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We present techniques to model and design membrane phononic crystals with low-mass defects,
optimized for force sensing. Further, we identify the importance of the phononic crystal mass
contrast as it pertains to the size of acoustic bandgaps and to the dissipation properties of defect
modes. In particular, we quantify the tradeoff between high mass contrast phononic crystals with
their associated robust acoustic isolation, and a reduction of soft clamping of the defect mode. We
fabricate a set of phononic crystals with a variety of defect geometries out of high stress stoichimetric
silicon nitride membranes, and measured at both room temperature and 4 K in order to characterize
the dissipative pathways across a variety of geometries. Analysis of these devices highlights a number
of design principles integral to the implementation of low-mass, low-dissipation mechanical modes
into optomechanical systems.

INTRODUCTION

Many nanoscale sensing and transduction protocols
are based on detection of the minuscule forces be-
tween a sample and a highly sensitive probe. Exam-
ples include microscopy methods such as atomic force
microscopy (AFM) and magnetic resonance force mi-
croscopy (MRFM) [1, 2]. Additionally, an increasing
number of quantum protocols make use of a mechanical
intermediary to transduce between two types of other-
wise non-interacting quantum systems [3–5]. Readout of
the mechanical motion can be achieved through a range
of optical, electrical, or magnetic means [6, 7]. Funda-
mentally, all these techniques are often limited by envi-
ronmental, i.e. thermal or Brownian, noise coupled to the
mechanical resonator. This noise leaks into the mechan-
ical mode at the mechanical damping rate as dictated
by the fluctuation-dissipation theorem, defining a force
sensitivity noise floor.

The factors that define mechanical damping to the en-
vironment have been a long-standing question. Gen-
erally, loss mechanisms can be divided into two cate-
gories: Acoustic radiation into the external structure [8],
and internal loss (dissipation) of acoustic motion to heat
through bending – either at the clamping point, or within
the structure itself. Historically, control of materials has
been a main driver at reducing loss. Recently, progress
is increasingly propelled by engineering of geometry and
structural parameters to mitigate both mechanisms. Sil-
icon nitride tensioned thin films are a platform that offer
multiple control parameters [9–18]. Tension of the film
results in dissipation dilution, which maintains low dis-
sipation while increasing the oscillator energy. Acoustic
isolation in the form of bandgap engineering of the sur-
rounding substrate can control acoustic radiation [19–21],
and in recent realizations nanopatterning of the tensioned
SiN film itself can provide both (1) a phononic bandgap

and (2) the phenomenon called soft clamping, which de-
scribes the gradual decay of the mechanical mode into
the phononic crystal (PnC) structure reducing bending
loss [17, 18].

In this work we explore PnCs with varying mass con-
trast and associated defect designs in two-dimensional
periodic structures. We observe that increasing mass
contrast of the PnC widens the bandgap in the frequency
domain [Fig. 1 (a,b)]; at the outset this improves isolation
of the mechanical motion and avoids contamination of the
spectrum due to thermal noise of the integrated motion
of other modes. Further, designs with high mass ratio
are amenable to analytic analysis, as has been carried
out recently in the context of 1D PnC strings [18]. This
design methodology simplifies the design of a range of
defects, in particular, smaller effective mass defects and
hence better force sensitivity. Small-mass defects can also
be incorporated into low-contrast PnCs, through insight
from FEM simulations, and we study a range of defect
designs and measurements in low-contrast PnCs [17].

When increasing mass contrast of PnCs mode local-
ization is enhanced, but a consequence is a reduction
in soft clamping, which increases susceptibility to inter-
nal (bending) loss. Here we consider this decrease in
soft clamping quantitatively by examining the bending
of multiple combinations of intertwined PnC and defect
designs. We note that the choice of tradeoff between lo-
calization and soft-clamping will depend upon the appli-
cation considered; when operating at room temperature
soft-clamping is critical, but when at deeply cryogenic
temperatures [13] or in crystalline materials [22, 23] the
associated small internal loss rates may allow for suffi-
ciently low dissipation even when the mode is strongly
localized.

For designs in this work, we specifically have in mind
applications where high force sensitivity is desired for
MHz-scale membrane resonators simultaneously coupled
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to an optical mode and a spin or electrical degree of free-
dom [24–26]. For these functionalization purposes, we
considered a few design constraints. This include design-
ing defects large enough to couple to Fabry-Perot cavi-
ties [27], fabricating wide bandgaps that can incorporate
a wide variety of defects robust to perturbations due to
deposition of metallic or magnetic components, as well as
limiting device size to avoid instabilities resulting from
low frequency mechanical modes.

We begin the article with an analytic and numeri-
cal analysis of design considerations for optimizing both
bending and radiative loss. In particular, we correlate
the PnC mass contrast to bandgap width, phononic iso-
lation, and variation in mechanical quality (Q) due to
corresponding changes in soft clamping. In this way,
we link the geometrical design considerations needed to
achieve soft clamping to a relatively narrow bandgap. We
then present measurements of a set of five devices with
varying bandgap and defects; we study Q at both room
temperature and 4 K where internal loss is the dominant
contributor, such that we can compare the experimental
results to loss prediction from bending. As a primary
metric, we examine the mechanical force sensitivity of
all devices, developing design principles for combinations
of both low mass and low loss mechanical defects. We
also identify structures in which nuances of defect design
has deleterious consequences, such as considerable defect
bending, or large effective mass. In this study we utilize
100 nm thick SiN PnCs and demonstrate force sensitiv-
ities down to 12 aN/

√
Hz at temperatures of 4 K and a

frequency of 1.6 MHz. We expect that thinner films and
colder temperatures will further enable optomechanics
that combines high frequency membranes with excellent
force sensitivity [13–15, 17, 28].

