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We present a direct tomography protocol that is capable of characterizing the transverse spatial
profile of both the polarization and the complex amplitude of fully polarized vector light beams in a
single-shot measurement. This protocol entails a sequence of steps: a coherent mode transformation,
a weak polarization perturbation, and a polarization-resolved imaging process. The final readout
is directly proportional to the complex amplitude profile of the two polarization components of
the vector beam. We experimentally demonstrate our direct measurement protocol on a variety
of commonly used vector beams, including vector vortex beams and full Poincaré beams. Our
method provides the unique capability of acquiring all the information needed to characterize a
fully polarized vector beam in a single-shot measurement. Such a real-time complete tomography
protocol has the potential to create new opportunities in emerging applications of vector beams as
well as fundamental study of complex physical systems with multiple degrees of freedom.

I. INTRODUCTION

Vector beams [1], characterized by their spatially vary-
ing polarization states, have recently garnered enormous
interest in fundamental studies [2–4] and a wide spec-
trum of applications [5–12] due to the large amount
of information that can be encoded within their trans-
verse beam profiles. While there has been great suc-
cess in generating vector beams using various methods
[13–23], the densely coded information and the insepa-
rability between the spatial and polarization degrees of
freedom present a challenge to the characterization of
the complete field structure of vector beams. Conven-
tional imaging polarimetry [24] only reveals the polariza-
tion profile of the beam without providing any informa-
tion on the transverse phase profile of each polarization
component. Other methods [25, 26] have characterized
vector beams composed of a limited number of selected
modes, but since the selected modes typically do not
span a complete mode basis set, these methods are in-
capable of fully describing the transverse profile of an
arbitrary vector beam. In addition, most available opti-
cal phase measurement techniques [27], including Shack-
Hartmann microlens arrays and interferometric tech-
niques, are designed for scalar beams and cannot easily
reveal the phase structure of vector beams nor their po-
larization profiles. The lack of a complete beam metrol-
ogy technique for vector beams has hampered broader
impact of vector fields in many important applications
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[8], including polarization-resolved imaging through tis-
sues [12, 28], free-space communication through turbu-
lence [11, 29, 30], quantum information encryption [31],
surveillance and sensing [32].

In this work, we describe a scan-free direct tomogra-
phy protocol that, for the first time to our knowledge,
is capable of characterizing the complete transverse field
structure of a fully polarized vector beam in a single mea-
surement. Our tomographic characterization process in-
volves a coherent mode transformation, a weak polariza-
tion perturbation, also known as “weak measurement”
[33–39], and a measurement of the polarization profile
of the final perturbed field. Through such a protocol,
our measurement result is directly related to the com-
plex amplitude profile of both polarization components of
the vector beam, from which the full spatial polarization
profile of the vector beam can be retrieved in a straight-
forward fashion. We demonstrate the single-shot charac-
terization capability of our direct tomography protocol
by measuring the complete field structure of a variety of
vector beams that are important for critical applications.
We highlight the unique capability of our method as com-
pared to existing technologies by distinguishing vector
beams that have different polarization profiles but iden-
tical complex field profiles for each polarization compo-
nent, and beams that have identical polarization profiles
but different complex field profiles in each polarization
component. The consistent high fidelity in all of our mea-
surements demonstrates the robust and versatile nature
of our approach, that can help enable a wide spectrum of
aforementioned emerging applications of vector beams.
Furthermore, our concept can also be extended toward
the development of metrology techniques for other com-
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FIG. 1. Illustration of the three-step procedure of the di-
rect tomography protocol for vector beams: the polariza-
tion components are spatially separated and adjusted into a
twin-beam; a weak polarization perturbation is applied in the
Fourier domain of the twin-beam, and polarization-resolved
imaging is performed on the final output field.

plex physical systems with multiple degrees of freedom.

II. THEORETICAL FRAMEWORK

A fully polarized vector beam can be expressed as the
coherent superposition of two scalar beams with orthog-
onal polarizations as follows:

~E(u, v) = êlEl(u, v) + êrEr(u, v), (1)

where êl and êr denote the unit vectors in the left- and
right-handed circular polarization (LCP and RCP) basis,
respectively, and El(u, v) and Er(u, v) denote the trans-
verse complex amplitude profile of the two circular po-
larization components, respectively. Note that the vec-
tor beam can also be expressed in any other polarization
bases.
To characterize such a vector beam, our direct tomog-

raphy protocol comprises three main steps as illustrated
in Fig. 1. We first apply a relative transverse displace-
ment of 2δu between the two polarization components of
the vector beam followed by separate polarization adjust-
ment so the two polarization components are adjusted
into the same polarization state. As a result, the vec-
tor beam is first transformed into a fully coherent scalar
beam with two transversely-separated parts correspond-
ing to the two polarization components of the vector
beam as follows:

