‘vortex’, ‘π-radial’, and ‘2π-radial’ beams, were 

synthesized as shown in Fig. 2. For the vortex beams, the phase increases linearly around the array’s 

azimuth angle to a maximum delay of 2πM, where M is an integer known as the topological charge. The 

magnitude of M controls the ring width, and the sign of M controls the wavefront helicity. The π- and 2π-

radial beams were synthesized using an iterative angular spectrum approach (IASA)  [57,58], where we 

input the desired ring-shaped pattern in the focal plane, and the IASA algorithm iteratively converged to 

a phase profile at the source that produced such a pattern, while for this work, maintaining uniform 

amplitude across the source surface. After a solution was found, the focal pressure distribution was back-

propagated  [59] to determine the phase at the center of each element  [56]. Unlike the vortex beams, 

where the phase changes with the array’s azimuth angle, for the π- and 2π-radial beams, the phase changes 

strictly in the radial direction. The π-radial beam is shown in the second row of Fig. 2 and has a single π 

phase shift along the radial direction. The 2π-radial beam is shown in the third row of Fig. 2 and has a two 

π phase shift along the radial direction.  



 

FIG. 2. Three acoustic beam shapes used for trapping spherical beads: vortex (a-b), π-radial (c-d) and 2π-radial (e-f) beams. On the 

left, the phase of each element in the array is shown, and on the right the pressure field created on the transverse plane at the focus is 

shown. A vortex beam of M = 4 topological charge is shown here for illustration. The array phase of a vortex beam (a) has 

circumferential variation, while the array phase for the π-radial (c) and 2π-radial (e) beams varies along the radial direction. The 

normalized focal pressure (b, d, f) distribution in the xy-plane is shown for each case. Each beam creates in the focal plane a null and 

a ring of pressure with which to trap the sphere in the lateral direction while minimizing the axial radiation force.  

The strength of the lateral acoustic radiation force of different beams was measured by placing 

spherical targets of different size and composition in the center of the beam as shown in Fig. 3. The 

spherical targets were placed on an acoustically transparent, flat, 6.4-mm, low-density polyethylene 



(LDPE) plate attached to the array by a frame. The frame-array combination was attached to a rotational 

stage and rotated slowly about the y-axis at a maximum speed of 1o/s or 4 mm/s. As the angle of rotation 

and slope of the platform increased, the sphere rolled outward from the beam axis towards a point of a 

higher lateral acoustic radiation force. The sphere was held off-axis by the total lateral force which 

included the lateral acoustic force as well as the added friction from a non-zero axial acoustic force FAz 

into the plate, Fig. 3.  Further rotation increased the gravitational component along the plate until it 

overcame the lateral forces, and the sphere fell from the acoustic trap.  The angle of maximum total lateral 

force θmax, at which the sphere fell, was recorded from measurements to each side and compared to 

calculations. The forces and θmax are related by the following force balance equation from Fig. 3:  

𝐹"# = 𝐹% × (sin 𝜃,-# − 𝜇 cos 𝜃,-#) − 𝜇𝐹"3, (1) 

where the component of the buoyant weight Fb of the sphere parallel to the plate pulls the sphere from the 

trap but is resisted by the friction force Fµ acting with FAx to hold the bead in place. The friction force is 

the product of the friction coefficient (measured as described below) and the normal force FN which is 

equal and opposite to the sum of FAz and the normal component of the buoyant weight of the sphere Fb to 

the plate at angle θ. Additionally, a 10-μm, anti-streaming membrane was placed 2-6 mm (depending on 

the sphere size) above the target sphere to prevent fluid flow caused by acoustic streaming from affecting 

the measurement. Additional measurements of the effect of anti-streaming membrane are reported in 

Appendix A. Additional hydrodynamic forces were negligible at such low rotational speeds. The Stokes 

drag force for a linear speed of 4 mm/s was calculated to be three orders of magnitude lower than the 

calculated lateral acoustic force  [60] and was therefore neglected in all calculations. 