CONCEPT AND PNC MODELING

Here we present the design and analysis of two di-
mensional PnC structures and their defects. The de-
fect is designed such that it has one or more mechani-
cal modes within the bandgap of the surrounding PnC.
Such a design supports a spatially localized mechanical
mode within the larger patterned membrane structure.
The design of all devices in this work is guided by an
optimization of the force sensitivity [29]:

SFF =
4kBTmωm

Q
=

2~kBT
Qx2zp

(1)

Here, xzp is the resonator’s fluctuation at zero absolute
temperature, ωm is the angular frequency of the mechan-
ical mode, T is temperature, kB is the Boltzmann con-
stant, and m is the effective mass of the mode. We em-
phasize that the appearance of xzp is not an indication

FIG. 1. (a,b) Optical microscope image of high and low mass
contrast PnC devices containing a defect respectively. The
displacement of the devices measured both in the crystal bulk
(blue) and at the defect (orange). (c,e) Thermal noise spectra
of the high contrast device on a logarithmic scale. The defect
mode shown in (e) is the fundamental symmetric mode. (d,f)
Mechanical spectra for the low contrast device on a logarith-
mic scale. The device was driven with sufficient white noise
in order to observe all expected defect modes. The spec-
trum shown in (f) contains 5 separate defect modes within
the bandgap, including the second symmetric mode exam-
ined in this study. Defect mode frequencies in both (e) and
(f) agree with predictions from 2D FEM simulations. Me-
chanical modes that appear inside the bandgap in (d) have
quality factors less than 100, and therefore are most likely
hybridized modes between the membrane and the silicon chip
or mounting assembly.

of quantum effects, but rather a convenient parameter-
ization as xzp is a fundamental parameter in both the
force sensitivity and the optomechanical coupling [6]. We
see that force sensitivity can be enhanced by maximizing
both xzp and Q. In pursuit of the latter, we note that
dissipation can be expressed as a sum of two contribu-
tions

1

Q
=

1

Qbend
+

1

Qrad
(2)

where Qbend arises from the internal, or bending losses
of the mechanical mode, while Qrad encapsulates acoustic
radiation that is lost to the substrate and wider environ-
ment. A SiN PnC can enhance both Qrad and Qbend via
acoustic isolation and soft clamping, respectively.
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1D Model for Phononic Crystals

In this work we are ultimately interested in the design
and fabrication of 2D structures. However, the main de-
sign methodologies and concepts can be elucidated by
considering a 1D analysis where we convert a 2D unit
cell (Fig. 2) to a 1D unit cell. In this work, we sepa-
rate each unit cell into regions of thin tethers and wide
pads as depicted in Fig. 1a. In this geometry, the pads
(tethers) will have slower (faster) wave velocities than
the unpatterned membrane. Periodic modulation of the
wave velocity results in gaps in the acoustic spectrum.
This procedure, in principle, integrates over the mass of
the transverse dimension, and recalculates the appropri-
ate wave velocities. Details are outlined in Appendix A.

We present analysis of both finite and infinite PnC
structures. A complete description of finite structures
involves solving the 1D Euler-Bernoulli equation for the
out of plane displacement u(x, t), which describes the
bending of the PnC beam. Such an analysis captures the
behavior of the mode shape near clamping points of the
finite structure [30]

d2

dx2
[
I(x)E

d2u(x)

dx2
]
− T d

2u(x)

dx2
− ρ1D

d2u(x)

dt2
= 0 (3)

where I(x) is the geometric moment of inertia, E is the
Young’s Modulus, T is the tension, and ρ1D is the linear
mass density. It can be seen that, for high aspect ratio
devices, the 4th order term is negligible away from the
clamps [30].

For infinite structures, we can assume periodic bound-
ary conditions. Thus, any expected mode shape should
have minimal contribution from the bending term in the
Euler-Bernoulli equation. Under these conditions the
Euler-Bernoulli equation reduces to the 1D wave equa-
tion, and thus the motion of the string is completely pa-
rameterized by its spatially dependent wave velocity:

vp,t =

√
T

ρhw̃p,t
(4)

where ρ is the bulk density of the membrane, h is the
membrane thickness, and w̃p (w̃t) is the converted pad
(tether) width. Definitions of the converted pad and
tether widths appear in Appendix A.

