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Abstract 

In linear acoustics reciprocal behavior of waves traveling in periodic materials can be 
manipulated by imposing external or configurational biases to the system. However, the 
nonreciprocity observed in linear systems is energetically expensive. Here, we demonstrate that 
strongly nonlinear, asymmetric lattices can be designed to exhibit strong nonreciprocity that is 
passively adaptive and tunable. A new class of waveguides consisting of two coupled nonlinear 
lattices, one stiffer than the other, allows wave propagation preferentially in one direction at 
certain energy ranges. This “giant” nonreciprocal behavior is obtained passively by tuning the 
propagation-zones of these lattices in frequency-energy domain. We present numerical 
simulations corroborated by experiments to show an instance of this new class of nonlinear 
waveguides. Specifically, at low input energy, wave-packets generated by an applied impulse at 
the lateral boundaries of the waveguide are blocked at the interface of the two lattices. However, 
at intermediate energy ranges, wave-packets initiated at the free boundary of the softer lattice 
propagate through the waveguide, whereas wave-packets initiated at the free boundary of the 
stiffer lattice are blocked at the interface. The nonreciprocal acoustics persists until at critical 
level of input energy, above which waves propagates in both directions within the waveguide. 
The range of energy over which nonreciprocal wave transmission occurs is passively tunable by 
appropriately manipulating the nonlinear propagation-zones of the lattices in frequency-energy 
domain. The nonreciprocity concept is applicable to materials and systems capable of exhibiting 
strongly nonlinear behavior and can find broad applications in cases where passive targeted 
(directed) energy transfer in space and/or frequency is a desired outcome. For example, nonlinear 
nonreciprocal metamaterials can be used in passive acoustic isolation designs with the capacity 
for unidirectional sound transmission, thus eliminating their “acoustic signature”; in ultrasonics, 
to yield better wave focusing at preferential frequencies, and, thus improved signal-to-noise 
ratios; in shock isolation systems, e.g., by rapid nonreciprocal low-to-high nonlinear energy 
transfers, yielding fast structural response attenuation; or in networks of coupled oscillators 
enabling passive, irreversible energy transmission in preferential directions. Clearly, such 
capabilities for passive nonreciprocity are not attainable in linear systems. 

Keywords: Acoustic nonreciprocity; essentially nonlinear lattices; nonlinear acoustics 
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Introduction 

Reciprocity is a fundamental property of linear time invariant (LTI) systems that are governed by 
self-adjoint operators and is a consequence of their symmetric Green’s functions [1]. Reciprocity 
is directly related to time-reversal symmetry through the Onsager-Casimir principle of 
microscopic reversibility [2-4], so reciprocity breaking is only possible by breaking time reversal 
symmetry on the micro-level [5]. Recently this area has attracted considerable interest due to its 
important potential applications, e.g., mechanical diodes, acoustic logic, and targeted 
(irreversible) wave, sound and energy transmission. Common approaches to break reciprocity 
(and time-reversal symmetry) in LTI systems includes applying odd-symmetric external biases 
[6-8] or by inducing time-variant properties [7,9,10]. Indeed, Popa and Cummer achieved wave 
isolation factors over 10 dB by coupling an active metamaterial to a nonlinear electronic circuit 
[9]. In that system all the three cited approaches were employed to break the Onsager-Casimir 
principle of microscopic reversibility. Another example of biased wave propagation are sytems 
whose physical properties are spatiotemporally modulated, such as acoustic circulators [11], 
graphene-based nanoelectromechanical systems (NEMS) [6], and various types of 
electromechanical systems [12-15]. While these approaches are attractive, the introduction of 
external biases or time-varying properties requires an external energy source (making these 
designs non-passive) and are less effective under broadband impulse excitations. An alternative 
approach recently explored is through utilizing intentional nonlinearities, yielding completely 
passive nonreciprocity without the need of external energy input or external biases. Moreover, it 
has been shown that nonlinearity in itself, although necessary is not sufficient for passive 
breaking of reciprocity, since several additional factors are important, including the boundary 
conditions, the asymmetries of the governing nonlinear operators, and the choice of the spatial 
points where the non-reciprocity criterion is tested [16]. For example, lattice materials 
incorporating nonlinear stiffness elements, asymmetry, and scale hierarchy exhibit non-
reciprocity under impulse excitation [17] as they support nonlinear targeted (irreversible) energy 
transfers across spatial and/or temporal scales. As shown in [17] the governing nonlinear 
mechanism for nonlinear reciprocity breaking is transient resonance capture [18], a concept that 
can be effectively translated to designing nonreciprocal cellular lattice materials. 

