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The effect of thermal fluctuation on the spin-chirality-induced anomalous Hall effect in itinerant
magnets is theoretically studied. Considering a triangular-lattice model as an example, we find
that a multiple-spin scattering induced by the fluctuating spins increases the Hall conductivity at
a finite temperature. The temperature dependence of anomalous Hall conductivity is evaluated by
a combination of an unbiased Monte Carlo simulation and a perturbation theory. Our results show
that the Hall conductivity can increase up to ~ 10% times the ground state value; we discuss that this
is a consequence of a skew scattering contribution. This enhancement shows the thermal fluctuation
significantly affects the spin-chirality-related Hall effect. Our results are potentially relevant to the
thermal enhancement of anomalous Hall effect often found in experiments.

I. INTRODUCTION

Anomalous Hall effect (AHE) has been one of the cen-
tral topics in the study of quantum transport phenom-
ena [1]. Continuous study over more than a century have
revealed that AHE shows rich properties which attracts
the interest not only from basic science but also from ap-
plications (e.g., high accuracy Hall effect sensor) [2, 3].
Microscopically, the mechanism of the AHE is often clas-
sified into two groups: Intrinsic mechanism related to the
Berry curvature of the electronic bands [4] and the ex-
trinsic mechanism due to impurity scattering [5-7]. The
difference in the microscopic origin is often reflected in
the behaviors of the AHE. For instance, the intrinsic
AHE reflects singular structures in the Berry curvature.
This gives rise to non-monotonic temperature (7") [8] and
field [9] dependences of the anomalous Hall conductivity
oange- On the other hand, the extrinsic AHE by magnetic
scatterings shows a peak-like enhancement of the Hall re-
sistivity at a certain T which characterizes the underlying
physics such as the magnetic transition [10] and coher-
ence [11-13] T's. These rich features of the AHE have
been intensively studied in both theory and experiment,
and are also useful in identifying the physics behind the
phenomena.

Among various studies, a recent breakthrough was the
discovery of AHE related to scalar spin chirality which
is often called topological Hall effect (THE). Scalar spin
chirality is a quantity defined by the scalar triple product
of magnetic moments S; - (Sy x S3), where S; represents
a local magnetic moment [Fig. 1(a)]). This quantity is a
measure of the non-coplanar nature of spin texture be-
cause the spin chirality is zero whenever the three spins
lie in a same plane. It was pointed out that the spins
produce a fictitious magnetic field b when the three ad-
jacent spins have a finite scalar spin chirality, resulting
in an AHE [14-16] [Fig. 1(a)]. Alternatively, it is in-
terpreted as an AHE due to the magnetic scattering by
multiple scatterers [17, 18]. The spin-chirality-related
mechanism is studied in various materials, such as per-
ovskite [19-22] and pyrochlore [16] oxides, chiral mag-
nets [23-26], triangular oxides [27-31], and kagome anti-
ferromagnets [32, 33]. The THE in these materials are of-

ten investigated by the magnetic field dependence, which
are consistent with the theoretical predictions [16, 23, 24].

In contrast, the T dependence of the THE in the
non-coplanar magnetic states is less understood. The
Hall conductivity is expected to decrease with increasing
temperature in magnets with non-coplanar magnetic or-
ders because the scalar spin chirality decreases [Curve B
in Fig. 1(b)]. In experiment, however, many materials
show an increase of the Hall conductivity with increas-
ing T [25, 30, 31] [Curve A of Fig. 1(b)]; some materials
show the maximum slightly above the magnetic transi-
tion temperature T, [30, 31]. This is in contrast to the
known theories, where the maximum is expected to be
below [10] or much higher than T.. To the best of our
knowledge, no theoretical understanding on the T depen-
dence is reached so far.

In this work, we theoretically study the enhancement of
Hall conductivity (orug) by the thermal fluctuation fo-
cusing on the fluctuation-induced skew scattering. As an
example, we consider a triangular lattice model with four-
sublattice non-coplanar order called 3Q) order [Figs. 1(c)
and 1(d)]. The T dependence of oryg is calculated com-
bining a Monte Carlo (MC) simulation and a large-size
numerical calculation of Kubo formula. We find that
orHE increases with increasing T', sometimes up to more
than ~ 10% times compared with the ground state. The
scan over the carrier density ne (0.1 < ng < 1.9), which
is the average number of electrons per site, shows the en-
hancement due to the skew scattering by multiple spins
generally appears in this model. Our results show the
thermal fluctuation causes enhancement of AHE at finite
T.