êlEtw(u, v) = êl [El(u+ δu, v) + Er(u − δu, v)] . (2)

For convenience, we refer to this transformed scalar beam
as the “twin-beam”. Next, we perform a weak polar-
ization perturbation, also known as the “weak measure-
ment”, on one specific Fourier component of the twin-
beam. The field in the Fourier plane after such a polar-
ization perturbation can be expressed as follows:

~̃
Epert(fu, fv) = êlẼtw(fu, fv)[1 + (cosα− 1)δ(fu,0, fv,0)]

+êrẼtw(fu, fv)(sinα)δ(fu,0, fv,0)

≈ êlẼtw(fu, fv) + êrE0δ(fu,0, fv,0), (3)

where Ẽtw(fu, fv) = F{Etw(u, v)} is the twin-beam ex-
pressed in its Fourier plane, α denotes the strength
of polarization perturbation in terms of a rotation an-
gle, δ(fu,0, fv,0) is the Dirac delta function centered at
(fu,0, fv,0) in the Fourier plane of the twin-beam, and

E0 = αẼtw(fu,0, fv,0) denotes the amplitude of the or-
thogonally polarized point-like field. One sees that when
the strength of the polarization perturbation α is small,
the field in the original left-handed circular polarization is
maintained to the first order approximation, yet a point-
like field in the orthogonal polarization is generated in
the Fourier plane.
We then take an inverse Fourier transform on the per-

turbed beam, and measure the spatial polarization pro-
file of the weakly perturbed twin-beam field in the (u, v)
plane, which can be expressed by

~Edet(u, v) ≈ êlEtw(u, v) + êrEref , (4)

where Eref is a well-defined plane wave resulting from
the polarization perturbation applied as a delta function
in the Fourier plane. It can be shown that the spatial

polarization profile of the final output field ~Edet(u, v) is
directly proportional to the complex amplitude of the
scalar twin-beam field Etw(u, v), i.e., that of the two po-
larization components, El(u, v) and Er(u, v), of the vec-
tor beam. For example, if the scalar twin-beam field
Etw(u, v) before polarization perturbation is set to be
left-handed circularly polarized, its complex field profile
can be expressed by:

Etw(u, v)∝S1,det(u, v)− iS2,det(u, v), (5)

where S1,det(u, v) and S2,det(u, v) are the Stokes param-
eter profiles describing the projected polarization profile
of the weakly perturbed twin-beam in the horizontal-
vertical and diagonal-antidiagonal linear polarization
bases, respectively. Since the complex amplitude profiles
of both polarization components El(u, v) and Er(u, v)
are measured coherently, one can consequently obtain the
polarization profile of the vector beam. As a result, the
complete field structure of the vector beam is determined
in a single shot through such a direct tomography proce-
dure. Detailed description of our theoretical framework
is provided in the supplementary material.

III. EXPERIMENTAL CONFIGURATION

To demonstrate our direct measurement protocol for
vector beams, we constructed an experimental setup as
illustrated in Fig. 2, which includes a vector beam gener-
ation module and a direct tomography characterization
module. We start with an expanded and collimated laser
beam at 532 nm, and use a spatial light modulator, a 4-f
imaging system and a Sagnac interferometer to generate
vector beams of arbitrary field structures [40–42].
In the direct tomography module, a second Sagnac

interferometer is used to convert the vector beam to a
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FIG. 2. Schematic diagram of the experimental setup, which
includes a vector beam generation module and a direct mea-
surement module.

scalar twin-beam. The field then propagates through a
second 4-f imaging system, where the Fourier transform
of the beam is accessed at the focal plane of the 4-f
imaging system, and the output field is measured at the
image plane. A weak polarization perturbation is applied
on the focal plane using a second polarization-sensitive
phase-only spatial light modulator. The size of the per-
turbation area on the SLM is chosen to be comparable
to the diffraction limited spot size of the 4-f system,
and the polarization alteration is small enough to sat-
isfy the weak perturbation condition. Finally, the spatial
polarization profile of the perturbed field at the image
plane, which contains the information about the com-
plete field structure of the vector beam, is measured us-
ing a polarization-resolving camera in a single shot. More
details of our experimental procedure is described in the
supplementary material.