Solid spheres made of glass, brass, and ceramic with sizes 2 - 6 mm were tested. The nominal sizes 

and acoustic properties of the tested spheres are described in Table I. The material properties in Table I 

were obtained from the suppliers (glass spheres from Propper Manufacturing Co., Inc., brass and ceramic 

from McMaster-Carr). Table I lists the elastic properties for each material type where ρs is the density of 

the sphere, and cl and ct are the longitudinal and shear wave speed in the material, respectively.  For vortex 



beams, two M values were tested for each sphere with widths most near the beam diameter. However, 

since the beam width could not be adjusted for the π- and 2π-radial beams, only specific sphere diameters 

were tested.  Since multiple sizes of the spheres were examined and tested under more than one trapping 

acoustic beam, results are presented as the ratio η of the sphere diameter to beam width which is defined 

by the diameter of peak intensity within the inner ring of the acoustic field in the transverse focal plane. 

The value of η varied from 0.7 to 1.4, where a larger η denotes a narrow beam with respect to the sphere’s 

diameter and vice versa. 

 

FIG. 3. Experimental setup showing the rotation of the frame-array combination until the spherical target rolled off at the angle of 

maximum total lateral force θmax. The diagram represents the static equilibrium equation used to calculate the lateral acoustic radiation 

force from the measured angle θmax. The coordinate system rotated with the array such that the x-axis was parallel to the LDPE plate, 

and the z-axis coincided with the acoustic axis.  

The LDPE plate was well-matched to water with a measured power reflection coefficient less than 

1% and therefore minimally interfered with the incident acoustic beam. The friction coefficient µ of the 

three different sphere materials on LDPE was measured by recording the maximum angle θµ		at which 

each sphere fell without any acoustic exposure: the relation was μ = tan θµ. This assumes an idealized 



friction model where a geometrically perfect non-deformable sphere in contact with perfectly non-

deformable flat surface at a single point of contact will roll with the application of a tangential force, as 

rolling of the sphere was observed during experiments. The friction coefficient was measured 10 times for 

every sphere, 5 in each direction. The mean and standard deviation of μ for all spheres with the same 

composition were measured to be 0.059±0.024, 0.030±0.009, and 0.022 ±0.007 for glass, ceramic, and 

brass spheres. Using a μ measured for each individual sphere rather than for each composition might have 

improved precision and accuracy at the loss of generality, but this was not tested.  

For each sphere, the acoustic power was varied to ensure that the sphere fell at an angle θmax 

between 20° and 80°. These variations were aimed to avoid uncertainty in force for smaller angles and 

null results when the bead did not fall at large angles. The acoustic power of the array was low enough to 

ensure negligible nonlinear acoustic propagation effects and minimal heating of the plastic. In all settings, 

the second harmonic amplitude was <1% of the fundamental amplitude. The output was pulsed, and the 

time-averaged acoustic power was 1.6 - 12.9 W, adjusted by changing the pulsing duty cycle (10-86%). 

Such low focal pressures relative to the intended use for which this array was designed  [55] required that 

the minimum operating voltage was used, and power was adjusted by controlling  the length of pulses to 

change the duty cycle. Since theory calculates forces from continuous acoustic waves, time-averaged 

values were used to account for pulsing in the experiment.  

An alternating pulsing scheme was used to prevent the spheres trapped by vortex beams from 

spinning. Vortex beams have an angular momentum component  [61–66] caused by their helical 

wavefront  [26,61,67,68]. This angular momentum caused rotational instabilities leading to the ejection 

of spheres from the trap. Since the radiation force and torque are time-averaged quantities, the torque was 

eliminated by delivering two consecutive vortex pulses of equal duration with opposite helicity and the 

same topological charge magnitude (i.e. ± M)  [39,69,70], which we denote as M±. The pulse duration was 

set to 661 μs, which is shorter than the minimum acceleration time, 𝜏 = 𝐼/8𝜋𝑎@𝜌𝜈, needed for a fully 



absorbing sphere to reach a terminal angular velocity due to drag torque, where I and a are the moment of 

inertia and radius of the sphere, and ν is the kinematic viscosity of the medium  [39,64]. 

Table I: Physical characteristic of the spheres and the beam shapes used in the experiments. 

