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We demonstrate the structural imaging of magnetostatic spin-wave modes hosted in a millimeter-
sized ferromagnetic sphere. Unlike for low-dimensional magnetic materials, there is no prior tech-
nique to image these modes in bulk magnetized solid of revolution. Based on resonant magnetic
induction tomography in the microwave range, our approach ensures the robust identification of
these non-trivial spin-wave modes by establishing their azimuthal and polar dependences, starting
point of magnonic fundamental studies and hybrid systems with complex spin textures well beyond
the uniform precession mode.

I. INTRODUCTION

Macroscopic magnetically ordered structures, such
as Yttrium Iron Garnet (YIG) millimetric spheres, are
solid supports of extended collective spin excitations,
magnons [1–3], that can be cooled down to their quan-
tum ground state and coherently coupled to a super-
conducting quantum bit through a microwave cavity [4].
A coherent optical control of magnons in the quantum
regime could enable the efficient transduction of optical
and microwave photons [5], opening the way to quan-
tum telecommunications between superconducting quan-
tum computers [6, 7] as well as quantum-noise limited
microwave amplifiers [8]. The study of the interactions
of magnons and photons in an optical cavity, or cavity
optomagnonics, in a solid-state matrix has been initi-
ated by the first observations of magnon-induced Bril-
louin light scattering involving the uniform precession
spin-wave mode and optical whispering gallery modes of
a YIG sphere [9–11]. Higher-order magnetostatic spin-
wave modes, with a variety of orbital angular momenta
and spin textures, extend the richness of this hybrid
system. In particular, the exchange of orbital angular
momentum between magnons and optical photons has
been experimentally demonstrated recently [12, 13]. The
related selection rules allow a controlled non-reciprocal
scattering, dependent on the interacting spin wave, po-
tentially leading to the development of a new class of chi-
ral devices [14]. The optomagnonic coupling, faint with
the uniform precession mode, will be optimized for high-
order modes whose spatial distribution localizes more and
more towards the resonator boundaries where the optical
whispering gallery modes spread [15].

These spin-wave modes can be described within the
magnetostatic approximation for a saturated magnetic
ellipsoid [16] and their eigenfrequencies determined nu-
merically. Diverse effects could alter this description: re-
lated to the environment as the temperature dependence
of the saturation magnetization, the non-uniformity of
the saturating static magnetic field or the presence of
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close-by parasitic elements [13, 17], or related to the sam-
ple as propagation corrections [18], magneto-crystalline
anisotropy [19] or irregularities and composition defects,
potentially resulting in inter-mode coupling [20]. Increas-
ing the optomagnonic coupling by using hybrid custom
shapes with smaller mode volumes [21] will disturb the
frequency distribution [22]. Associated with the density
of modes excited by a non-uniform microwave field, the
simple identification of the modes beyond the uniform
precession mode using their expected ferromagnetic res-
onance frequencies [18] is possibly ambiguous. An in situ
structural mapping of the spin-wave modes is needed to
properly identify them and estimate their coupling to
others modes, independently of the sample nature and of
the experimental conditions, for fundamental magnonic
studies [23, 24], quantum magnonics [4, 25] and hybrid
system operations [12, 15, 26–29].

Pushed forward by the demands for fast recording
and high-capacity storage devices, magnetization dynam-
ics of micro and nanostructures on a substrate have been
intensively studied in the last years with advanced mag-
netic microscopy methods involving x-ray magnetic cir-
cular dichroism [30], magneto-optical interactions [31],
thermal effects [32], microwave near-field [33] and mag-
netic scanning probe [34]. At the other extreme, space
exploration and geophysics have been implementing suc-
cessfully magnetic field measurements around gigantic
solids of revolution from satellite-based loop coil mag-
netometers employed to understand terrestrial polar au-
rorae from the ionosphere [35] to vector fluxgate magne-
tometers used to determine the magnetosphere and inte-
rior structures of Jupiter [36].