We outline the solution for infinite structures in Ap-
pendix B. As is typical in these types of problems,
the band structure is parameterized by a transcenden-
tal equation:

arccosS = ak (5)

S =
(V + 1)2

4V
cos
[
ω(tp + tt)

]
− (V − 1)2

4V
cos
[
ω(tp − tt)

] (6)

Device a1 a2 nx ny wp wt rc

A [Fig. 1(a)] 100 µm 172 µm 12 7 30 µm 2.5 µm –

B [Fig. 1(b)] 87 µm 151 µm 19 11 – – 23 µm

C 111 µm 192 µm 9 5 – – 31 µm

D 67 µm 116 µm 15 9 – – 18 µm

E 100 µm 172 µm 12 7 30 µm 2.5 µm –

FIG. 2. Critical dimensions for the unit cells of all fabricated
devices. Dimensions in table are defined above. nx, ny are the
unit cell number of the PnC along the X, Y axes. Table entries
are omitted where they do not apply. Fabricated devices for
A and C included fillets of radii 2.5 µm at the sharp corners
of the pad.

where tp,t = lp,t/vp,t are the transit times of acoustic
waves through the pad and tether respectively, a is the
unit cell length, k is the Bloch wavenumber, and V ≡
vt/vp is what we define as the contrast. As can be seen in
Eq. 4, the contrast V is geometrically defined by the mass
contrast, or the relative converted width of the pads and
tethers. Traveling wave solutions are prohibited when
|S| > 1; such a condition defines the range of ω that
determines all bandgaps.

One goal of PnC design is to maximize the bandgap
size in the frequency spectrum. For simplicity, we inves-
tigate the case where we wish to maximize the width of
the first bandgap. Inspection of Eq. 6 reveals that this
occurs when the second term is identically 0. In this
case, tp = tt, and |S| reaches its maximal value Smax

when ω = ωπ ≡ π/2tt:

Smax =
(V + V −1 + 2)

4
(7)

With this in mind, we can derive an expression for the
normalized bandgap width:

∆ =
∆ω

ωπ
=

2

π
arccos

(
−1− 6V + V 2

1 + 2V + V 2

)
(8)

A strong agreement between the 1D model prediction
of Eq. 8 (blue line) and FEM simulations of equivalent
2D unit cell (points) across a range of contrasts can be
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FIG. 3. Band gap widths as a function of mass contrast as de-
termined from the 1D model. Comparison between different
models of the bandgap to mid-gap ratio (∆) versus PnC con-
trast (V ). Analytic prediction of the 1D model (Eq. 8) (solid
blue line), finite element simulations of equivalent 2D struc-
tures (blue circle markers), experimental results of device A
(red star marker) and device B (yellow square).

seen in Fig. 3. The main source of error in the 2D to
1D conversion arises from the inability of the 1D model
to correctly account for the transition between the low
mass tethers and high mass pads of the 2D PnC. In the
high mass ratio limit, these regions account for a smaller
fraction of the geometry, and thus the 1D model better
captures the resulting band structure for large V . Fig-
ure 3 also displays results for fabricated devices. It is
readily seen that the device illustrated in Fig. 1(a) (red
star) has a higher mass contrast compared to the device
in Fig. 1(b) (yellow square). This difference in mass con-
trast is also reflected in the corresponding bandgap width
of both devices.

A technical point arises in the fabrication of devices in
the limit of a very large bandgap. As said before, V is
determined by the relative sizes of the pads and tethers,
with wide pads and narrow tethers giving rise to large
values of V . Therefore, the minimum tether width that
can be fabricated and the desired bandgap position set
practical limits on V . As an example, a PnC with V = 4
would have pad widths of 40 µm assuming a wt = 1 µm.
The principle of equal transit times then sets the unit cell
length to be 220 µm, which in turn sets ωπ = 2π×1 MHz.
In general, higher contrast (higher V ) phononic crystals
will have lower bandgap center frequencies, because the
larger mass ratio induces lower average wave velocities.

Effects of Contrast on Soft Clamping

The main advantages afforded by SiN PnCs include
both soft clamping and phononic isolation of defect
modes. We assert that V (and thus also ∆) is a ge-
ometrically-defined indicator of the extent to which a

PnC achieves these phenomena. To understand the ef-
fects of soft clamping on dissipation, we first exam-
ine the origin of bending loss for a given mechanical
mode [11, 12, 17, 31]:

Qbend = Qint(h)
24(1− ν2)

Eh3
Ls(h)−1 =

24(1− ν2)

E2(h)h3
Ls(h)−1

(9)

Ls =

∫
κ(x, y)dxdy (10)

κ =
1

U
(∂2xu(x, y) + ∂2yu(x, y))2 (11)

where Qint(h) is the intrinsic Q of silicon nitride, E is
the Youngs’ mondulus, h is the nitride thickness, ν is
the Poisson ratio, U is the kinetic energy of the mode
and u(x, y) is the mode shape. E2(h) is the effective
imaginary part of the Youngs’ modulus, defined to be
E2 = E/Qint. Here we call attention to the depen-
dence of Qint, which has been shown to have a scaling
Qint ∝ h at membrane thicknesses around and below
100 nm where surface loss dominates [32]. We will call
Ls(h) the loss factor, which quantifies how much bend-
ing losses a given mode has. From Eq. 11, one can see
that Ls(h) ∝ h−1. Therefore, we expect Q ∝ h−1 for
soft-clamped PnCs [17]. We also define κ as the loss
density, which describes the spatial distribution of lossy
motion of a mode. Therefore bending loss in membrane
devices is most pronounced at clamping points where the
mode shape curves strongly to adhere to the restrictive
clamping boundary conditions.