Material Glass Ceramic Brass 
Elastic 

properties 
ρs = 2500 g/cm3 
cl = 5448 m/s 
ct = 3264 m/s 

ρs = 3290 g/cm3 
cl = 10851 m/s 
ct = 6091 m/s 

ρs = 8530 g/cm3 
cl = 4842 m/s 
ct = 2166 m/s 

Diameter 
(mm) 

2 3 4 5 6 4.8 

Beam 
shape 

2±, 3±, 
π-

radial 

3±, 4± 4±, 5±, 
2π-

radial 

5± ,6±, 
2π-

radial 

6±, 7± 4±, 5± 

 
The measured angles and forces were compared to the calculated angles and forces. The angle was 

measured directly while the forces were calculated from the measured angles using Eq. (1). The axial 

acoustic radiation force FAz was found from simulation then scaled to match the applied acoustic power 

of the experiment by multiplying by the ratio of the time-average applied, acoustic power to the theoretical 

power. The linear relationship between acoustic power and radiation force was examined and verified as 

reported in Appendix B. The simulated acoustic radiation forces of each measurement were calculated 

based on the density of and sound speed in water, and the water temperature was maintained within 0.5°C. 

Reported measured angles were the average of 10 measurements: five rotations of the experiment in the 

clockwise direction and five in the counter-clockwise direction alternating. Measured data are shown as 

mean and standard deviation. The discrepancy between the measured and calculated values was 

determined using the following equation: 

𝐷 = |𝜒, − 𝜒FG|/𝜒FG × 100%, (2) 

where χm and χth are the measured and theoretical quantities of interest.  

 
C.  Manipulation of objects 
 

To demonstrate the stable positional control of large solid objects, a 5-mm glass sphere was steered 

along a preprogrammed, two-dimensional (2D) path on a flat, LDPE sheet positioned perpendicular to the 

beam axis. To dynamically steer the focus along a desired path, the phase delay on each element of the 

array was found by calculating the difference between the distance from the element center on the array’s 



surface and the desired location as referenced to the geometrical focus of the array. The element’s phase 

ϕ  to synthesize and to steer an acoustic trap along a preprogrammed path was defined by superimposing 

the phase required to synthesize the trap on the phase delay to steer  the focus. The 5-mm, glass sphere 

was trapped by an M± = 6 vortex and steered along a specified path with the preprogrammed phase of each 

element i defined at location p as follow:  

∅M = 𝑀 × arctanQ𝑥MS 𝑥MTU V + X𝑅 − ∑ [Q𝑥M\ − 𝑝\V
S@

\^T _ × 𝑘, (3) 

where ϕi	is the phase delay on element i, R is the radius of curvature of the array, xij is the xj-coordinate 

of element i, pj is the j-coordinate of point p along the desired steering path and k is the wave number. The 

sphere was steered along a 3-leaf polar path represented by the following equation:  

𝑟(𝜑) = 𝑟c cos(3𝜑), (4) 

where r0 = 13 mm, r is the radial distance in millimeters, and 𝜑 is the angular location in radians. The 

sphere was steered with an average speed of 6 mm/s. A camera was positioned with its viewing axis 

parallel to the acoustic axis to record the motion. The array was operating at 50% duty cycle with time-

averaged acoustic power of 7.5 W. The desired path and the measured path of the sphere centroid were 

compared, and the difference reported as discrepancy in radial distance as defined in Eq. (2) above.  

 
III. RESULTS AND DISCUSSION 
 

A. Theoretical model 
 
 Simulation results for the lateral and axial acoustic radiation forces were used in the validation of 

the force measurements.  Figure 4 shows the calculation of the acoustic radiation forces on a 4-mm, 

spherical, glass bead at all locations in the focal xy-plane by all three beams. The axial component of the 

acoustic radiation force FAz reaches a local minimum inside the acoustic ring. There is negligible acoustic 

radiation force in the y direction along the x-axis because of the averaging of the acoustic forces produced 

by +M and -M. The solid dot marks the location of the centroid of the sphere when we measure the 



maximum lateral acoustic force FAx. This location indicates the FAz value used  in the friction calculation 

in Eq. (1). Beyond this location, the sphere falls.   

 

 

FIG. 4: Simulation of the lateral acoustic radiation force FAx normalized to its maximum on a 4-mm glass bead throughout the focal 

xy-plane for the 3 beams (left column).  FAx for a vortex beam (a) is the average of the force produced by alternating M = 4 & -4. 

Within the visible rings, all beams create a positive FAx (light color) on the left, which pushes the bead to the right, and a negative FAx 

on the right, which pushes the bead to the left. In the center without any asymmetry in other forces, the net lateral acoustic radiation 

force holds the sphere in place effectively trapping it. The right column displays the acoustic radiation forces FAx, FAy, and FAz 

normalized to the maximum FAz value at different sphere locations along the x-axis (the dashed line of the left column). The open and 

solid dots show centroid positions of the 4-mm sphere within the trap. With the rotation of the array-platform system, because of an 

increasing effect of gravity with slope, the sphere will roll from the location of the open dot to the location of the solid dot, which is 

the position of maximum lateral acoustic force that is pushing to the right in this case. Further increase in angle will cause the bead to 

fall from the trap.  

