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Inspired by the quantum spin Hall effect (QSHE), we propose the first two-dimensional tunable
nonlinear topological insulator for acoustic waves that activates simply by inputting energy. Tunabil-
ity is derived from an energy-dependent topological band structure, where the topological bandgap
opens intrinsically using nonlinear elements. A discrete hexagonal unit cell (composed of six masses,
twelve linear, and three nonlinear springs) is repeated to construct a phononic system exhibiting
topological character. The corresponding band structure of the proposed hexagonal unit cell is
obtained analytically using Bloch’s theorem and zone folding techniques, which documents dou-
ble degenerate Dirac cones. Breaking of inversion symmetry creates energy-dependent topologically
protected bandgaps, with topologically protected edge states (TPES) robust against back-scattering
at arbitrary interfaces of two structures with opposite Chern numbers. The proposed topological
insulator can be a stepping-stone platform towards building tunable acoustic devices, interconnects,
and electroacoustic integrated circuits.

Starting with electronic states in condensed matter
physics [1–5], and then later in electromagnetic materi-
als [6–9], and still later for mechanical waves in phononic
systems [10–13], the investigation of topological insula-
tors (TI) has experienced growing attention in the last
several years. These topological structures are induced
by quantum Hall and quantum spin Hall effects, or their
analogs, and have the potential to protect edge states
against back-scattering at sharp interfaces, defects and
disorders.

Topologically protected edge states (TPES) have been
explored in mechanical systems to control statical states
[10, 14–19] and dynamical waves [12, 20] immune to
back-scattering. These TIs can be categorized into two
quantum-analogous categories: active devices to real-
ize chiral edge states mimicking the quantum Hall ef-
fect (QHE) [13, 21, 22], and passive devices that realize
helical edge states mimicking the quantum spin Hall ef-
fect (QSHE) [11]. To realize chiral edges states requires
breaking time-reversal (T-symmetry) by employing, for
example, a weak magnetic field [23]; gyroscopes or ro-
tating frames yielding resultant Coriolis forces [24–26];
or varying material properties in time and space [27–30].
On the other hand, for passive devices, helical edge states
require only breaking inversion symmetry [31]. These de-
vices do not require energy input, feature both forward-
and backward-propagating edge modes, and generally
maintain T-symmetry. This group of TIs has been ex-
plored using different sizes of steel inclusions in water
[32], two-scale parts in thin plates [11], periodically ar-
ranged resonators [33–35], or balls and linear springs in
discrete systems [36, 37]. It should be noted that TIs are
characterized by a topological measure (e.g., Chern num-
ber) [38, 39], whose quantized value for each material,
and more specifically its difference across an interface,
dictates the number of edges states [1].

∗ Woodruff School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA
† Woodruff School of Mechanical Engineering, Georgia Institute of

Technology, Atlanta, GA; michael.leamy@me.gatech.edu

F
re

q
u
en

cy
(H

z)

0

0.5

1

1.5

2

2.5

ΓKMΓ

K

MΓ K′

M ′
b2

b1

a2

a1

(a)

(b)

(c)

FIG. 1. Phononic crystal with Dirac cones.(a)
Schematic of the phononic crystal composed of masses con-
nected using linear springs. (b) Schematic of the first Bril-
louin zone for the system with two masses (larger red hexagon
corresponding to the red hexagonal honeycomb in Fig. 1(a))
and the system with six masses (smaller green hexagon cor-
responding to the green hexagonal unit cell in Fig. 1(a)).
(c) Band structure along the first irreducible Brillouin zone
perimeters for the unit cell with two masses in Fig. 1(a), doc-
umenting a Dirac cone at f = 1.6Hz.