Soft clamping and phononic isolation occur when the
mechanical defect mode has a frequency within the acous-
tic bandgap of the PnC. Within the bandgap, k become
complex. The magnitude of Im(k) at the defect mode
frequency determines the decay length l0 = 1/ Im(k) of
the defect mode into the PnC.

To directly illustrate how PnC design affects the soft
clamping of defect modes, we perform a series of 1D
simulations where a single defect is placed in a series
of PnCs with ascending contrast. From the calculated
defect mode shapes, one can predict a value for Qbend

assuming that Qint has a value of 6600 [32]. In this 1D
simulation, the defect mode’s frequency has a nearly con-
stant position relative to the bandgap center [Fig. 4(a)].
Two effects as a function of increasing ∆ are apparent.
First, the normalized mechanical decay length n0 = l0/a
decreases as a function of ∆ [Fig. 4(b)], as predicted from
our analytic analysis in the 1D model. Second, a decrease
of Qbend is apparent. This is indicative of the bending
resulting from the strong decay into the PnC.
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FIG. 4. Effects of contrast for 1D PnCs with a constant defect
geometry. (a) Orange points are the fundamental defect mode
frequencies across all simulated structures. The shaded region
denotes the frequency range of the simulated bandgaps. The
inset in (a) are schematics of the simulated 1D unit cell at the
lower extreme (left) and upper extreme (right) of the bandgap
width. (b) Normalized mode amplitude decay length (blue)
and quality factors (grey) for 1D PnC strings with a constant
defect. We define n0 = l0/a, where l0 is the exponential decay
length. At large contrasts n0 approaches 1 because the defect
mode does not begin decay until the onset of the PnC.

Effect of Contrast on Phononic Isolation

The numerical analysis above showed that high con-
trast PnCs exhibit short defect mode decay lengths, and
we also see numerically that this short decay length pro-
vides enhanced suppression of radiative loss. In this anal-
ysis, we investigate the concept of phononic isolation in
a two dimensional structure by FEM simulation using
Comsol. For details, see Appendix D. Here, we calculate
the ratio of the tensile energy stored in the entire struc-
ture to the energy stored in a 10 µm overhang around
the PnC perimeter. We define this ratio ∆U . As seen in
Fig. 5, the higher contrast PnC has a faster energy decay
compared to the low contrast crystal. We note that in
the 1D case, Smax is reached when the defect mode fre-
quency is at the center of the bandgap. However, even if
this condition is not obtained, one can still achieve robust
isolation in the high contrast limit.

Beyond the 1D Model: Incorporating Defects in 2D

Up to this point, we focused on PnC characteristics,
and have shown that our 1D model reproduces the basic
behavior the equivalent 2D crystals. However, the same
cannot be done for designing defects in two dimensions,
where we generally find that the 1D results have at most a
qualitative relationship to a 2D defect. This is mostly due
to the complicated stress redistribution that occurs in in-
tricate 2D structures around the defect (Fig. 7), which a
1D model cannot fully capture. This internal structure
of the defect leads us to further divide the loss path-
ways in our 2D devices into losses that can encapsulated
in 1D simulations (Q1D−bend) and losses that are inher-
ently 2D (Q2D−bend). In this next section, for example,
we designed 5 different devices with a various combina-
tions of defect and PnC designs (Fig. 7). FEM simu-
lations of the defect mode shape help illustrate the dif-
ference between the aforementioned separation between
“1D loss” and “2D loss”. For example in the context
of high-contrast PnCs, a linecut of the defect mode of
device A resembles closely a string mode emanating ra-
dially from the PnC center. Device E has a large defect
pad, and therefore there is considerable internal motion
of the pad. This internal motion gives rise to a larger
participation ratio of the “2D loss” as compared to de-
vice A. Therefore, one expects that 1D analysis is much
more applicable to device A than to device E.

The stress redistribution of the 2D structure also
strongly affects the position of the defect mode frequency
within the bandgap, leading to discrepancies between the
1D and 2D simulations. While the 1D model allows po-
sitioning the defect modes directly in the bandgap center

FIG. 5. Kinetic energy in the PnC frame, normalized to the
total energy, in both a high contrast (red points, V = 2.3)
and low contrast (yellow points, V = 1.3) PnCs as calculated
from FEM simulations. Insets are the unit cells used in the
simulation. Dashed lines are fits assuming exponential energy
decay for the defect mode. The decay length for the high
contrast unit cell (red fit) is 0.54 unit cells. The decay length
from the low contrast unit cell (yellow fit) is 1.24 unit cells.
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[Fig. 4(a)], the equivalent mode has a lower frequency in
both 2D FEM simulations and the experimental results
[Fig. 1(e)].

EXPERIMENTAL RESULTS

To test examples of the above ideas, we fabricated and
characterized multiple devices (Fig. 7) utilizing the two
different PnC designs illustrated in Fig. 1 and defined in
Fig. 2, and multiple defect designs. The chosen devices
illustrate the complex interplay of bending loss (both in
the PnC and defect) and effective mass m (characterized
by xzp) of the defect mode. The phononic devices were
patterned into a 100 nm thick LPCVD silicon nitride
layer on a silicon substrate, and suspended using a KOH
wet etch. All Si substrates were 375 µm thick 5×5 mm2 in
the transverse dimensions. Full fabrication information
appears in Appendix C.