B. Lateral force measurements 
 



Measurements of the angle of maximum total lateral force  θmax for the spherical beads of different 

size and composition were compared to the calculations found from the forces calculated with the SB 

model and Eq. (1). The plot in Fig. 5 compares calculated and experimental values of data pairs. Good 

agreement between measured and calculated θmax is found for multiple beams, bead sizes, and bead 

compositions (Fig. 5). The successful trapping of spheres that are 40% larger than the beam width (η = 

1.4) was demonstrated.  

Examination of Fig. 5 shows two cases of interest where theory and experiment diverged. First, 

theoretical prediction for the 2-mm, glass sphere at η = 1.0 was 14o larger than the measured angle. This 

translates to a discrepancy of 19.34% in θmax or 11.73% in FAx. This case had the lightest sphere, the lowest 

duty cycle (acoustic power), and the highest angle of 63°. We attribute the large discrepancy to the low 

duty cycle of 10.5% and hypothesize that the sphere moved between pulses under gravity. Under this 

condition, the sphere would fall approximately 0.55 mm (greater than half the radius) between pulses, 

which was sufficient to move the sphere from a stable to unstable position in the beam (see Appendix B 

for the values of duty cycle and time-averaged power used). Using pulses rather than continuous exposure 

may have affected other spheres to a lesser degree especially when the beam was narrow compared to the 

sphere diameter, and the sphere had only a short distance to escape the trap. However, the fact the 

discrepancy could be greater or less than measurement without any observed trend does not support a 

general effect of pulsing. The measurement with the 4.8-mm, ceramic sphere at η = 1.4 also diverges from 

the theoretical prediction and is described in more detail below.  



 

FIG. 5. Comparison between the measured and calculated predicted angle θmax versus the ratio of sphere diameter to beam width η. 

Experimental data are the mean, and error bars show the standard deviation of ten replicate measurements. Close proximity of solid 

and open marks shows the good agreement between measurement and theory over a range of bead sizes and compositions. Different 

compositions are denoted by different data point shapes. Data point pairs within the dashed rectangle are for the π-radial beam and 

within the solid rectangle are for the 2π-radial beam, which both have a fixed beam width. Sphere diameters are shown by color, and 

M was adjusted to alter the beam width and create the η displayed. Overall calculations with the SB model compare well to 

measurement for different beams, sphere diameters, and sphere compositions.  

The discrepancies between measurements and theoretical predictions were calculated according to 

Eq. (2) for each bead composition and size under the acoustic force of a specific beam. Discrepancies in 

angle θmax are potted versus the theoretical ratio of the total friction force, caused by buoyancy and FAz, 

to the maximum lateral acoustic force FAx in Fig. 6. Overall the average discrepancy was 21.8±32.4% in 

θmax and 32.8±58.1% in FAx. There is good agreement between measurement and theory, particularly when 

the ratio of Fµ/FAx was ≤ 0.6, where the average discrepancy was 10.2±7.2% in θmax and 11.7±8.3% in 

FAx. A potential source of discrepancy is the uncertainty with friction, which increased discrepancy as 

friction became a more significant component of the forces. A linear fit to the error has a slope of  76.6% 

/ (Fμ/FAx) but a weak correlation of R2=0.46.  



 

 

FIG. 6. Discrepancy between calculated and measured angles plotted versus the ratio of friction to theoretical maximum lateral 

acoustic force. The discrepancy in angle is 21.8±32.4% on average, and agreement is good. There appears to be a correlation between 

the discrepancy, and the friction component suggesting the error in friction is a factor in the discrepancy although the correlation is 

weak.   

The discrepancy between measurement and theory is small considering the uncertainties in μ, 

medium acoustic properties, sphere size and acoustic properties, and the variance in the acoustic power 

output of the array. For instance, the variation in the diameters of the spheres per the manufacturers’ 

specifications was between 5 and 10% for large to small spheres, respectively. The measured variations 

in water temperature of <1oC had negligible effect on the calculated FAx and θmax. Also, the driving 

electronics supplies power with a ±2.5% uncertainty in envelope. As discussed above, the simulation 

assumes a continuous acoustic exposure, and the array was operated by transmitting pulses. Appendix B 

shows the agreement in acoustic power between the experimental pulsed exposure and the equivalent 

simulated continuous exposure. 