Note that both the theoretical framework and the ex-
perimental apparatus outlined here can be directly ap-
plied to the measurement of quantum states of light using
identically prepared single photons, provided that we use
detector arrays that are capable of detecting single pho-
tons with high quantum efficiency, such as SPAD arrays,
electron-multiplying CCD cameras and intensified CCD
cameras. Note also that the limited quantum efficiency
of single-photon detector arrays would require summing
over a large number of measurements using our protocol
on identically prepared single photons to average out the
read-out noise, but the complex-valued state vector of
single photons in the position-polarization Hilbert space
can still be measured directly with a single experimental
set-up without the need of any reconfiguration or scan-
ning procedure.
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FIG. 3. (A)-(D): The directly measured real and imaginary
parts of the left- and right-handed circular polarization com-
ponents of a vector beam that has uniform amplitude over a
circular aperture and Zernike polynomial Z2

4 and Z
−2

2
phase

profiles; (E) and (F): the corresponding phase profiles of the
two polarization components; (G)-(I) the corresponding nor-
malized Stokes parameters of the vector beam. Insets on the
upper-right corner are theoretical predictions.

IV. EXPERIMENTAL DEMONSTRATIONS

Using this setup, we generate and measure a variety of
vector beams, including several that are widely used in
many applications. To quantitatively evaluate our direct
tomography result, we define a “vector beam fidelity” as
the figure of merit, which is expressed by:

F ≡

∣∣∣∣∣
∑
p

∫
Ep,exp(u, v)E

∗

p,the(u, v)dudv

∣∣∣∣∣
√∑

p

∫
|Ep,exp(u, v)|

2
dudv

√∑
p

∫
|Ep,the(u, v)|

2
dudv

,

(6)
where the subscript p denotes the polarization compo-
nents under the chosen basis, and Ep,exp and Ep,the de-
note the measured results and theoretical predictions, re-
spectively. Such a figure of merit not only reflects the
measurement accuracy of the complex-valued field am-
plitude of each polarization component, but it is also
sensitive to the relative phase of the two polarization
components, which reflects the measurement accuracy of
the spatial polarization profiles of the vector beams.
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First, we generate a vector beam that has uniform am-
plitude over a circular aperture and two different Zernike
polynomial phase profiles, Z2

4 and Z−2
2 , encoded into the

LCP and RCP components, respectively. The directly
measured real and imaginary parts of the two circular
polarization components are shown in Figs. 3(A) to (D).
The corresponding phase profiles of the two polarization
components as well as the profiles of three normalized
Stokes parameters are shown in Figs. 3(E) to (I), respec-
tively. One sees that our experimental results match well
with the theoretical expectations, shown as insets in the
upper-right corner of each plot.

The fidelity of our measurement on the Zernike vector
beam shown in Fig. 3 is approximately 0.95, and similar
high fidelity is observed for a series of tested vector beams
with different Zernike phase profiles. The high fidelity of
our results demonstrates that our technique is capable
of accurately measuring the full complete field structure
of vector beams. The total number of effective pixels of
our experimental result is approximately 100,000, which
is limited by the numerical aperture and the field of view
of the imaging system and by the pixel density of the
camera used in the experiment.

Second, we measure a family of four vector vortex
beams [1] that are widely being used for high-dimensional
secure quantum communication [43–45]. These four
vector vortex beams use LG0,1 and LG0,−1 Laguerre-
Gaussian (LG) modes as the two circular polarization
components with a relative phase difference of 0 or π.
Here LGp,l denotes the Laguerre-Gaussian mode with ra-
dial index p and azimuthal index l. As a result, these four
vector beams have identical intensity profile but com-
pletely different polarization profiles as illustrated in the
first row in Fig. 4. Since these four vector modes are
orthogonal to each other, they can be used to represent
two bits of information in a spatial-mode encoding pro-
tocol. As shown in the second and third rows in Fig. 4,
our direct tomography technique reveals accurately the
azimuthal phase profile of each LG mode as well as the
donut-shaped amplitude profile (illustrated by the satu-
ration of each plot). Moreover, mode 1 and mode 2 (the
same for mode 3 and mode 4) have identical transverse
phase profile for the LCP and RCP components, but the
relative phase between LCP and RCP components is 0
and π, respectively. This relative phase difference deter-
mines that mode 1 is radially polarized and mode 2 is
azimuthally polarized. As shown in Fig. 4, our direct to-
mography method correctly captures the relative phase
difference between the two polarization components for
each mode, which consequently reveals the correct po-
larization profiles. Such accurate mapping of the Stokes
parameters would not have been possible if the complex
field profiles of the two polarization components are mea-
sured individually. The fidelity of our measurement re-
sults for the four vortex vector beams is 0.91, 0.92, 0.92
and 0.94, respectively.