The mechanical mode spectrum of the devices was
characterized at both room temperature and 4 K by af-
fixing the device to stack consisting of a mirror mounted
on a piezoelectric transducer all mounted on the sample
stage (cold stage for 4K measurements). The spectrum
was imprinted on the amplitude fluctuations of light re-
flected from the etalon formed by the mirror and the
membrane device. For all measurements, around 5 mW
of 1064 nm laser power was incident on the sample. Clas-
sical heating calculations indicate that this amount of

FIG. 6. Schematic of the experimental apparatus used for
measuring both mechanical spectra and ringdowns. The me-
chanics chip (green) is affixed atop a stack of a piezo electri-
cal transducer (dark blue) and a highly reflective mirror (light
blue). This stack is mounted onto a stage linked to the sample
stage (cold stage) for room temperature (4K) measurements.
The solid box represents the vacuum shroud for both the room
temperature and 4K apparatus while the dashed box repre-
sents the radiation shield present for 4K measurements. The
reflected light off the stack is sent to a photodiode via a po-
larizing beam splitter.

laser power should induce less than 1 K of heating. This
is consistent with other works where high aspect ratio sil-
icon nitride devices thermalize to cryogenic conditions in
high finesse optical cavities [27, 33]. An absolute calibra-
tion of the mechanical displacement of our devices can
be performed by assuming that the observed mechanical
amplitude is entirely due to the expected thermal sig-
nal. However, many of our spectra were taken via white
noise driving of the entire PnC chip via the piezo electric
transducer. Therefore, all mechanical amplitudes are dis-
played relative to the shot noise limited noise floor the
detection chain. The room temperature measurements
were performed at a pressure less than 10−6 mBar. 4 K
measurements were performed in a closed cycle cryostat
with free space optical access.

To clearly understand the mode spectrum we charac-
terize the motion in multiple regions of the PnC. Out-
lined in Fig. 1, the different colored spectra were ob-
tained by probing near the defect (orange point) and in
the crystal bulk (blue point). Modes that only appear
when probing near the defect are confined by the PnC
and considered to be defect modes [Fig 1(e,f)]. When
probing in the crystal bulk [Fig 1(c,e)], one sees a wide
range of frequencies with no discernible mechanical reso-
nance (grey regions in Fig. 1(c-f). This frequency range
is found to be broader for the high contrast PnC pic-
tured in Fig. 1(a), and is accordance with the results of
FEM simulations. We note that in order to adequately
resolve the upper bandgap edge, we chose to measure on
a tether as it accommodates more high frequency motion
above the bandgap than in the pads of the PnC. Occa-
sionally, spurious modes were found inside the bandgap
(Fig. 1). These modes had quality factors on the order of
100, and therefore are inconsistent with pure silicon ni-
tride membrane modes. This is consistent with the fact
that these are hybridized modes between the membrane
and its substrate or the chip-mirror assembly [20].

Quality factors were determined via ringdown mea-
surements of the phononic structures driven by the piezo-
electric transducer. Quality factor measurements, were
performed in the linear regime. The drive was swept
across the mechanical resonance to verify a lorentzian
lineshape and if a non-symmetric duffing lineshape was
observed, the drive power was dropped by 10 dB until
the linear regime was reached. Figure 8(a) displays the
quality factors for the symmetric modes of all devices at
both room temperature and 4 K. Loss factors were cal-
culated with Eq. 9 by FEM simulations of each device.
The fits are based on the assumption that the dissipa-
tion is bending loss limited Qrad � Qbend. For the room
temperature data, the fit value of E2 = 80 MPa combined
with the assumption of E = 250 GPa infers Qint = 3125.
This has agreement tabulated values of Qint found in the
literature [32]. The fit value of E2 = 17 MPa at 4 K infers
Qint = 14700. We note that scatter of points, particularly
at room temperature, indicates that this assumption may
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FIG. 7. Compilation of all devices presented in this work. In the first row are optical microscope images of suspended phononic
structures. Above are device labels that correspond to device properties plotted in Fig. 8. The second row presents FEM
simulations of symmetric defect mode shapes. The third row shows FEM simum,,lations of the static stress distribution
normalized to the film stress. The fourth row displays the normalized bending loss density.

not hold for all devices. Notably, device C which has a
rather large value of ∆U , which may be indicative of the
existence of measurable external loss for this device.

In Fig. 8(b) we see the force sensing performance across
all devices at both room temperature and 4 K. As dis-
cussed previously, we use force sensing performance of
these high-frequency resonators as a comparison metric.
First, let us comparatively examine devices A and B. De-
vice A displayed among the best performance among all
devices, with a force sensitivity of 12 aN/

√
Hz at 1.6 MHz

at 4 K. Both devices A and B contain a well confined de-
fect mode, leading to a relatively large xzp > 1 fm at
MHz frequencies. This confinement is accomplished si-
multaneously with little dissipation. For device A (Fig. 7)
the bending loss of the fundamental trampoline mode is
most pronounced in the pads surrounding the defect it-
self. This type of bending profile is similar to that seen
in SiN trampolines [14, 15], while relaxing some of the
clamping effects at the edge of the defect mode. Device
B maintains low dissipation via the soft clamping of its
surrounding low contrast PnC. Although both devices
demonstrate relatively high force sensitivity, they differ
considerably in design, and therefore include clear design

trade-offs. Device A has low effective mass due to its
low physical mass. Additionally, the low effective mass
of Device A can also be attributed to its first order sym-
metric mode, which is generally lower in mass since it
has a node of motion at the defect boundary. However,
its frequency is close to the bandgap edge (Fig. 1). This
frequency is most strongly influenced by the length of the
defect tethers [14], and thus frequency cannot be easily
pushed higher. Device B has a second order symmetric
defect mode. In general, these second order modes are
easier to place in the bandgap center, but are higher mass
because the edge of the defect coincides with an antinode
of motion.