Here, we access the spatial structure of the spin-
wave modes of a bulk magnetized solid by measuring the
magnetic flux spectrum intercepted by a mobile loop coil
facing the sample at different azimuth-altitude positions,
while the magnons are coherently excited by a fixed mi-
crowave antenna — realizing a magnetic resonance imag-
ing (MRI) [37] scanner for collective electron spins exci-
tations. The spatially and spectrally resolved magnetic
responses of the system are carefully processed to extri-
cate the nature of each spin-wave mode.
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FIG. 1. Imaging the stray field induced by the spin-
wave modes of a magnetized sphere. a, Snapshot of
the calculated spatial magnetization distribution of magne-
tostatic modes in a YIG sphere for n < 4, transverse to
the static magnetic field HDC. Their magnetization norm
is color-encoded for successive sections from θ = 10◦ to 170◦

(see Appendix A for details). b, Schematic of the exper-
iment. A fixed loop coil (pump coil) excites the magnons
at microwave frequencies. These modes generate a dynamic
magnetic field, represented here in the equatorial plane for the
(n,m,r) = (3, 3, 0) mode. The stray field spectrum is cap-
tured by a second loop coil (probe coil) at different azimuth-
altitude (ϕc, zc) positions. c, Numerical calculations of the
spatially-resolved magnetic flux intercepted by a rectangular
coil (∆y = 0.5 mm, ∆z = 0.3 mm, r̃c = 2 mm) on a YIG
sphere for (n,m) = (5, 5), (7, 3) and (12, 6) families (i-iii),
encoded in the surface colors and corrugations.

II. SPATIAL STRUCTURE OF THE
SPIN-WAVE MODES

A strong magnetic field HDC applied along the z-
axis saturates the magnetization of the sample. Solving
Maxwell and Landau-Lifshitz equations reveals the exis-
tence of dynamic magnetization modes in the orthogo-
nal plane [22]. For a millimeter-sized YIG sphere, these
spin-wave modes have typical eigenfrequency Ωk/2π ∼ 5–
10 GHz for HDC in the 100 mT/µ0 range (with µ0 the
magnetic constant). In the magnetostatic approxima-
tion [38], they are described by three indices (n,m,r):
m expresses the azimuthal dependency and is linked to
the winding number of the spin texture [12], n − |m|
the polar dependency and r the number of nodes along
the radial direction. Their spatial distribution is deduced
from a magnetic potential solution of Laplace equation
in spheroidal coordinates dependent on the applied static
magnetic field and on the considered mode. The non-
trivial spatial distributions of the lowest-order modes are
pictured in Fig. 1a, their phase dependence at fixed alti-
tude being given approximately by −(m− 1)ϕ. Outside
the sphere, a magnetostatic mode induces a magnetic
field Hm

n = ∇ψm
n such that close to the magnon reso-

nance

ψm
n (r, θ, ϕ) =

ζmn
rn+1

Pm
n (cos θ)eimϕ (1)

with ζmn encapsulating the pump field projection on the
spin-wave mode and the resonance condition, while Pm

n

is the Ferrers function [39]. The spherical coordinate
system (r, θ, ϕ) is depicted in the inset of Fig. 1a.

The imaging scheme is illustrated on Figure 1b. The
pump coil, fixed during the experiment, applies a mi-
crowave field exciting the magnons. The excitation fre-
quency is swept to measure the spectral response of the
whole magnonic system. The probe coil turns around the
sample axis of revolution along a cylindrical orbit (ϕc, zc)
and intercepts at each position the phase-resolved spec-
trum of the induced magnetic flux. Working at a cylin-
drical detection distance r̃c large compared to the typical
width 2∆y and height 2∆z of the probe coil, the induced
flux due to a (n,m) mode can be approximated to

φmn (ϕc, zc) ∼ eimϕcZm
n (zc) (2)

with Zm
n (zc) having a mode-dependent envelope whose

number of nodes along the altitude axis is related to n−
|m|. Appendix B presents a detailed derivation of these
expressions. Figure 1c shows numerical computations of
the magnetic flux induced by some representative mode
families. Rotating the probe coil around the sample at
fixed altitude grants access to the azimuthal parameter
m, enclosed in the mode relative phase, while a walk
along the altitude z-axis leads to the polar parameter
n−|m|. The radial dependency, not affecting the spatial
distribution of the stray field, has to be deduced from the
suite of eigenfrequencies of a given family (n,m) [22].
Each excited mode, with its distinct spectral signature,
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will contribute to the total stray field. The extraction
of these features in the measured spectra at all positions
along these two axes leads to their spatial mapping and
subsequently to their robust identification.