The lateral acoustic radiation force of varying vortex beams (different M±) for a given sphere 

diameter and composition was calculated directly with the SB model then compared to the lateral force 

calculated from the measured angle θmax with Eq. (1). Figure 7  shows the ratio of FAx from a 10-W beam 

to the weight of the sphere with buoyancy neglected, which is sphere mass m times the gravitational 



acceleration g. Each line connects calculations at discrete M±, while experimental values are shown at two 

different M± for each sphere.  The maximum FAx occurred when the sphere diameter and beam width were 

equal, regardless of the material. In many cases, a vortex with a very small or large topological charge 

integer produced no trapping force in simulation, which is indicated by the absence of the continuity of 

the theoretical lines. At 10-W acoustic power, FAx is close to 3.5 times the weight of a 2-mm, glass sphere 

(a mass of 46 mg) and is on the order of the weight of the largest spheres in this study. The array and 

power supply can produce up to 1200 W, and as noted in the Methods, the lowest operating voltage setting 

was used and adjusted by further reducing the duty cycle.  Thus, only a small fraction of the available 

power of the array was needed to create lateral force equal to the weight of the spheres.  

 

FIG. 7. Ratio of maximum lateral acoustic force FAx to sphere weight in a 10-W vortex beam versus the ratio of sphere diameter to 

beam width η. Theoretical lines connect a few discrete values calculated for discrete values of M and therefore discrete beam widths 

for a specific sphere diameter and composition. Theoretical lines are also truncated where there was no lateral acoustic radiation force 

as the sphere was too large. Regardless of the sphere material, the most efficient trapping occurred at η close to 1.   

A similar analysis to Figure 7 was  carried out for the π-radial and 2π-radial beams at 10 W and 

shown in Fig. 8. Since these beams have a fixed width, only specific sphere diameters were used in the 

measurements as opposed to the vortex beams where M was changed to adjust the beam width to the 

sphere. For calculations in Fig. 8, the sphere diameter varied for each point, while the beam width 

remained constant. Figure 8 shows the lateral acoustic radiation force versus η. Generally, FAx  follows 



the same trend in Fig. 7 where it is highest near η = 1, and vanishes as the sphere is much smaller or larger 

compared to beam width; however, because of the multiple ring structure, the behavior is more complex 

due to contribution from both rings. For the 2π-radial beam, where the inner ring was stronger than the 

outer ring,  the highest acoustic force is centered around η = 1, as was the case for the vortex beam. For 

π-radial beam, where both rings were equal intensity, we see a bimodal behavior where the sphere was 

trapped by the ring closest to its diameter. Simulations show that  2.5 and 3 mm glass spheres are in a 

transition region as they are trapped by both rings, whereas a 2-mm sphere is trapped primarily by the 

inner ring, and a 3.5-mm sphere is trapped by the outer ring. The Supplemental Video 1 shows the 

simulation for the 2.5-mm sphere.  

 

FIG. 8. Maximum lateral acoustic force FAx of 10-W π and 2π radially-varying phase beams versus the ratio of the sphere diameter to 

beam width η. FAx diminishes for small or large η . The π-radial beam rings have the same acoustic intensity, and both can trap spheres 

as FAx reaches a maximum close to η = 1 and 2. The 2π-radial follows a smoother shape where maximum FAx is centered at η ≈ 1, 

since the inner ring has higher intensity and is the effective trapping ring.  



 
 

Video 1. Simulation of a 2.5 mm glass sphere in the acoustic field of the π-radial beam. This beam has two trapping rings of equal 

intensity. For a sphere this size and composition, both rings  contribute to the trapping. The acoustic force components FAi are shown 

at each location along the x-axis (a) and are nondimensionalized by a factor of c/W, where c is the sound speed in water, and W is the 

acoustic power of the beam.  Locations of the maximum lateral acoustic force FAx on each side of the trapping ring are marked by a 

solid blue dot. The wave propagates from left to right incident on the sphere located at xs = 1.4 mm, and the resulting normalized 

scattered pressure field is shown (b). A black arrow originating from the center of the sphere indicates the direction of the force. Both 

the inner and outer rings indicated by dotted red and dashed black lines contribute to the trapping of spheres with diameters ranging 

from 2.5 to 3 mm in the region between |x| ≥ 0.9 mm and |x| ≤ 1.5 mm, which can be seen from the scattering of the incident pressure 

field away from the acoustic axis and the resulting force direction toward the axis. Additionally, spheres smaller than 2.5 mm are 

predominantly trapped ty the inner ring while spheres larger than 3 mm are trapped by the outer ring. 