In this study, we consider a nonlinear, asymmetric lattice waveguide that passively breaks 
acoustic reciprocity without requiring any external biases or any other source of energy. 
Considering one-dimensional wave transmission, we study this waveguide using numerical 
simulations and validate our theoretical predictions experimentally. The waveguide entails a 
lattice material capable of transmitting acoustic waves in one direction, while arresting their 
propagation in the opposite direction. We accomplish this by coupling two dissimilar, strongly 
nonlinear lattices – in which the linear elastic components in the nonlinear stiffness elements are 
negligible. Each lattice has uniform dynamic properties throughout, however compared to each 
other, they only defer in their elastic on-site stiffness, henceforth referred to as the ‘stiff’ and 
‘soft’ lattices. The introduction of such intentional nonlinearities and asymmetries permits 
passive tunability of the system through strong frequency-energy dependence. 

Model of the Problem and Background Concepts 
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A reduced order model (ROM) for the waveguide is depicted in Figure 1(a). The waveguide 
consists of an array of 10 cells, with each cell consisting of a lumped mass ݉ that is grounded by 
a linear spring (݇௚,ଵ or ݇௚,ଶ) – viscous damper (݀௚,ଵ or ݀௚,ଶ) pair. All cells are coupled by means 
of uniform nonlinear stiffnesses (݇௡௟) – viscous damping (݀௖) pairs. If ݇௚,ଵ ൐ ݇௚,ଶ the left five 
cells comprise the ‘stiff’ lattice, and the right five cells the ‘soft’ lattice. Moreover, the force-
displacement characteristic of each nonlinear coupling stiffness is assumed to be in the form ܨ ൌ ݇௡௟ߜଷ where ߜ is the extension of the nonlinear spring and ܨ is the resulting force, and the 
value of ݇௡௟ is constant along the waveguide; it follows that the waveguide is strongly nonlinear, 
since the coupling stiffnesses lack any linear components, although the results will not be 
affected by the presence of a small linear component. The inclusion of strong stiffness 
nonlinearity is an important requirement in our nonreciprocal approach as it is needed to initiate 
the governing transient resonance captures and targeted energy transfers that break reciprocity 
[17]. Hence, the nonlinear waveguide is the combination of a left stiff lattice and a right soft 
lattice. The left end of the stiff lattice and the right end of the soft lattice are free, and the 
nonlinear stiffness – viscous damper pair that couples the 5th cell (right-most cell of the stiff 
lattice) and the 6th cell (left-most of the soft lattice) is henceforth referred to as the ‘interface’ or 
‘interfacial coupling’ of the two lattices. Considering one-dimensional acoustics and for a given 
direction of wave propagation, the lattices preceding and following the interface are referred to 
as the ‘upstream’ and ‘downstream’ lattices respectively. The acoustics of uniform and 
boundless analogs of these lattices were recently studied analytically and numerically in [23], 
and it was found that they can support traveling breathers. These are traveling oscillatory wave-
packets with spatially localized envelopes, that possess two distinct time-scales, namely, a fast 
time-scale governing the oscillations of the individual particles of the lattice during breather 
transmission, and a slow time-scale governing the temporal evolution of the localized envelope 
that modulates the fast oscillations [19-22]. Moreover, as shown in [23] traveling breathers in the 
uniform, boundless nonlinear lattice are realized close to the upper boundary of its propagation 
zone (PZ) and depend on energy. Similar to linear periodic systems, a PZ is defined as the region 
in the frequency-energy plane where wave-packets can propagate unhindered in the unbounded 
nonlinear uniform lattice; the complementary regions in the frequency-energy domain then 
define attenuation zones (AZs) where no traveling wave-packets can be realized, and only 
localized near-field waves exist. In contrast to linear PZs, however, nonlinear PZs are energy-
dependent [23,24]. 