II. MODEL

In this study, we consider a classical Heisenberg spin
model on a triangular lattice as an example of short-
range non-coplanar magnetic order [34]. The Hamilto-
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FIG. 1. Noncoplanar magnetic structure and topological Hall
effect. (a) A schematic figure of the effective magnetic field
induced by a noncoplanar magnetic structure. (b) Schematic
figure for the T' dependence of anomalous Hall conductivity
orue. Curve B’ (B) indicates the case where orug is pro-
portional to the (spontaneous) scalar spin chirality while C
indicates the case with extrinsic topological Hall effect in chi-
ral magnets [18].  In contrast, orug in this study shows a
different feature (Curve A). (c¢) Triangular lattice model. The
orange triangle (green plaquettes) depicts the three-(four-)
spins consisting X, (hp). Red, orange, blue, and purple sites
indicate a-, b-, c-, and d-sublattice structure of the 3Q order,
respectively. (d) Spin orientation at each sublattice. All the
spins in v-sublattice align to S, at 7' = 0.

nian reads

Hopin =KD hy+ Dy > [(S))* + (SY)* + (57)*]

S% + S8Y + 57
—B, S5 TS B Xt (1)
where S; (|S;| = 1) represents localized spin at site i, the
sums Zp, > ;> and >, run over all the four-site plaque-
ttes, all the sites, and all the three-site plaquettes, respec-
tively, and K, D4, B,, and B, represent a short range
multispin interaction, a single-ion anisotropy, a sublat-
tice specific magnetic field, and a fictitious field coupled
to the spin chirality, respectively. For each triangular pla-
quette ¢t and rhombic plaquette p, multispin interactions
are defined as

hp:{i,j,k,l} = (Sz . S])(Sk . Sl) — (Sz . Sl)(Sj . Sk)
—(Si-Sk)(S; - Si)

+(Si-S; +Si Sk +8i-S;+8S;-Sk+8S;-S; + Sk - Sy),
Xe={i,jk} = Si - (S5 x Sg),

where {i,7,k} of a triangular plaquette ¢ is defined in

order of counter-clockwise, and {i,7,k,l} of a rhombic
plaquette p is defined so that the pairs of (i, k) and (j,1)

are the diagonal pairs of the corners of a rhombic pla-
quette [see Fig. 1(c)]. A model with first K term was
originally introduced in the study on two-dimensional
solid ®He [35]. More recently, the biquadratic terms in /,,
was discussed in the effective spin models for the Kondo
lattice model [36, 37]. The model with only K terms
(D4 = B, = B,, = 0) exhibits a finite T' phase transition
with the spontaneous Zs symmetry breaking from para-
magnets to a chiral phase where spins are disordered but
x orders [34].

With Dy, B,, and B, the low 7" phase becomes a mag-
netic order because these terms reduce the symmetry:
the D4 term represents the single spin cubic anisotropy
because of which spins favor one of [£1,+£1, £1] direc-
tions (Dy > 0); the B, term represents the Zeeman
coupling between the a-sublattice spins and an external
magnetic field B, || [111] (B, > 0), and the B, term rep-
resents a coupling between a fictitious field B, > 0 and
x¢ because of which x > 0 in entire T" range. With these
three terms, the low-T' chiral phase is replaced by a four-
sublattice long-range magnetic ordered phase [Figs. 1(c)
and 1(d)]. In this state, the four spins on each sublattice
in Fig. 1(c) points along different directions [Fig. 1(d)],
forming a non-coplanar magnetic texture.

III. RESULTS

Monte Carlo simulation — The finite T properties of this
model is calculated by MC simulations using a standard
single-spin-flip Metropolis algorithm [38].
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FIG. 2. Results of MC simulations of the model (1): (a)
specific heat C' and (b) normalized spin structure factor
S(m,m)/N and scalar spin chirality x. (c) A spin configura-
tion in MC simulation at T/K = 0.1. Each point represents
spin orientation. Arrows are guide for eyes. (d) Spin chirality
of fluctuating spins Jdx.

Figure 2 shows the results of MC simulations with



Hspin-  The specific heat C in Fig. 2(a) shows a
peak at T./K =~ 2. and the normalized structure
factor S, m)/N=([(¥,0,..S1) — (¥,cy0 SII2) /N2
[N(= L?) is the number of spins and L is the size of the
system.| becomes nonzero below T, reflecting a phase
transition to a magnetic order phase. In the lowest 7T,
S(m,m)/N approaches Sso/N = 1/3, and x approaches
X3¢ = 4/(3v/3) as shown in Fig. 2(b). Figure 2(c) shows
a spin configuration obtained in simulation at the suffi-
ciently low T. These results consistently show that the
ground state is the 3Q order and the phase transition is
continuous. We also find that the overall behavior of the
above quantities are sufficiently converged with L > 24
with some finite size effect close to T.. The behavior of
C, S(m,m)/N, and x as well as the observed finite size
effect indicates that the phase transition is continuous.