To further emphasize the advantage of our direct to-
mography protocols over conventional imaging polarime-
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beams that are commonly used for high-dimensional optical
communication. These vector vortex beams are comprised
of LG0,1 and LG0,−1 Laguerre-Gaussian beams as the polar-
ization components with different relative phase difference.
The color saturation reflects the beam intensity. Insets in the
upper-right corner are theoretical predictions.

try, we next demonstrate its ability to distinguish be-
tween two different vector beams with identical polar-
ization profiles. The first beam is the radially-polarized
vector vortex beam comprised of LG0,1 and LG0,−1

Laguerre-Gaussian modes in the circular polarization
bases shown as mode 1 in Fig.4. Besides the accurate
characterization of the complete field structure in the
circular polarization basis as shown in Fig. 5(A), we also
measure the beam in the H-V linear polarization bases
by removing the QWP at the very front of the charac-
terization module. As shown in Fig. 5(B), our experi-
mental results match well with the theoretical prediction
of the HG1,0 and HG0,1 Hermite-Gaussian (HG) modes
[1], illustrating the versatility of our direct tomography
method in characterizing vector beams in arbitrary po-
larization bases. The second vector beam is created us-
ing the same amplitude profile of the first beam, but we
remove the spiral phase from the LCP component, and
double the spiral phase on the RCP component. Since
the relative phase difference between the LCP and RCP
components at each spatial point remains the same, these
two vector beams have identical polarization profiles and
therefore are indistinguishable if measured by conven-
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polarization components. The color saturation reflects the
beam intensity. Insets in the upper-right corner are theoreti-
cal predictions.

tional imaging polarimetry. As shown in Figs. 5(A) and
(C), our measurement results not only show the polariza-
tion indistinguishability of the two vector beams, but also
reveal accurately the different phase profiles of the two
beams in each polarization component. The capability of
resolving the complex field profile of individual polariza-
tion components makes our direct tomography protocol a
more valuable tool as compared to conventional imaging
polarimetry.

Finally, we demonstrate the generation and character-
ization of a full Poincaré beam, which has attracted a
lot of research interest for its richness in fundamental
physics as well as its potential applications in imaging
and particle tracking [46, 47]. Our full-Poincaré beam
is generated by superposing an LCP fundamental Gaus-
sian mode and an RCP LG0,1 Laguerre-Gaussian mode.
As shown in Fig. 6, our experimental results match well
with the theoretical predictions (shown as insets in the
upper-right corner of each plot), which indicates that the
polarization state across the beam indeed spans the entire
surface of the polarization Poincaré sphere. The fidelity
of our measurement result is 0.95, which further demon-
strates that our direct tomography method is capable of
characterizing vector beams with any possible field struc-
ture. Note also that a complete knowledge of the trans-
verse field structure of the vector beam at one plane could
also reveal the evolution of its full transverse field struc-
ture as the vector beam travels through free space or
an well-described optical system by applying well-known
Fourier optics methods. Such capability could reveal,
e.g., the spatial evolution of critical polarization points
of the vector fields [4] through a single-shot measurement
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rather than performing polarization measurements plane
by plane using conventional imaging polarimetry.

V. CONCLUSION

In summary, we have introduced a direct tomography
protocol that is capable of characterizing the complete
transverse field profile of fully polarized vector beams in
a single-shot measurement. The tomographic characteri-
zation process involves a separation of orthogonal polar-
ization components, a weak polarization perturbation,
and a measurement of the polarization profile of the per-
turbed field. We have shown that our final measurement
result is directly related to the complex amplitude pro-
file of the two orthogonal polarization components of the
vector beam, from which the spatial polarization profile
of the vector beam can be calculated in a straightforward
fashion. We have demonstrated our direct tomography
protocol by measuring a variety of vector beams that are
important to optical information science, including vec-
tor vortex beams and full Poincaré beams. No signal
averaging was used for any of the experimental results
presented here. Our experimental results have shown
consistently high data fidelity, and its unique capability
of revealing both the complex amplitude and polarization
structure in a single-shot measurement provides a robust
and versatile metrology tool in real time for fundamental
studies of vector beams and a wide spectrum of applica-
tions utilizing vector beams. Our approach can also be
extended to the development of metrology protocols for
other complex physical systems with multiple degrees of
freedom.
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