Considering the waveguide of Fig. 1(a), the infinite (boundless) extensions of the stiff and soft 
constituent lattices possess their own PZs, at different frequency ranges and dependent on energy 
– cf. Fig. 1(b). The asymmetry between the PZs of the stiff and soft lattices is key to breaking 
acoustic reciprocity in the nonlinear waveguide. The equations of motion of the 10-cell 
waveguide are given by: ݉ݔሷ௜ ൅ ݇௚,௝ݔ௜ ൅ ݀௚,௝ݔሶ௜ ൅ ݇௡௟ሺݔ௜ାଵ െ ௜ሻଷݔ െ ݇௡௟ሺݔ௜ െ ௜ିଵሻଷݔ ൅ … ڮ ൅ ݀௖ሺݔሶ௜ାଵ െ ሶ௜ݔሶ௜ሻെ ݀௖ሺݔ െ ሶ௜ିଵሻݔ ൌ 0, ݅ ൌ 1, … ,10   (1) 

where ݆ ൌ 1 for ݅ ൌ 1, … ,5 and ݆ ൌ 2 for ݅ ൌ 6, … ,10. As discussed in [25], a method to 
approximate the PZs of the two lattices is to compute their nonlinear normal modes – NNMs 
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[26], i.e., the periodic orbits of the detached lattices. Then the lowest (highest) in-phase mode 
(out-of-phase NNM) provides an approximation to the upper (lower) boundary of the PZ of the 
corresponding lattice. This was performed numerically using the program NNMcont [27]. The 
boundaries of the PZs of the two lattices are schematically represented in Fig. 1(b), where the 
offset and overlap between the PZs of the stiff and soft lattices can be tuned by adjusting the 
values of the linear grounding stiffnesses ݇௚,ଵ and ݇௚,ଶ. Since the in-phase mode of each lattice 
does not involve deformations of the nonlinear coupling stiffnesses, it is linear and subsequently 
does not depend on energy; accordingly, the lower bound of each PZ is a horizontal line in the 
frequency-energy domain. In contrast, the out-of-phase mode is strongly nonlinear since it 
involves deformations of the nonlinear coupling stiffnesses, so the upper boundary of each PZ 
exhibits strong stiffening behavior with its frequency increasing with energy – cf. Fig. 1(b).  

Governing Mechanism of the Nonlinear Acoustic Non-reciprocity 

Considering each of the two lattices, a traveling wave-packet (e.g., breather) can be initiated if it 
contains frequencies within the corresponding PZ. The unique feature, however, of the nonlinear 
waveguide is that the PZs of the two constituent lattices are tunable with energy. Accordingly, 
while the PZs of the soft and stiff lattices are separated at low energy levels (so they allow for 
propagation of wave-packets only in one of the two lattices, but not through their interface), the 
PZs have partial overlap at higher energies – cf. Fig. 1(b). This indicates that traveling acoustic 
wave-packets in the common area of the two PZs could potentially be transmitted through the 
interface between the soft and stiff lattices. Motivated by this observation, we design the overlap 
between the two PZs to occur at practical energy levels, indicated by the vertical dashed line in 
Fig. 1(b). The grounding linear stiffness coefficients ݇௚,ଵ and ݇௚,ଶ, and the other system 
parameters are listed in Table 1. These values correspond to the corresponding averaged 
parameter values that are identified for the experimental realization of the waveguide, as 
discussed below.  

Table 1. System parameters for the waveguide ݉ ሺkgሻ 
݇௚,ଵ ሺN/mሻ 

݀௚,భ ሺNs/mሻ ݇௚,ଶ ሺN/mሻ ݀௚,మ ሺNs/mሻ ݇௡௟ ሺN/mଷሻ ݀௖ ሺNs/mሻ 
0.022 1467.27 0.085 687.53 0.11 2.48E9 0.0805 