We note that the scalar spin chirality remains positive
in the entire T range, even above T, [Fig. 2(b)]. The
nonzero x comes from the local correlation of fluctuating
spins under the B, field in Eq. (1), which acts as the
“magnetic field” for xy. As a measure of the chirality due
to the fluctuating spins, we use

wlw

. X S(m, )
Sy = 2~
5 { S3q }

X3Q

In contrast, dx shows a different T' dependence. Fig-
ure 2(d) shows 0 increases with increasing T and shows
a cusp like peak at T,.. The magnetic scattering by fluctu-
ating spins produces anomalous Hall effect proportional
to the scalar spin chirality [17, 18]. Therefore, the fluctu-
ating spins may produce a non-monotonic 7' dependence
of OTHE-

Anomalous Hall conductivity — To study the T depen-
dence of oryg, we consider itinerant electrons coupled to
the spins in Hpin. The electrons are coupled to the local-
ized spins via Hund’s coupling, i.e., we consider a Kondo
lattice model on the triangular lattice. The Hamiltonian
reads:

Hir = —t Z (c;fscjerh.c.)fJZ Si-(cl.ossci), (3)

(i,4),s 1,8,8’

where o = (0%, 0Y,0%) are the Pauli matrices, ¢/, (¢;,)
is a creation (annihilation) operator of itinerant electron
at site ¢ with spin s. The first term represents the ki-
netic energy term of itinerant electrons, and the second
term the Hund’s coupling. We assume that the coupling
is relatively weak (J = t/2), and the energy scale in
the electron system is much larger than the spin system.
Then, for simplicity, we fix the temperature of the elec-
tron system T/t = 0.025. The Hall conductivity ornur
is calculated by Kubo formula using spin configurations
generated by the MC simulation [38-43].

Figures 3(b,c) show orur(T) at ng = 0.3 and 0.7 as
examples. Different lines are for different choices of L
and Lg; we find only small finite size effect after taking
the average over the twisted boundaries. When no =
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FIG. 3. Hall conductivity orug as a function of ne; and T'. (a)
Contour plot of |orue(T/Te)/orue(T = 0)| computed with
L =32and Ly = 3. (bye) orus(T/T.) at na = 0.3 and
0.7. (d) Ratio of orue(T/Tc = 1/2, 1, or 3/2) and orue(T =
0) [44]. (e) ne dependence of orup(T > T.) and orur (T =
0). Solid lines are obtained by the perturbation theory with
a scale factor 3 for visibility [17].

0.3 [Fig. 3(b)], we find orur ~ 1072e2/h at T/T. =
0.05 < 1. However, orgr monotonically increases with
increasing T, reaching orug ~ 0.3¢%/h at T ~ T; this
is 30 £ 10 times larger than orug(T/T. = 0.05). In our
calculation, we find the enhancement of oryg in nearly
all choices of ne. Figure 3(c) shows the results for ne =
0.7. Similar to Fig. 3(b), orug increases with increasing
T and decreases above T,; the curve shows a maximum
around T ~ T, with a kink slightly below it. This trend
also appears for ne > 1 except the difference in the sign
of OTHE [-38}

The increase of oryg implies the enhancement is re-
lated to the fluctuation effect. Indeed, the T" dependence
of oryg is in contrast to that of y, which decreases mono-
tonically with increasing T [Fig. 2(b)]. Therefore, the
enhancement is different from what is expected in the in-
trinsic THE mechanism. On the other hand, the increase
of orpr below T, and the maximum around T, are coinci-
dent with the T' dependence of §x. Furthermore, at some
filling e.g., ng = 0.7 [Fig. 3(¢)], orar shows a cusp at T,
resembling dx. These features imply the enhancement is
related to the spin chirality of fluctuating spins dy, pre-
sumably related to the skew scattering mechanism [18]

Our results in Fig. 3(a) also find that the thermal ef-
fect is larger when the Fermi level is close to the band
edge, i.e., neg ~ 0 or ~ 2. Figure 3(d) shows the ratio
UT]]F(]‘)/UT][E(I‘ = ()) at T/TC :1/2, 1, and 3/2 and
0. As shown in the figure, orur(T/T. = 1/2,1,3/2) is
typically 2-10 times larger than orggr(7 = 0). On the
other hand, the enhancement at the band edges are much



larger, sometimes up to 10? times of that at 7 = 0.