III. PHASE-RESOLVED RESPONSE OF THE
MAGNONIC SYSTEM

The studied sample is a 2 mm-diameter YIG sphere,
placed at the center of an iron magnetic circuit ended by
two permanent ring magnets distanced by 15 mm. The
static magnetic field (∼ 230 mT/µ0) created along their
revolution axis z saturates the sphere along its [110] crys-
tal axis. The two small loop coils with a sub-millimetric
inner radius (∆y ∼ 0.5 mm, ∆z ∼ 0.3 mm), made out
of semi-rigid coaxial copper cables by terminating their
ends, are facing the sample and are respectively con-
nected to the output (pump) and input (probe) ports of
a vector network analyzer. The fixed pump coil stands a
few millimeters away from the sample. Fixed to a three-
axis linear actuator on a motorized rotation stage, the
probe coil takes arbitrary positions (r̃c, ϕc, zc) along a
cylindrical orbit around the sample. The detection dis-
tance is set at r̃c = 2 mm. Appendices A and D pro-
vide respectively additional details on the data acquisi-
tion and on the setup. The reflected power from the
pump coil (Fig. 2a) reveals a collection of absorption dips,
signatures of individual resonant spin-wave modes which
can be modeled as damped harmonic oscillators [1]. We
measure in transmission (Fig. 2b-c) the magnetic flux
intercepted by the probe coil at a particular position,
described by

Sφ[Ω] =
∑

k={n,m,r}

Ake
iϕ

k

Ω2 − Ω2
k − iΓkΩ

with k running on all the excited modes, Ωk/2π the spin-
wave mode eigenfrequency, Γk its damping rate, and Ak
its relative response amplitude depending on the mode-
dependent pump efficiency and on the mode spatial struc-
ture. The relative mode phase with respect to the excita-
tion field, ϕ

k
= ϕ0

k+ϕk, can be decomposed such that ϕ0
k

is the mode phase origin defined by the excitation field
and ϕk its spatial component.

For imaging the spatial structure of the spin-wave
modes, we assemble these spectral measurements at nu-
merous probe coordinates (ϕc, zc) and adjust the local
spin-wave mode responses (see Appendix E for details
on data processing).

IV. SPIN-WAVE MODES TOMOGRAPHY

First at fixed altitude, the coil travels around the
sample. Figure 3a depicts the transmitted ferromagnetic
resonance signal power and phase spectra along the az-
imuth in the equatorial plane (zc = 0). While the modes

FIG. 2. Broadband ferromagnetic resonances (FMR)
at a fixed azimuth-altitude coordinate. a, Typical spec-
trum of the microwave power reflected by a 2-mm YIG sphere
into the pump coil (blue line). The absorption dips corre-
spond to the resonance of more than 50 different individual
spin-wave modes (resolution bandwidth: 10 kHz). The ex-
citation microwave frequency range is chosen such that the
spectrum encapsulates all the excited modes in one run (see
Appendix A for details). At a fixed probe-coil azimuth-
altitude coordinate (ϕc, zc), the transmitted microwave spec-
tra in power (b) and phase (c) (black line) intercepted by the
probe coil through the sphere give access to the local informa-
tion on each mode once fitted as a collection (red line) of indi-
vidual harmonic oscillators (grey lines), in particular the local
phase with respect to the origin fixed by the excitation field.
The relative phase differences of the modes are responsible
for non-trivial interference patterns. All the measurements
are repeated after an automatized vertical retraction of the
sample to define robust phase references (see Appendices D
and E for details). Colored stars mark the modes analyzed
along the azimuth in Fig. 3 (green) and along the altitude in
Fig. 4 (orange).

amplitude is globally constant, their relative phase ϕk
individually changes with the probe azimuth. We re-
port the evolution of the relative phase as a function of
the coil azimuthal position. Figure 3b(i-vi) illustrate the
phase azimuthal dependence of six different modes, ex-
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FIG. 3. Azimuthal dependence of the induced magnetic flux. a, Microwave transmission spectra in power and phase
as a function of the azimuthal position of the probe coil ϕc in the sample equatorial plane. These spectra are all processed
(see Figure 2) to extract the relative phase of each spin-wave modes ϕk, exemplified by six of them in b(i-vi) (colored filled
circles, top), with mean eigenfrequencies of 5.74 GHz, 5.42 GHz, 6.82 GHz, 5.61 GHz, 7.05 GHz and 7.17 GHz (indicated on a
and on Fig. 2b with green stars), exhibiting an azimuthal parameter m = 0, 1, 2, 3, 4 and 7 respectively, in comparison with
the theoretical evolution of mϕc (solid color lines, bottom).

tracted from fittings, with their theoretical counterparts
appended, insuring a clear identification of modes with
m = 0, 1, 2, 3, 4 and 7.