The mechanism governing nonlinear nonreciprocity in the waveguide is now described. We note 
at this point that we will focus only on the primary wave propagation, i.e., only on the traveling 
breathers [23] initiated in either lattice following the application of impulses at one of the free 
boundaries of the waveguide. We will consider traveling breathers initiated by impulses applied 
to cell 1 (the first cell of the stiff lattice) and propagate towards the interface with the soft lattice 
– henceforth referred to [23] as the stiff-soft direction and represented schematically by the 
heavier-colored arrows in Fig. 1(b). In the opposite soft-stiff direction, traveling breathers are 
initiated at cell 10 (the last cell of the soft lattice) and propagate towards the interface with the 
stiff lattice – these are represented by the lighter-shaded arrows in Fig. 1(b). In both cases, the 
frequency contents of the propagating breathers lie just outside the upper boundaries of the 
corresponding PZs of the lattices where they are initiated [23] and follow these upper boundaries 
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with decreasing energy due to viscous dissipation and/or residual local ‘ringing’ at the sites of 
the individual oscillators of the waveguide after passing of the breathers. Given, however, that 
the PZs of the two lattices are highly tunable with energy, depending on the intensity of the 
applied impulse we need to distinguish between three energy regimes, as schematically described 
in Figs. 1(b-e).  

For weak excitations (blue arrows in Fig. 1) traveling breathers can only propagate through the 
lattice where they are initiated due to the absence of overlap between the PZs of the stiff and soft 
lattices at low energies – cf. Figs. 1(b, c); as a result, incoming breathers are reflected at the 
interface from either direction. Critical-energy excitations (green arrows in Fig. 1) correspond to 
energies close to the energy level where the PZs of the two lattices start overlapping – cf. dashed 
line in Fig. 1(b). Hence, propagating breathers in the soft-stiff direction are partially transmitted 
through the interface, since their frequency content partially overlaps with the PZ of the stiff 
lattice and so they can initiate traveling wave-packets in the stiff lattice; this is schematically 
presented by the bifurcating ‘fork’ of the light-green arrow in Fig. 1(b). On the contrary, 
propagating breathers in the stiff-soft direction are reflected at the interface since their frequency 
content does not overlap with the PZ of the soft lattice, and so, cannot initiate traveling wave-
packets across the interface. This results in strong acoustic nonreciprocity (“giant” 
nonreciprocity) at that energy range – cf. Figs. 1(b, d). Finally, for strong excitations (orange 
arrows in Fig. 1), propagating wave-packets initiated both soft-stiff and stiff-soft directions have 
frequency contents that overlap with both PZs – cf. bifurcated forks in Fig. 1(b) – thus allowing 
for wave transmission through the interface in both directions. We note that, since the location of 
the two PZs along the frequency axis depends on the grounding linear stiffness coefficients ݇௚,ଵ 
and ݇௚,ଶ, the excitation levels for the three previous acoustic regimes of the waveguide can be 
tuned by appropriate design.  

Results and Discussion 

Numerical Study 

To highlight acoustic nonreciprocity in the nonlinear waveguide we performed a series of 
numerical simulations of the ROM (1) using a 4th order Runge-Kutta scheme. Assuming zero 
initial conditions, the impulsive force recorded by the force transducer from the experiments was 
applied to the free boundaries of the ROM (1). Based on the derived numerical results we 
computed the instantaneous total energies of the unit cells, and, through interpolation in space 
and time, the spatio-temporal energy evolution in the entire waveguide, as shown in Figs. 2(a-c). 
For clarity and to account for the diminishing wave amplitudes due to viscous dissipation, at 
each time instant, the energy of each cell is normalized with respect to the maximum 
instantaneous value of the total energy of the entire waveguide; hence at each time instant the 
plotted energy is normalized from zero to unity. Considering the results, following the 
application of the impulse a traveling breather is initiated in the stiff or soft lattice and 
propagates towards the interface. Depending on the direction of wave propagation and the 
amplitude (energy) of the impulse, different wave scattering phenomena occur at the interface, as 
discussed previously. 