The ng ~ 0 and ~ 2 regions are close to the ideal
setup in which the skew scattering is often studied. In
the case ng ~ 0 (ne ~ 2), the electron (hole) bands
are well approximated by the quadratic dispersion. The
skew scattering in these situations are often driven by the
large-angle scattering, which is dominant when £kp < 1.
Here, kr and & are the Fermi wavenumber and the cor-
relation length for y¢, respectively. Therefore, the skew
scattering theory in Ref. [18] applies to this case. The
¢krp < 1 condition is not satisfied when the chemical
potential moves away from the band edge. Hence, the
results may generally change due to the large Fermi sur-
face. Nevertheless, our result shows the enhancement is
commonly seen regardless of the size of the Fermi surface.
High-temperature region — We next turn to the ne de-
pendence of oryg at a high-T region well above T,.. The
results of MC simulation are shown in Fig. 3(e). The re-
sults show a qualitatively different n.; dependence com-
pared to the T' = 0 result; orpg is larger (smaller) when
less than half filling in the high (low) T regime and vice
versa.

This contrasting trend at a high-T is explained by the
relaxation-time (electron lifetime) dependence of skew
scattering mechanism. To see the density of state [p(u)]
dependence, we evaluated orygg using a perturbation
method in Ref. [17]. In the T' > T, region, the fluctua-
tion contribution is expected to be the only contribution
to the Hall effect. Also, the correlation length of the
spins becomes very short in this region. Therefore, we
only take into account the contribution from the nearest-
neighbor spin correlation. With these approximations,
the conductivity reads [17]:

02 J3.2
OTHE = — Z €apy(Sr, Sfisz)
(ijk)et
x Iy (rj — ) lo(ry — ri)Iy(r; — 1), (4)
where I,(r) = - > %, and vk (ex) is the ve-
k

locity (energy) of electrons with momentum k (v) = 1).
Here, the sum of (ijk) is limited to the three spins
forming the triangles ¢t [Fig. 1(c)]. The electron life-
time 7 is evaluated using the first Born approximation,
7Y ) = 2wJ?%p(p). Here, we neglected the spin-spin
correlation for the evaluation of 7.

The result of Eq. (4) is shown in Fig. 3(e). The pertur-
bation theory semi-quantitatively reproduces the overall
trend of numerical results. The similarity between the
numerical results and the perturbation suggests that the
Hall effect is related to the skew scattering by the fluc-
tuating spins in the high-T regime; in the perturbation
theory, larger skew scattering contribution to oryg is

expected when 7 o p(u) is larger [2, 17, 18], and indeed
p(p) for ng < 1 is smaller than that for ne > 1.
IV. SUMMARY AND CONCLUDING
REMARKS

To summarize, in this work, we studied the effect of the
thermal fluctuation to the spin-chirality-related anoma-
lous Hall effect. By an unbiased numerical simulation,
we find the Hall conductivity orpg increases with in-
creasing temperature, sometimes up to ~ 10® times the
ground state value. Detailed analysis on the temperature
and electron-density dependence shows the enhancement
is consistent with the skew scattering mechanism pro-
posed recently [18]; the thermal enhancement is larger
when the Fermi level is close to the band edge, and is
also related to the density of states. These results show
a significant effect of the thermal fluctuation to the Hall
effect induced by non-coplanar magnetic orders.

In contrast to our results, the skew scattering mech-
anism was also discussed in relation to the sign change
of ok close to the critical temperature in chiral mag-
nets with long-period magnetic orders (e.g., MnGe) [18].
This is a decidedly different behavior from the current
case where the skew scattering enhances the Hall effect.
Presumably, a key difference is the size of the magnetic
structure, i.e., the characteristic wave number k* is large
(small) in the 3Q) order (magnetic skyrmion crystals). In
the skew scattering mechanism [18], the scattering ampli-
tude is proportional to sin # where 0 is the angle between
the in-comming and out-going electrons, namely, larger
angle scattering is important. In addition to the skew
scattering, the small angle scattering is also induced by
the intrinsic topological Hall effect (THE) when k* is
small. In other words, from the scattering theory view-
point, the scattering channels for the skew scattering and
intrinsic THE are different for small £*. In contrast, since
the magnetic unit cell of 3Q) order has only four sites (k*
is large), both the skew scattering and intrinsic THE in-
duce a large angle scattering. Our results presented here
shows that the magnetic fluctuation plays a non-trivial
and crucial role in magnets with such a short period or-
der.
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