Next, at fixed azimuth we record the spectra along
the altitude axis (Figure 4a). As we are traveling over
the mode envelope, the variation of the mode transmitted
power and phase flips are observable directly on the spec-
tra for well-isolated dominant modes. We report the ex-
tracted signed mode amplitude Ak cosϕk as a function of
the altitude of four representative modes in Fig. 4b(i-iv),
illustrating polar mode families n−|m| = 0, n−|m| = 1,
n − |m| = 2 and n − |m| = 3. The altitude axis of
the coil is slightly tilted by ξz = −6◦ with respect to
the z-axis defined by the permanent magnets (see Ap-
pendix B). This induces a slight imbalance in the mea-
sured flux, favoring positive altitudes. The measure-
ments are in very good agreement with the theoretical
calculation of the flux taking into account this correc-
tion. The exhibited modes could be identified respec-
tively as (2, 2, 0), (3, 2, 0), (3, 1, 0) and (4, 1, 0). Their
relative eigenfrequencies spacing to the uniform preces-
sion mode (Ωk−Ω110)/2π are computed in the magneto-
static approximation for comparison in Appendix C. The
discrepancies with the experimental observations, respec-
tively 15 %, −36 %, −8% and −8 %, most likely due to
magneto-crystalline anisotropy and propagation effects,
underline the necessity to access the mode spatial prop-
erties in situ to avoid a misidentification between close-by

modes.

In the current conditions, our method reveals the
polar mode families up to n − |m| = 3 and azimuthal
families up to m = 7. This range could be further ex-
panded by designing the pump antenna to maximize the
exciting efficiency of specific spin-wave modes of interest.
Appendix B offers a detailed discussion on the mode res-
olution. Detection artifacts due to the probe coil height
should appear only for modes with n−|m| > 11 and can
be outclassed furthermore by tuning ∆z/r̃c, largely over-
coming the spin texture complexity traditionally under
study.

V. CONCLUSIONS

We have developed a new broadband resonant to-
mography scanning method to map the spatial structure
of spin-wave modes hosted in a magnetized solid of rev-
olution, providing a robust mode identification. Demon-
strated here on a 2-mm YIG sphere saturated along its
[110] axis, this approach straightforwardly extends to el-
lipsoids [16], disks and rods [40, 41], provided that the
spin-wave modes exhibit linewidths smaller than their
typical frequency splitting (see Appendix F).

This versatile imaging method, which does not require
to have a perfect knowledge on the sample and its en-
vironment, will be particularly relevant for studying the
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FIG. 4. Altitude dependence of the induced magnetic
flux. a, Microwave transmission spectra in power and phase
as a function of the altitude position zc of the probe coil.
b, Extraction of the local response of the modes allowing the
reconstruction of their structure along the altitude axis (light-
color filled circles), exemplified here for the lower-order fami-
lies (i) n−|m| = 0, (ii) n−|m| = 1, (iii) n−|m| = 2 and (iv)
n− |m| = 3. They are illustrated respectively by the modes
of mean eigenfrequencies 6.82 GHz, 6.23 GHz, 5.42 GHz and
5.23 GHz (indicated on a and on Fig. 2b with orange stars),
identified as (2, 2, 0), (3, 2, 0), (3, 1, 0) and (4, 1, 0). Note that
(i) and (iii) were represented in Fig. 3, respectively labeled
(iii) (m = 2) and (ii) (m = 1). The solid dark lines cor-
respond to the expected flux (r̃c = 2 mm, ∆y = 0.5 mm,
∆z = 0.3 mm) with a coil axis tilt ξz = −6◦. The altitude
extent of these plots is depicted as a black rectangle in the
insets showing the magnetic flux distribution.

magnetization dynamics of emergent magnetic materials
and structures whose shape, crystallinity and composi-
tion could be challenging to control. Hybrid magnonic
operations well beyond the uniform precession mode can
be envisioned, broadening the scope of quantum magnon-
ics, magnomechanics and cavity optomagnonics towards
the emergence of macroscopic quantum devices.
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Appendix A: Methods summary