6 
 

Focusing exclusively on primary wave propagation, for weak excitation the breather propagates 
only in the lattice where it is initiated and is reflected at the interface – cf. Figs. 2(a) and 1(b). 
After reflection of the breather at the interface there occur secondary reflections but, again, these 
are localized in the lattice that is excited by the impulse. A different result is obtained, however, 
for critical-energy excitation, as shown in Fig. 2(b). In this case the breather initiated in the soft 
lattice is only partially reflected at the interface, while a propagating wave-packet is transmitted 
in the stiff lattice according to the schematic of Fig. 1(b). On the contrary, the breather initiated 
in the stiff lattice is completely reflected at the interface, again in accordance with the schematic 
of Fig. 1(b). This results in “giant” nonreciprocity in the waveguide, as waves can propagate in 
the soft-stiff direction but not in the stiff-soft direction. Finally, for strong excitation, cf. Fig. 
2(c), traveling wave-packets can transmit in both directions, undergoing only partial reflections 
at the interface, in agreement with our predictions in Fig. 1(b). We emphasize at this point that 
following the excitation of the primary wave-packet (breather) by the applied impulse, there 
occur additional interactions between the wave-packet and its ‘tail’, as well as secondary 
interfacial reflections, but they are at very low energy levels and are inconsequential to the 
overall acoustics. This justifies our focus in primary wave propagation. In our numerical study, 
the amplitudes of the impulse loads were chosen to be identical to the ones used in the 
experimental study described below. Based on our numerical study of the ROM (1), the regime 
of “giant” nonreciprocity (only soft-stiff wave transmission) was realized in the range of 
impulsive amplitudes 25.9 ܰ to 45 ܰ. Below that range there occurred complete breather 
reflection at the interface (regime of weak excitation) and, above it, transmission of waves in 
both stiff-soft and soft-stiff directions (regime of strong excitations). 

Experimental Validation 

To corroborate the previous computational results, we performed a series of experimental 
measurements. Figs. 3(a, b) depict the schematic and experimental realization of the 
experimental fixture corresponding to the 10–cell ROM of Fig. 1(a). Each unit cell is composed 
of an aluminum mass whose unidirectional motion is tracked through an attached accelerometer. 
The aluminum mass is grounded by a pair of 50݉ߤ thick 1080 spring steel flexures which, under 
bending, provide the linear grounding stiffness of the ROM. This stiffness is adjusted by cutting 
out square sections of the flexure to produce different force-extension relationships for the stiff 
and soft lattice groundings with stiffness constants ݇௚,భ and ݇௚,మ, respectively – cf. Fig. 3(c). This 
method of stiffness tuning is robust and can be used to reliably produce a variety of stiffnesses to 
shift the PZs of the stiff and soft lattices as desired. Hence, we can experimentally tune the 
energy levels corresponding to the three previously discussed regimes of passive nonreciprocity. 
Neighboring unit cells are coupled to each other through clamped 0.006 in thick 1080 spring 
steel clamped wires, with special care being taken to maintain each wire in a nearly 
untensioned/unbuckled state during assembly. Ideally, each untensioned clamped wire under 
transverse deformation at its center acts as essentially nonlinear cubic spring, i.e., it possesses a 
cubic nonlinear force-extension relationship with no linear component – cf. schematic 
representation in Fig. 3(c) [28,29]. However, in practice, due to their thickness, the wires always 
possess a small bending stiffness, so they behave like thin Euler-Bernoulli beams at very small 
deflections. This gives rise to a small linear stiffness in addition to the strongly nonlinear cubic 
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stiffness, but this does not affect the nonreciprocity results. It follows that a small linear term in 
this coupling spring is unavoidable in practice, but this can be made small by reducing as much 
as possible the thickness-to-length ratio of the clamped wires [30].  

The waveguide is excited by a modal hammer with a force transducer attached to its impacting 
head to experimentally measure the applied impulsive force. Data is collected from both this 
force transducer and the 10 accelerometers attached to the unit cells through an m+p VibPilot 
dynamic system analyzer. Due to the inherent variation in manufacturing, tolerances and other 
unmodelled effects, the masses, stiffnesses and structural damping coefficients of the 10 cells of 
the experimental waveguide cannot be identical (as in the theoretical ROM). Furthermore, since 
the excitation is provided manually through the modal hammer, exact replication of the 
impulsive loads in the soft-stiff and stiff-soft directions was not possible experimentally. The 
mass of each unit cell (including adjustments for the attached accelerometer) is measured, and its 
linear and nonlinear stiffness, as well as the damping coefficients in the grounding flexures and 
the coupling elements are estimated through nonlinear system identification [31-34] following 
the restoring-force method adapted from [17,24]. The average values of the identified parameters 
are listed in Table 1 [30].  