To compare the effects of the PnC on the defect mode,
we can compare devices A and C, which both have defects
with trampoline geometries. Both devices also support
a first asymmetric defect mode with frequencies between
1.5 and 2 MHz. We find overall that these devices exhibit
a similar force sensitivity both experimentally [Fig. 8(b)]
and in FEM simulations. There are however slight differ-
ences in how these devices achieve their sensitivity. Fi-
nite element simulations predict that device C will have
more soft clamping and hence higher Q than device A
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FIG. 8. (a) Quality factor dependence on the loss factor Ls

for all fabricated devices, measured at room temperature (or-
ange), and at 4 K (blue). The symbols correspond to the
key presented in Fig. 7. Dashed lines represent calculated
Q-values from Eq. 9, with E2 = 80 MPa for the room tem-
perature data and E2 = 17 MPa for 4 K. (b) Calculated force
sensitivity at room temperature (orange) and at cryogenic
conditions (blue). The box is to emphasize the similarity in
defect design and performance between devices A and C.

(although in experiment device A has higher Q, perhaps
due to its larger number of unit cells). However, device
A has lower mass, and hence larger xzp, than device C.
Note, even when the defect pad width of device C is set
to be identical to that of A, the increase in pad width
is associated with an increase in resonant frequency and
the same conclusions hold.

The remaining devices (D and E) provide examples
of how nuances in device design can cause adverse ef-
fects. For instance, device D exhibits a relatively low xzp
[Fig. 8(b)]. Here, the defect accommodates the second
symmetric mode, causing the PnC to carry a large por-
tion of the defect motion (Fig. 7). This differs from the
fundamental trampoline-like mode shape in that the sec-
ond symmetric mode has an anti-node of motion at the
PnC boundary. Thus the motion of the defect strongly
drives the motion of the surrounding low contrast crystal
adding considerable mass to the mode. This effect is not
seen in device C (same PnC, different defect), because
this defect was designed to accommodate the fundamen-
tal mode within the bandgap. Finally, device E is com-

posed of a large defect pad intended to isolate the second
symmetric mode through the PnC. which leads to a large
amount of defect loss. The large pad is largely stress re-
leased, and thus the edges of the pad are allowed to freely
bend (Fig. 7). We can compare this to device A which
has a large released pad, but it is surrounded by a highly
stressed boundary. The relieved stress regions accommo-
date extreme bending which leads to substantial internal
loss, thus limiting the Q. This effect has ramifications
for future PnC design, where a large pad is often desired
for efficient coupling between an optical mode and the
mechanical motion.

Device ωm/2π xzp ∆ ∆U wdefect ω0/2π

A 1.65 MHz 3.8 fm 0.55 5.6 × 10−7 15 µm 189 kHz

B 2.55 MHz 1.4 fm 0.17 2.3 × 10−2 130 µm 174 kHz

C 1.70 MHz 2.2 fm 0.19 6.9 × 10−2 30 µm 242 kHz

D 3.41 MHz 0.6 fm 0.24 3.2 × 10−2 30 µm 246 kHz

E 2.39 MHz 1.1 fm 0.55 1.9 × 10−8 80 µm 181 kHz

FIG. 9. Tabulation of key parameters for each symmetric
defect mode for all fabricated devices. Note the correlation
between ∆ and phononic isolation (∆U).

CONCLUSION

To summarize, we studied SiN membrane designs com-
posed of a defect surrounded by a PnC structure. We
demonstrated the effects that high contrast PnCs can
have on producing wide bandgaps. Additionally, we pre-
sented numerical analysis that connects high contrast
PnCs to robust energy isolation of defect modes. Con-
versely, high contrast crystals compress the mode spatial
distribution, induce more bending, and increase the in-
ternal loss. However, the increased internal loss is not
severe for certain designs, and may for some applications
be worth the trade-off for phononic isolation and require-
ments on the number of unit cells. We have shown that
a 1D model with proper conversion, based on the Euler-
Bernoulli equation or its reduction to the wave equation,
is suitable for analyzing the behavior of a 2D PnC struc-
ture. However, incorporating a defect to a 2D crystal re-
quires a complex redistribution of the stress, which could
be achieved only by a suitable FEM simulation.

Utilizing these tools, we designed, fabricated and mea-
sured 5 devices differing in PnC contrast and defect de-
signs. These devices exhibit force sensitivity on the order
10 aN/

√
Hz at 4K. We draw attention to both devices A

and C, which we predict to have comparable force sen-
sitivities when bending-loss limited. This similar perfor-
mance is achieved despite the vast difference between the
PnCs of the devices and we attribute this similarity in
force sensitivity to the low-mass trampoline defect com-
mon to both devices. However, under conditions where
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both these devices are radiation-loss dominated, device
A has the potential to outperform device C in force sensi-
tivity due to its robust acoustic isolation, or equivalently
achieve equal radiation isolation with a smaller number
of unit cells.