C. Manipulation of objects 
 

The use of a vortex beam to steer a large solid object was tested. Supplemental Video 2 shows 

superimposed select frames of the red, 5-mm, glass sphere moving along the programmed path over a 

plane perpendicular to the acoustic axis. The measured locations of the center of the sphere from each 

frame of the movie of one complete path are plotted over the intended path in Fig. 9(a). Figure 9(b) shows 

the average discrepancy in radius between the measured and the intended paths at each position along the 

preprogrammed path. The maximum and overall mean errors from the intended path were 1.41% and 

0.20±0.23% corresponding to a maximum and mean absolute difference of 0.58 mm and 0.15±0.010 mm. 

The largest deviation occurred at the outermost tip of each petal. Two factors may influence the 

discrepancy here: the tip of the petal caused the highest acceleration because of the curvature of the path, 



and the beam was weaker and less focused further off axis. Nevertheless, the mean absolute difference 

along the path was less than 1/5th of a wavelength.  

 

Video 2. Superimposition of select frames of the trapping of the trapping and dynamic steering by an M = 6± vortex beam of a 5-mm 

glass sphere over a path defined by Eq. (4), where the bead starts at the center, then moves to the right and follows the red arrows 

around each petal and back to the center. The view is from a camera mounted in the center of the array, such that both were facing 

down the acoustic axis toward the sphere.  

 

FIG. 9. Analysis of the dynamic steering of a 5-mm glass sphere from Video 2 over a path defined by Eq. (4). Good agreement is 

shown in (a) between the theoretical path (black line) and measured path (shown as open dots drawn around the center of the sphere 

from every frame of the video). The discrepancy in radius is shown in (b) between the measured and intended motion plotted versus 

each programmed position of the path as defined in Eq. (4).  

IV. CONCLUSTION 
 

In this study, successful lateral trapping of dense elastic spheres ranging in sizes from 2λ to 6λ by 

different beams was demonstrated in water. The lateral trapping forces of vortex beams and two additional 

synthesized beams on large objects were measured. Capability of the beams to trap spheres 40% larger 

than the beam width was achieved by transmitting equal-duration vortex pulses of opposite helicity. An 
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important metric for the trapping strength was defined as the geometric ratio of sphere diameter to beam 

width η. It was shown that maximum trapping strength occurred, for any sphere composition, when the 

value of η is close to unity. The lateral acoustic radiation force was on the order of the weight of the 

spheres used in this study for a 10-W acoustic beam. The measured lateral acoustic radiation forces were 

compared to the theoretical predictions, and good agreement was shown for different beams, sphere 

diameters, and sphere compositions. Acoustic steering of spheres on a flat surface was demonstrated in 

water with high accuracy. Quantitative verification of the theoretical model along with the experimental 

realization of acoustically induced lateral trapping and steering of objects on the same order of or larger 

than the wavelength and having arbitrary elastic properties, lays the groundwork for the development of 

acoustic manipulation of large objects for various physical, biological, and medical applications.  

 
APPENDIX A: ACOUSTIC STREAMING 
 

Acoustic streaming is the fluid motion caused by absorption of the wave momentum by the 

surrounding fluid. Streaming increases with acoustic power and uninterrupted propagation length through 

the fluid. The resulting fluid motion can affect the stability of the target and the force measurement. To 

ensure the accuracy of the force measurements, the influence of acoustic streaming was investigated at 

low- and high-power levels, and with and without an acoustically transparent barrier in place. A 5-mm, 

glass bead was trapped by an M = 6± vortex, then the angle of maximum total lateral force was measured 

for three configurations: no anti-streaming membrane, an elevated membrane positioned 2 cm above the 

sphere, and an anti-streaming membrane positioned 6 mm above the sphere. The three configurations were 

tested using low- and high-power levels of 3.3 and 8.7 W by increasing the pulse duration or duty cycle. 