The experimental spatio-temporal energy plots to verify the previous three theoretical 
nonreciprocity regimes – cf. Fig. 2 – are then constructed as follows. Following the application 
of the impulsive load, acceleration measurements for the unit cells are post processed (filtered, 
detrended, and numerically integrated) to estimate the cell displacements. Several tests are 
conducted at various excitation levels in both the stiff-soft and soft-stiff directions and the 
processed data is used in conjunction with the parameters from the system identification to 
compute the instantaneous total energy of each unit cell as a function of time. We then computed 
spatio-temporal energy plots at weak, critical and strong energy levels in both directions as 
depicted in Figs. 4(a-c). These plots represent the experimentally realized counterparts of the 
computational results of Figs 2(a-c). Focusing on primary wave propagation, the case of weak 
impulsive excitation is considered in Fig. 4(a). Similar to the theoretical prediction, the primary 
breathers that are initiated by the applied impulse only propagate in the upstream lattices and are 
completely reflected at the interface. In the case of critical energy excitation – cf. Fig. 4(b) – 
there is complete wave propagation in the soft-stiff direction but not in the stiff-soft direction, 
again confirming the theoretical findings. Finally, in the case of strong excitation – cf. Fig. 4(c) –
as predicted there is wave transmission and partial reflection at the interface in both directions. 
Hence, the three computational nonlinear nonreciprocity regimes were reproduced in the 
experiments. The experimental regime of “giant” nonreciprocity (only soft-stiff wave 
transmission) was found in the approximate range of impulsive amplitudes 25.9 ܰ to 49 ܰ, and 
below or above that range there occurred either complete breather reflection at the interface or 
wave transmission in both stiff-soft and soft-stiff directions, respectively. The upper boundary of 
the experimental range slightly exceeded the corresponding computational value of 45 ܰ. 
Following the primary wave, the simulation and experimental results for the secondary waves 
(generated by later reflections from the ends and/or the interface of the waveguide) agreed to a 
lesser extent. These discrepancies are reasonable since the ROM (1) of the waveguide assumes 
uniformity in the stiff and soft constituent lattices and does not account for the slight parameter 
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variations of the experimental waveguide, nor for additional unmodeled experimental effects, 
e.g., nonlinear friction, flexibility of the grounding flexures, or non-ideal connections to ground 
and between cells. 

To confirm experimentally the mechanism of nonlinear nonreciprocity of Fig. 1(b) we studied 
the frequency content of the velocity responses of selected unit cells of the waveguide. This was 
achieved by computing wavelet transforms of the measured time series of the cells, depicting the 
temporal evolutions of the dominant harmonics of the corresponding responses. Specifically, we 
considered the responses of one cell upstream and two cells downstream of the interface. In the 
stiff-soft direction we considered the responses of unit cells 5, 6, and 7, whereas in the soft-stiff 
direction, we considered the responses of cells 6, 5, and 4. The resulting wavelet transform 
spectra of the experimental responses shown in Figs. 4(a-c) are depicted in Figs. 5(a-c), 
respectively. The lower boundaries of the PZs of the stiff and soft lattices are represented in 
these plots, as dark grey and light grey dashed horizontal lines, respectively. Moreover, the red 
triangles indicate the dominant frequency contents of the primary breather in the upstream lattice 
(following the application of the impulsive load) and the downstream transmitted wave-packets; 
given that primary breather lies just above the upper boundary of the PZ of the upstream lattice, 
the red triangle in that case is consistent with the approximate location of this upper boundary at 
the corresponding energy level. 