One of the current challenges in applying mechanical
TIs to solve real-world applications is their lack of tun-
ablity, and thus difficult adaption to functional needs.
To overcome this issue, designing programmable TIs has
gained attention for potential application in acoustic de-
vices, interconnects, and electroacoustic circuits [40]. Re-
cent studies have proposed programmable TIs for acous-
tical systems by, i) rotating each unit cell using computer-
controlled motors to achieve desired angles [41], ii) em-
ploying a magnetic fluid to fill the unit cell cavity [42], or
iii) fixing the free inclusion in a hexagonal structure [43].
Although all of the reviewed reconfigurable TIs are ca-
pable of generating back-scattering immune TPES, they
either change the geometry of the structure or require
an external element to control the condition of the sys-
tem. Another possible strategy for designing a recon-
figurable structure is to employ nonlinear elements for
mechanical waves. These nonlinear elements were em-
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FIG. 2. Topological demonstration of a hexagonal unit cell. (a) A hexagonal unit cell (marked with orange dashed-lines)
composed of six masses (black circles with m1 = 1.2kg) connected using linear stiffness (dark blue springs with kL1 = 1N/m,
and green springs with kL2 = 1.25N/m), three resonant masses (light blue circles with m2 = 0.6kg) coupled to masses 2,4, and
6 via purely cubic stiffness (kNL = 1N/m3). Numerically-computed band structure using the edges of the first Brillouin zone
with corresponding spin Chern numbers, (b) when no energy is in the system (plotted in light blue), and when displacement
of the nonlinear springs is 1 (plotted in red), and (c) when no energy is in the system (plotted in light blue), and when
displacement of the nonlinear springs is 10 (plotted in red).

ployed in the past few years to design robust topological
insulators for photonic [44] and electronic [45] structures.
These nonlinear configurations provide energy-dependent
dispersion relationships [46–49], which are sufficient to
achieve a passive and tunable TI. Most recently, Pal et
al. proposed a linear lattice with a topological bandgap,
and studied the robustness of the system in the presence
of weakly nonlinear springs [50]. Furthermore, Chaunsali
et al. proposed a new self-induced structure for topolog-
ical transition of acoustic waves by employing stiffening
and softening nonlinear springs [51]. They showed that
the proposed lattice makes a topological transition sim-
ply by altering the excitation amplitude.

In this letter we propose and numerically study
a tunable mechanical topological insulator exhibit-
ing topologically-protected edge states through a
nonlinearity-induced opening of a topological bandgap.
At zero energy, the gap is closed and it is only when
energy is present that the gap opens. This can be con-
trasted to the study in [50] where the robustness of the
TPES already present in a linear system were considered
in light of potential nonlinearities. Here, the nonlinear
configuration of the structure provides remote tuning of
the band structure, which can improve and boost the
bandwidth of the structure. Our tunable system con-
sists of a hexagonal lattice incorporating six masses con-
nected using linear springs, where three of the masses are
coupled to internal resonators via essentially nonlinear
springs. Energy-dependent band structure exhibits dou-
ble degenerate bands at the Dirac point. Upon energy in-
put, inversion symmetry is broken; thus, a topologically-
protected bandgap is created, and behavior analogous to
the quantum spin Hall effect results.

I. RESULTS

A. Designing a meta-structure exhibiting Dirac
cones

In the first step aimed at designing a tunable mechani-
cal TI, we tailor the band structure of a hexagonal honey-
comb unit cell to enable separation of two doubly-folded
Dirac cones. Figure 1(a) depicts the schematic of a shear
lattice (i.e., supporting transverse displacements) com-
posed of masses (m1 = 1.2 kg) coupled using purely lin-
ear springs (kL1 = 1 N/m), while Fig. 1(b) denotes the
primitive unit cell (marked by red dashed lines). This
simple system exhibits intersecting Dirac cones, where
two distinct wave modes meet at one point. Its band
structure is computed using the edges of the irreducible
Brillouin zone (IBZ) (see Fig. 1(b), blue outline). Fig-
ure 1(c) displays the resulting band structure document-
ing a two-fold degeneracy at the K point (f ≈ 1.6 Hz).