For force sensing functionalization, it is generally re-
quired to add additional components to the device to
induce a force between the resonator and to detect the
subsequent displacement in a separate location. Device B
has the advantage that it has the largest area on which
to deposit samples and probe the motion, in compari-
son to the smaller defects that lead to the highest force
sensitivity in devices A and C. However, placing sam-
ples on the high stress tethers of the low mass trampo-
line defect archetypes of device A and C produces mini-
mal effects on dissipative properties, as demonstrated in
Ref. [25]. Further, any additional elements add mass and
alter the designed mechanical mode shapes and proper-
ties. Hence, an additional consideration is positioning
and maintaining the defect within the bandgap. The
wide bandgaps of high contrast PnCs can tolerate larger
changes in defect mass. However, low mass defects such
as the one in device A display a first symmetric mode
at the lower end of the bandgap. Therefore, in practice,
this device would be limited to small sample masses to
avoid pushing the mechanical frequency below the lower
band edge. The challenge of positioning the defect mode
within the bandgap could be adverted by exploring more
exotic defects beyond the trampoline archetype, such as
delocalized double-pad defects, or by utilizing higher or-
der modes.

As mentioned earlier, the low frequency modes, or no-
tably fundamental mode frequencies (ω0 in Fig. 9) of a
mechanical structure can induce instabilities when placed
inside an optical cavity due to their Brownian motion.
High contrast PnCs (devices A and E) can achieve mode
localization and acoustic isolation with fewer unit cells
(Fig. 2), potentially reducing the total device size. While
smaller devices have higher fundamental mode frequen-
cies, the fundamental modes of high contrast devices have
low effective masses when compared to their low-contrast
counterparts, and thus have more Brownian motion. Ul-
timately, the effect on the cavity stability will be de-
termined by the complete mechanical spectrum and the
most relevant effects will be dependent on the optical
cavity in question.

All devices reported in this work were fabricated with
a thickness of 100 nm. However, by using 20 nm SiN or
thinner, force sensitivity could be significantly enhanced
thanks to the scaling of

√
SFF ∝ h for soft clamped

membranes. Reducing the thickness of device A to 20
nm, would optimally improve its force sensitivity to 2
aN/
√

Hz at 4 K.

Lastly, a large influence on device design is the op-
erating temperature of the experiment. Where bending
loss is high, such as at room temperature, strongly soft

clamped devices with low contrast PnCs like devices B
and C should be employed. At temperatures around or
below 100 mK, the E2 of silicon nitride dramatically de-
creases, greatly diminishing the bending loss contribution
to the total dissipation of a mechanical mode [13]. In this
regime, radiative losses have the potential to be the domi-
nating loss pathway [34]; thus devices based around high-
contrast, high-isolation PnCs (devices A and E) may be-
come more attractive as they offer lower dissipation with
lower mass defects. With this in mind, a consideration
for future studies will be the effect of the tether size on
thermalization of different PnC designs to the cryogenic
environment.
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NSF under grant number PHYS 1734006, ARO-LPS
Cross-Quantum Systems Science & Technology pro-
gram (grant W911NF-18-1-0103), and a Cottrell Scholar
award. We thank Yeghishe Tsaturyan for helpful discus-
sions.
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APPENDIX A

We present here the method for converting a 2D unit
cell geometry to an effective 1D geometry. This approach
involves first considering a wave direction k̂ along which
we will convert the 2D geometry. We wish to encode
the geometry transverse to the wave direction into the
resulting 1D geometry. It is known that 1D strings with
variable width will have lower wave velocities in the wider
regions. We imagine that with more transverse?, the
plane wave in the 2D geometry will also have lower wave
velocity. Our conversion will then be as follows:

g1D(xl) =

∫
G

g(xl, xt)dxt (12)

where xl and xt refer to the coordinates along the longi-
tudinal and transverse wave directions respectively, and
G refers to the domain of a single unit cell.

Upon performing the conversion, g1D(x) gives a con-
tinuous variable width of the beam from which a variable
wave velocity can be derived. To derive the bandstruc-
ture, the 1D wave equation with Floquet boundary condi-
tions can be numerically solved for an arbitrary g1D(x).
However, we find it fruitful to further simplify the ge-
ometry where possible. Namely, we wish to convert wave
velocity to match that of the Kronig-Penney model which
can be solved analytically. This involves defining regions
of high mass and low velocity (pads) and low mass and
high velocity (tethers) from an arbritrary g1D(x).

For unit cells like those in device A, the selection of
the pad and tether regions follows naturally from the
2D geometry. Furthermore, the integration carried out
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FIG. 10. Geometry of the 2D to 1D conversion for a pad-
tether unit cell. The blue box (orange box) defines the pad
region (tether region) of the PnC unit cell.

in Eq. 12 can be carried out using geometric proper-
ties. This procedure will perform the transformation
(wp, wt, lp, lt) → (w̃p, w̃t, l̃p, l̃t) of the geometric param-
eters.