First, we consider the case of weak excitation depicted in Figs. 5(a). In the stiff-soft direction – 
see left plots – the incident breather has frequency content just above the PZ of the upstream stiff 
lattice (see cell 5), and there are no frequency components in the PZ of the soft lattice (just above 
the grey dashed line) that are sufficiently strong to initiate a transmitted traveling wave-packet in 
the downstream soft lattice (see cells 6 and 7). Likewise, in the soft-stiff direction – see right 
plots – there are no frequency components in the PZ of the downstream stiff lattice (see cells 4 
and 5) indicating the absence of wave transmission through the interface of the two lattices. 
Different acoustic scattering phenomena occur in the case of critical excitation considered in 
Figs. 5(b). Indeed, in the stiff-soft direction – see left plots – the incident primary breather has 
strong frequency content in the PZ of the stiff lattice (see cell 5), but fails to transmit through the 
interface, as evidenced by the absence of strong frequency components in the PZ of the 
downstream soft lattice (see cells 6 and 7). However, a different picture is observed in the soft-
stiff direction – see right plots – where the strong frequency content of the incident primary 
breather in the PZ of the soft lattice (see cell 6) ‘converts up’ in frequency as the breather scatters 
at the interface, yielding strong frequency components in the PZ of the stiff lattice (see cells 5 
and 4), thus initiating traveling wave-packets downstream, across the interface. This results in 
acoustic nonreciprocity, confirming the theoretical scenario outlined in Fig. 1(b). Similar 
nonlinear scattering phenomena are observed for the case of strong impulsive excitation depicted 
in Figs. 5(c), where for both stiff-soft and soft-stiff directions there are ‘frequency-down’ and 
‘frequency-up’ conversions, respectively, of the primary breathers in the upstream lattices which 
enables their partial transmission through the interface to the corresponding downstream lattices. 
Hence, the theoretical predictions are fully confirmed by the experimental results. 

Conclusions 
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In synopsis, acoustic nonreciprocity in the considered waveguides was due to nonlinearity and 
asymmetry. The essentially nonlinear coupling stiffnesses played two critical roles: They 
determined the shape of the upper bound of the PZs of the constituent lattices, which, unlike 
linear lattices, depend on energy; and they enable the initiation of traveling breathers in the 
upstream lattices which provide the mechanisms for transferring energy in the spatio-temporal 
domain. The asymmetry is also important as it is responsible for frequency conversions during 
scattering of the incident primary breathers at the interface, which may enable partial wave 
transmission in the downstream lattice at certain energy ranges. We emphasize that the achieved 
break of acoustic reciprocity was completely passive, without requiring any external bias or 
energy source. Moreover, the waveguide can be tuned predictably to break reciprocity at 
different energy levels through the manipulation of the topologies of the PZs of the constituent 
lattices. Hence, the considered acoustic waveguide promotes an alternative passive scheme for 
achieving acoustic nonreciprocity without the need for external energy sources and time varying 
properties. Essentially nonlinear lattices have already been shown to demonstrate useful 
properties such as energy-dependent acoustic filtering properties, nonreciprocal breather 
formation and energy localization [35,36]. The acoustic nonreciprocity demonstrated in the 
asymmetric nonlinear lattices discussed in this work can find potential application in passive 
systems with inherent capacity for nonlinear targeted (directed) energy transfer in space and/or 
frequency. For example, nonreciprocal metamaterials supporting unidirectional sound 
transmission could be realized for unprecedented acoustic isolation. A different variant concerns 
protective metamaterial “shields” with capacity for inherent energy scattering of incoming high-
rate excitations (e.g., blasts) within the material through rapid low-to-high 
frequency/wavenumber nonlinear energy transfer for effective response reduction. Or, based on 
passive nonreciprocity, “nonlinear energy sinks” could be considered with enhanced capacity to 
absorb and harvest or locally dissipate broadband energy. Finally, the tunable (with energy) 
acoustic filtering properties of this type of nonreciprocal metamaterials could be used in better 
focusing and/or reduced scattering of ultrasonic waves to yield enhanced signal-to-noise ratios, 
or in designing networks of nonlinear oscillators with capacity for directed energy transmission 
in preferential spatial directions. Clearly, no such effects can be induced in linear, time-invariant 
linear systems. 
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Figure 1. Nonreciprocal 10-cell waveguide composed of two dissimilar lattices: (a) Reduced-
order model of the waveguide with uniform nonlinear coupling elements  – the ‘stiff’ lattice is 
composed of cells 1 to 5 with springs and viscous dampers k୥,ଵ and d୥,ଵ, respectively, whereas 
the ‘soft’ lattice consists of cells 6 to 10 with parameters k୥,ଶ and d୥,ଶ; (b) breather transmission 
in the propagation zones (PZs) of the two lattices, with the breather frequency band being 
represented by arrows for weak (blue), critical (green) and strong (orange) impulsive excitation 
applied to the free end of the stiff (darker shade) or soft (lighter shade) lattice – forks in the 
arrows indicate successful initiation of a wave-packet in the PZ of the downstream lattice; (c-e) 
schematic representation of breather propagation in the waveguide for weak (c), critical (d), and 
strong (e) excitation, respectively – heavier-colored arrows denote stiff-soft, and lighter-colored 
arrows soft-stiff direction of propagation. 