B. Achieving QSHE analog by breaking mirror
symmetry

Next, a zone folding technique [52, 53], together with
an extended unit cell with broken symmetry (see next
section) including six masses denoted by green hexagons
in Fig. 1(a), is considered to achieve doubly-degenerate
Dirac cones at the Γ point. Figure 1(b) also depicts the ir-
reducible Brillouin zone (IBZ) for the new unit cell (green
outline) and the location of special symmetry points. As
shown, the K-point in the larger hexagon (for a unit
cell with two masses) will be folded into the center of
the smaller hexagon (for a unit cell with six masses).
The next step toward realizing the QSHE analog requires
opening a topologically protected gap between the four
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FIG. 3. Topological interface modes. (a) Schematic of a periodic strip in the horizontal direction with an interface between
two domains (i.e., crystals) with opposite Chern numbers. On the left domain, masses 2,4, and 6 are connected by cubic springs.
On the right domain, masses 1,3, and 5 are connected by cubic springs. This depicted structure is repeated along the direction
perpendicular to the purple edges of the strip to represent a 2-D structure (i.e., the u-direction). (b) Corresponding edge
mode shapes at µΓK′ = π/6, documenting localization at the interface of two domains with opposite Chern numbers. (c)
Numerically computed band structure of the topologically-protected phononic structure displayed in Fig. 3(a). Gray areas
depict bulk bands, red dashed line depicts the forward edge mode, and blue the backward edge mode, respectively. Mode
shapes are normalized with respect to the maximum and minimum displacements of the cell.

Dirac modes by breaking inversion symmetry (i.e., C6 to
C3). This is achieved by connecting resonating masses
to half of the hexagonal unit cell masses with essentially
nonlinear springs. In order to justify the zone folding
technique, linear springs coupling each hexagonal unit
cell are introduced with kL2 = 1.25 N/m (green springs
in Fig. 2). As shown in Fig. 2(a), the final unit cell
is now composed of the six original masses, in which
three of them (masses numbered 2, 4, and 6) are at-
tached to resonators (m = 0.6 kg) with nonlinear springs
(kNL = 1 N/m3). These springs have no linear stiffness,
and are commonly realized using strings with zero pre-
tension, or other means. Figures 2(b)-(c) plot the band
structure of the system in Fig.2(a) for several input ener-
gies. As illustrated, in the absence of excitation energy,
no bandgap is observed; however, upon energy input, a
topologically-protected frequency bandgap is opened at
the location of the separated Dirac modes. In addition,
with further energy input, the bandgap widens until it
reaches a maximum possible value (see Fig. 2(c)). At this
condition, the nonlinear springs behave as rigid connec-
tions in comparison to the linear springs, and inputting
more energy does not change the relative displacement

between the lattice mass and the nonlinear resonator.
The corresponding eigenstates of the four distinct modes
that bound the bandgap are depicted in Fig. 2(d), each
depicting the influence of the nonlinear resonator. For
each of the Dirac modes in Fig. 2(b)-(c), the correspond-
ing spin Chern numbers are computed numerically to be
Cs = ±1. Note that, if masses numbered 1, 3, and 5 are
connected to nonlinear resonators instead of 2, 4, and 6,
all spin Chern numbers in Fig.2(b)-(c) will be reversed.
Supplementary Notes 1 and 2 provide further details on
the generation of the band structures [54], mode shapes,
and computation of spin Chern numbers [55, 56].

C. Observing topologically protected interface
waves

The most intriguing attribute of topological edge states
is their immunity to back-scattering at sharp edges and
interfaces. If two structures with opposite signs in their
spin Chern numbers share an interface (i.e., one structure
with nonlinear resonators attached to mass 2, 4, and 6
and one with nonlinear resonators attached to mass 1,3,



4

(a) (b)

(c) (d)

Fsin(ωt)
−→

−Max

Max

FIG. 4. Topologically protected waves at the interface. Numerically-computed displacement field of a topological edge
state at the interface of two domains with opposite spin Chern numbers excited by a source at frequency 1.35 Hz for a, (a)
horizontal interface when F = 1N , (b) horizontal interface when F = 100N , (c) zigzag-shaped interface when F = 100N ,
and (d) triangular-shaped interface when F = 100N , documenting immune to back-scattering wave propagation along the
interfaces for a large force amplitude and wave propagation inside the Bulk for a small force amplitude. For all the depicted
cases, a source is located on the left side of the structure and the displacements are normalized with respect to the source
displacement.