Figure A1 shows θmax for each power level versus the three membrane configurations. A mean of the 

variance (ANOVA) test was used to compare the mean in θmax among the configurations at each power 

level. The test results yielded p-values of 0.89 and 0.93 at power levels of 3.3 and 8.7 W, which indicates 

there was no statistical difference among the configurations at each power level. Therefore, acoustic 



streaming had minimal effect on the accuracy of the measurements and the membrane was an unnecessary 

precaution. 

 

FIG. A1. Effect of acoustic streaming on the lateral trapping force measurement at two different power levels of 3.3 and 8.7 W versus 

three different anti-streaming membrane configurations. The angle of maximum total lateral force for a 5-mm glass bead did not 

significantly vary among configurations at either power level, which demonstrates the absence of acoustic streaming effects in the 

measurements. 

APPENDIX B: ACOUSTIC RADIATION FORCE LINEARITY WITH 
ACOUSTIC POWER  
 

In the lateral force measurement experiment the time-averaged acoustic power used for every 

sphere was changed to ensure an angle of maximum total lateral force θmax between 20 and 80 degrees. 

Therefore, to control the acoustic power delivered the duty cycle was tuned for each sphere as per Table 

BI. 

Table BI: The duty cycle and equivalent time-averaged acoustic power for each measurement point. 

Material Glass Ceramic Brass 

Diameter 
(mm) 2 3 4 5 6 4.8 4.8 

Beam shape 2±, 3±  π-radial 3±, 4± 4±, 5±, 2π-radial 5±, 6± 2π-radial 6±, 7± 4±, 5± 5± 5± 

Duty cycle 10.5% 16.2% 10.5% 19.2% 22.0% 28.6% 35.3% 35.3% 58.1% 85.7% 

time-averaged 
acoustic power 1.6 2.4 1.6 2.9 3.3 4.3 5.3 5.3 8.7 12.9 

 



Furthermore, theoretically, acoustic radiation force is linearly proportional to the acoustic power. 

For instance, the force acting on a fully absorbing target, FA = W/c  [12], where FA is the acoustic radiation 

force, c is the speed of sound, and W is the acoustic power. A deviation from the linear relationship 

between the radiation force and acoustic power could serve as an indication of measurement artifacts (such 

as acoustic streaming, nonlinear effects in acoustic propagation, or incorrect measurement of the source 

power), which should be avoided. To verify the linear relationship and the scaling of the theoretical 

simulation to experimental results and vice versa based on the power ratio, a 5-mm, glass bead was trapped 

by an M = 6± vortex beam, and the  angle of maximum total lateral force θmax was recorded as a function 

of power output from the array. By reordering of Eq. (1) and defining, similar to the approach in Ref [47], 

a non-dimensional coefficient γi, where 𝛾M =
f
g
𝐹"M is proportional to the acoustic force component FAi, 

Eq. (1) can be written as a function of W and γi as follow: 

sin 𝜃 − 𝜇cos 𝜃 = (𝛾# + 𝜇𝛾3) ×
g
fhi
. (B1)  

When the acoustic power is zero in the experiment, there is a nonzero θmax due to friction. Therefore, the 

equilibrium equation was rearranged to be in the form of Eq. (B1) by subtracting μcosθ from the left-hand 

side in order to have a zero value at no acoustic exposure. 

Experimental data points were acquired as θmax versus W, while the theoretical angle predictions 

were calculated using Eq. (1) at the same W for comparison.  The experimental time-averaged power was 

used to compare the results to their corresponding theoretical acoustic power. 

  



FIG. B1. Relationship between the acoustic power W and nondimensionalized factor corresponding to the acoustic radiation forces 

represented in terms of the angle of maximum total lateral force. Experimental data [open circles with error bars indicating standard 

deviation (N = 10)] show agreement with theoretical (solid line) estimates of the angle of maximum total lateral force. A best-fit line 

(dashed line) with a high correlation coefficient of R2 = 0.996 indicates good linearity of the measured data points. 

The theoretical line and experimental data points from Eq. (B1) are shown in Fig. B1 along with 

the best-fit line to the measured data. The best-fit line has slope of 0.0956 per watt and a strong correlation 

of R2 = 0.996. Therefore, the acoustic radiation force was linear in the range of the acoustic power applied 

and the time-averaged measured power was equivalent to the calculated estimate continuous power 

exposure.  
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