  



 

 

Figure 2. Computational spatio-temporal evolution of the total instantaneous energy in the 
waveguide for an impulse applied to the stiff (left column) and soft (right column) lattice, with 
red squares indicating the cell where the impulsive force, measured from the experiments, is 
applied, and darker shades corresponding to higher energy levels: (a) Weak impulses – 16.75 N 
impulse amplitude for the stiff and 15.64 N for the soft lattice, (b) critical-energy impulses – 
31.96 N for the stiff and 31.47 N for the soft lattice, and (c) strong impulses – 55.18 N for the 
stiff and 53.04 N for the soft lattice (for clarity and to account for viscous dissipation, at each 
time instant the energy is normalized with respect to the maximum instantaneous energy at that 
time instant). 

 



 

 

Figure 3. Waveguide composed of 10 unit cells: (a) Schematic top view of unit cells 4-7 (top) 
and experimental realization (bottom); the waveguide is excited with a modal hammer fitted with 
a force transducer, and the response of each unit cell is measured by means of ten accelerometers 
attached to the cells; (b) detailed isometric view of the schematic design and the experimental 
realization of the first unit cell showing the Aluminum mass (yellow) grounded to a rigid frame 
(grey) through linear flexure springs (green) whose stiffness is tuned through the geometry of the 
flexures; adjacent unit cells are coupled through thin wires (black) attached by clamps (red) and 
bolts (purple) – this provides the essentially nonlinear stiffness; (c) Schematic representation of 
the force-extension relationships of the different stiffness elements of the waveguide – stiff linear 
grounding k୥,ଵ (dotted line), soft linear grounding k୥,ଶ (dashed line) and nonlinear coupling k୬୪ 
(solid line), which is responsible for the frequency-energy tunability of the two PZs of the 
constituent lattices of the waveguide. 

  



 

Figure 4. Experimental spatio-temporal evolution of the total instantaneous energy in the 
waveguide for an impulse applied to the stiff (left column) and soft (right column) lattice, with 
red squares indicating the cell where the impulse is applied, and darker shades corresponding to 
higher energy levels: (a) Weak impulses, (b) critical-energy impulses, and (c) strong impulses – 
in all cases the impulse magnitudes are identical to those of the numerical simulations of Fig. 2 
(for clarity and to account for viscous dissipation, at each time instant the energy of each cell is 
normalized with respect to the maximum instantaneous energy of the waveguide at that time 
instant). 

 

 

  



 

 

 

Figure 5. Transient frequency content of the experimentally obtained velocities one upstream and 
two downstream cells relative to the interface—cells 5-6-7 in the case of stiff-soft and cells 6-5-4 
in the case of soft-stiff. Cell numbers are on the top right corner of each plot. Horizontal lines 
indicate the lower boundaries of the PZ of the stiff (black dashed) and soft (grey dash-dotted) 
lattices. Darker regions on the colormap indicate a larger amplitude. Red triangles point to the 
frequency content in the primary wave as it propagates through each cell. (a) weak excitation of 
16.75N and 15.64N applied to the stiff and soft lattice respectively. (b) critical excitation of 
31.96N and 31.47N applied to the stiff and soft lattice respectively. (c) Strong excitation of 
55.18N and 53.04N applied to the stiff and soft lattice respectively.  