and 5), two helical edge modes will be present at the in-
terface (|∆Cs| = 2), one forward-moving TPES and one
backward-moving TPES, according to the bulk-edge cor-
respondence principle [57, 58]. To demonstrate this, a
finite strip of twenty unit cells is considered, which then
repeats indefinitely in the ±u-directions. Figure 3(a) de-
picts the schematic of the strip including two subdomains
of ten cells each with opposite Chern numbers. On the
right half of the strip, all masses with the indices of 2,4,
and 6 are connected to nonlinear resonators, while on
the left half only masses 1,3, and 5 are connected to
nonlinear resonators, respectively. Figure 3(b)-(c) doc-
ument the band structure and the corresponding mode
shapes associated with the interface states for large en-
ergy input (∆NL > 10, for more details on the calcula-
tion of this number are provided in Supplementary Note
1 [59]). These figures clearly reveal the existence of two
edge modes starting from near the bulk modes on top
to the bulk modes on the bottom at the location of the

topologically protected bandgap in Fig. 2(c). Since these
edge modes are in the bandgap, waves cannot scatter
into the bulk of the structure and instead propagate only
along the edges. Note that, all the parameters in this
work (i.g., mj , kj) are chosen to have gapless topologi-
cal interface curves- see Supplementary Note 2 for more
details.

D. Topologically protected interface waves
propagating along desired trajectories

A unique benefit of the proposed topological insula-
tor is its ability to carry information along desired inter-
face trajectories without back-scattering. To illustrate
the propagation of protected waves along an interface,
a finite plate composed of 10 × 10 hexagonal unit cells
is considered. To demonstrate this benefit, different in-
terfaces (Fig. 4) are introduced between two domains,



5

where the sign of spin-orbit coupling is reversed (i.e., op-
posite spin Chern numbers) for each domain. An har-
monic force with frequency f = 2πω excites the struc-
ture from the right side. To show the energy dependency
of the proposed structure, Fig. 4(a)-(b) demonstrate the
displacement field of the system with a horizontal do-
main interface with excitation at 1.35 Hz for two dif-
ferent force amplitudes. Fig. 4(a) plots the wave prop-
agation at f = 1.35 Hz with the force magnitude of
(F = 1N), where at this amplitude f = 1.35 Hz lies
on a dispersion curve belonging to the bulk bands. This
figure clearly indicates that for the considered value of
force excitation (F = 1N), bulk modes are now excited
(see Fig. 2(b)), and thus waves propagate in the inte-
rior. On the contrary, Fig. 4(b) displays the displacement
field of the same structure under the force magnitude
of (F = 100N), clearly showing waves traveling along
the domain interface from the input on the left-side, to
the output on the right-side. The second example is a
Z-shaped interface along the lattice vector by altering
the locations of nonlinear resonators. Figure 4(c) depicts
the displacement field at f = 1.35 Hz and F = 100N ,
documenting a complete transmission of the helical edge
modes. Finally, Fig. 4(d) exhibits the displacement field
of a triangular trajectory at f = 1.35 Hz and F = 100N ,
again showing transmission along the interface without
back-scattering. As observed, for all of these examples,
robustness of the system is guaranteed since the spin of
the two edge states at the interface is locked to their

respective propagation direction.

II. CONCLUSION

In summary, this letter presented a tunable topolog-
ical insulator for mechanical waves which intrinsically
opens a topological bandgap using nonlinear elements.
For the proposed system, the unit cell is composed of six
masses connected using linear springs, where in addition
three of the masses are attached to resonating masses
using nonlinear stiffness to break inversion symmetry.
Numerical simulations illustrate topologically-protected
wave propagation, free of backscattering, along arbitrary
interfaces of adjoined materials characterized by oppo-
site spin-orbital coupling. Such a mechanical topological
insulator could be an advantageous platform for imple-
menting multiplexing, de-multiplexing, and mechanical
logic in engineered systems.
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