Spin-wave modes calculations

The spin-wave modes in Fig. 1a are plotted at time
t = 0.2× 2π/Ωk, with a saturation magnetization Ms =
194 mT/µ0, a static magnetic field HDC = 315 mT/µ0

and a gyromagnetic ratio γ/2π = 28 GHz/T. The res-
onance frequency Ωk/2π of a given spin-wave mode is
numerically determined by solving the resonance equa-
tion (C1) in these conditions, a requirement to define
properly the spheroidal coordinate system in which the
internal magnetic potential has explicit solutions, com-
puted for each colatitude θ. Once interpolated on a reg-
ular Cartesian grid, the internal magnetic potential is nu-
merically differentiated to obtain the internal magnetic
field. The transverse magnetization Mm

n is obtained by
linear combination of the internal magnetic field com-
ponents with oblate factors, as functions of HDC and
Ms [38]. The stray field is numerically evaluated from the
external magnetic potential ψm

n . The internal and exter-
nal fields for (3, 3, 0) are joined to plot the total transverse
magnetic induction field B3

3 in Figure 1b, slightly out of
resonance for a better visualization.

Probe coil

The coil parameters ∆y, ∆z and r̃c are chosen care-
fully to ensure proper imaging. The detection distance r̃c
should be short to maximize the acquired signal (φmn ∝
1/r̃n+2

c ) while insuring that ∆y/r̃c � 1 and ∆z/r̃c � 1.
The lateral semi-extension ∆y while small compared to
r̃c, should be maximized (φmn ∝ ∆y). The value of ∆z

should be small enough to guarantee the measured struc-
ture can be safely related to n − |m|. The choice of
∆z = 0.3 mm for r̃c = 2 mm insures the safe detection of
spin-wave modes with n − |m| up to 11. The distance
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r̃c may be slightly tuned to maximize the detection of a
particular azimuth family (see Appendix B for details).

Data acquisition

In the magnetostatic approximation [22], the spin-
wave modes are expected on a frequency range of
γµ0Ms/4π ∼ 2.6 GHz. The information on all the ob-
servable spin-wave modes is obtained with a high resolu-
tion by acquiring the spectra by pieces, for a total range
of 2.89 GHz and more than 65,000 points by spectrum
(microwave excitation power: 0 dBm). At fixed altitude,
we record spectra at 101 different probe coil azimuthal
positions on a 158◦ range. The accessible angular range
is limited by the presence of the magnetic circuit and
pump coil. At fixed azimuth, we record spectra at 297
different probe altitudes on a 2.2 mm extent across the
equatorial plane of the sphere. A residual background
from the direct coupling between the coils and the par-
asitic response of close-by elements subsists with typi-
cal linewidths (> 1 GHz) much larger than those of the
spin-wave modes (< 10 MHz) and could be then consci-
entiously dismissed. A set of measurement at a given
coil position lasts for 4 min with a resolution bandwidth
of 10 kHz, resulting in a total measurement time of 6 h
along the azimuth and 22 h along the altitude.

Appendix B: Magnetic flux induced by a
magnetostatic mode of a ferromagnetic sphere

We compute the magnetic flux induced by a mag-
netostatic mode (n,m) within a ferromagnetic sphere,
intercepted by a coil facing the sample along a cylindri-
cal orbit (r̃c, ϕc, zc), represented in Figure 5.

The magnetic potential outside the sample induced by
the magnetostatic mode (n,m), excited by a pump field,
is given in spherical coordinates by [38]:

ψm
n (r, θ, ϕ) = Am

n r
n

[
1 + αm

n

(a
r

)2n+1
]
Pm
n (cos θ)eimϕ,

with Pm
n the Ferrers function [39], a the sphere radius,

Am
n related to the projection of the pump field on the

spherical harmonics and αm
n is an amplification factor

related to the mode resonance.