Following this procedure, we derive the following:

ρp =

√
3

2
wphρ+

lttwh

wp
(13)

ρt =
4√
3

wphρ (14)

l̃p = lp (15)

l̃t =

√
3

2
lt (16)

T̃ =
4√
3
σtwh (17)

ṽp =
[3wpρ

8twσ
+

√
3lρ

4wpσ

]− 1
2 (18)

ṽt =

√
σ

ρ
(19)

In this work we also study unit cells that do not fit
the pad-tether model at the outset [17]. Fig. 11 shows an
example collapse in relation to the 2D unit cell. g1D(x)
exhibits pronounced dips over short regions which we will
call the tether regions; all other regions will be consid-
ered pads. We can then extract the pad width and tether
width by taking the mean width over both regions. It is
of note that the definition of the pad and tether regions is
an arbitrary choice. However, we see that over a reason-
able and wide range of tether definitions, V stays roughly
constant between 1.4 and 1.5 (Fig. 12).

FIG. 11. Schematic of 1D collapse for a low contrast unit cell.
(a) Definition of pad and tether regions inside the low contrast
unit cell. (b) Resulting 1D geometry from performing the
collapse. The grey regions indicate the high velocity tether
regions used to define V for this unit cell.

FIG. 12. Distribution of contrast values derived from different
partitioning of the 1D geometry.

APPENDIX B

In this section we will present a detailed derivation
of bandstructure in the 1D model. We assume that the
displacement field has the form

yk = Ake
ikx−iωt +Bke

−ik−iωt (20)
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In this model we view the PnC structure as a modula-
tion in the group velocity of the this acoustic wave. Inter-
faces between pads and tethers will then have reflection
and transmission coefficients given as the familiar Fresnel
coefficients

rpt =
vt − vp
vt + vp

(21)

tpt =
2vt

vt + vp
(22)

rtp =
vp − vt
vt + vp

(23)

ttp =
2vp

vt + vp
(24)

To continue with our analysis, we can derive the mo-
tion across as a unit cell as a transfer matrix M , which
describes the transformation of the amplitude coefficients
Ak and Bk across each unit cell of the PnC. The total
matrix M will then just be a product of the matrices for
each subsection

M = MhpMtpMtMptMhp (25)

Here Mhp captures the accumulated phase of the plane
waves across the half pads at either end of the unit cell.
Mt does the same for the tether section, while Mtp and
Mpt account for transmission and reflection at each in-
terface.

Mhp =

(
eikplp/2 0

0 e−ikplp/2

)
(26)

Mpt =

(
tpt − rtprpt

ttp

rtp
ttp

− rptttp
1
ttp

)
(27)

Mt =

(
eiktlt 0

0 e−iktlt

)
(28)

Mtp =

(
ttp − rptrtp

tpt

rpt
tpt

− rtptpt
1
tpt

)
(29)

If we assume that our structure is infinite, then the
Bloch condition implies

(
A1

B1

)
= eiKa

(
A0

B0

)
(30)

where (
A1

B1

)
= M

(
A0

B0

)
(31)

Therefore we have the following eigenvalue problem

(
M11 M12

M21 M22

)(
A0

B0

)
= eiKa

(
A0

B0

)
(32)

We note thatM is a product of unitary matrices, which
places a contraint on its components:

M11M22 −M12M21 = 1 (33)

Solving the eigenvalue problem gives us the implicit
bandgap equation

eiKa = S ±
√
S2 − 1 (34)

S ≡ M11 +M22

2
(35)

or written more explicitly as:

S =
(V + 1)2

4V
cosω(tp + tt)

− (V − 1)2

4V
cosω(tp − tt)

(36)

APPENDIX C

Devices were fabricated on a 375 µm thick 3 inch di-
ameter silicon wafer with 100 nm of grown stoichiomet-
ric LPCVD silicon nitride on either side. Designs were
patterned using a direct write photolithography system
after spinning 1 µm of SPR-660 photoresist onto either
side. The top of the wafer was patterned with the PnC
designs, while the back was patterned with rectangular
windows aligned to each PnC. The patterning was done
on both sides with 300 mJ cm−2 of 405 nm light. During
these steps, the wafer was affixed to a sapphire carrier
wafer with Crystalbond 509 in order to protect the bot-
tom side from unwanted processing. Patterning of the
silicon nitirde was completed via a CF4 reactive ion etch.
The wafer was then cleaned with O2 plasma followed
by ultrasound cleaning in an acetone bath. Additional
cleaning was performed with isopropyl alcohol and wa-
ter. To suspend the PnC structures, the window side of
the wafer was etched using a 80 C KOH bath. The PnC
side was protected via a PEEK wafer holder. Following
wet etching, the wafer was cleaned in a Nanostrip bath,
acetone and isopropyl alcohol.
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APPENDIX D

FEM simulations in this work were performed using
COMSOL Multiphysics. Simulations were performed
in 2 steps; the stationary stress redistribution was
calculated, followed by a eigenfrequency analysis to
determine the mode spectrum of each PnC. The sim-
ulations were performed with increasingly fine meshes
until both the mode frequencies and loss factors were
found to converge to a change less than 5 percent.

These simulations assumed that the density of silicon
nitride was 3100 kg m−3, the film stress was 1.13 GPa,
the poisson ratio was .27, and the Youngs’ modulus was
250 GPa.