The gradient of this outer magnetic potential is

∇ψ(r, θ, ϕ) = ∂rψ er +
1

r
∂θψ eθ +

1

r sin θ
∂ϕψ eϕ,

with

∂rψ(r, θ, ϕ) = eimϕ∆1(r)Pm
n (cos θ),

∂θψ(r, θ, ϕ) = eimϕ∆2(r)
1

sin θ

[
−(n + 1) cos θPm

n (cos θ) + (n + 1−m)Pm
n+1(cos θ)

]
,

∂ϕψ(r, θ, ϕ) = eimϕ∆2(r) imPm
n (cos θ),

and

∆1(r) ≡ Am
n r

n−1

[
n− (n + 1)αm

n

(a
r

)2n+1
]
,

∆2(r)/r ≡ ∆̃2(r) ≡ Am
n r

n−1

[
1 + αm

n

(a
r

)2n+1
]
.

and will be written in the Cartesian basis B as

∇ψ(r, θ, ϕ) =

[(
∂rψ sin θ +

1

r
∂θψ cos θ

)
cosϕ− 1

r sin θ
∂ϕψ sinϕ

]
ex

+

[(
∂rψ sin θ +

1

r
∂θψ cos θ

)
sinϕ+

1

r sin θ
∂ϕψ cosϕ

]
ey

+

[
∂rψ cos θ − 1

r
∂θψ sin θ

]
ez.

In the rotating frame of the probe coil B such that
xy
z


B

= R−1
ϕc
·

xy
z


B

with the rotation matrix

Rϕc ≡

 cosϕc sinϕc 0
− sinϕc cosϕc 0

0 0 1

 .
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FIG. 5. Frame of the problem figuring the position and ori-
entation of the coil compared to the sample, in the ideal case
in which the coil faces perfectly the sphere and its trajectory
shares the same center and rotation axis, projected onto the
xy-plane (a) and onto the xz-plane rotating with ϕc (b). The
coil cylindrical trajectory is represented in color dashed lines,
with the azimuth and altitude in green and orange respec-
tively. The horizontal distance of the probe coil r̃c is pictured
in blue.

For a perfectly oriented coil, the surface normal of the
probe can be simply expressed as

Rϕc
· dSB = dSB = dS

1
0
0


B

and we can write the induced flux

φmn = µ0

∫∫
S

∇ψ(r, θ, ϕ) · dSB (B1)

= µ0

∫∫
S

dS (Ir + Iθ + Iϕ)

with

Ir(r, θ, ϕ) ≡ sin θ cosϕ∂rψ,

Iθ(r, θ, ϕ) ≡ 1

r
cos θ cosϕ∂θψ,

Iϕ(r, θ, ϕ) ≡ −1

r

1

sin θ
sinϕ∂ϕψ,

defining ϕ ≡ ϕ − ϕc. By developing these formulae we
obtain,

Ir(r, θ, ϕ) = eimϕc

[
ei(m+1)ϕ + ei(m−1)ϕ

]
sin θ Pm

n (cos θ)
∆1(r)

2
,

Iθ(r, θ, ϕ) = eimϕc

[
ei(m+1)ϕ + ei(m−1)ϕ

] cos θ

sin θ

[
−(n + 1) cos θ Pm

n (cos θ) + (n + 1−m)Pm
n+1(cos θ)

] ∆̃2(r)

2
,

Iϕ(r, θ, ϕ) = −eimϕc

[
ei(m+1)ϕ − ei(m−1)ϕ

]
m

1

sin θ
Pm
n (cos θ)

∆̃2(r)

2
.

These expressions can be computed numerically for an
arbitrary coil section.

1. A small rectangular coil

We consider now that the coil has a rectangular sec-
tion with a lateral extension 2∆y much smaller than the

cylindrical detection distance r̃c, then

ϕ = arctan

(
y

r̃c

)
∼

y

r̃c
and the contribution of y to r is negligible. Then Eq.(B1)
could be then rewritten

φmn = µ0

∫ zc+∆+
z

zc−∆−z

dz

∫ ∆+
y

−∆−y

dy (Ir + Iθ + Iϕ) .

We define the integrals along the y-direction

Y± ≡
∫ ∆+

y

−∆−y

dy
[
ei(m+1)ϕ ± ei(m−1)ϕ

]
(B2)
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and along the z-direction

Zr(zc) ≡
∫ zc+∆+

z

zc−∆−z

dz sin(θ)Pm
n (cos θ)

∆1(r)

2
, (B3)

Zθ(zc) ≡
∫ zc+∆+

z

zc−∆−z

dz
cos θ

sin θ

[
−(n + 1) cos θ Pm

n (cos θ) + (n + 1−m)Pm
n+1(cos θ)

] ∆̃2(r)

2
, (B4)

Zϕ(zc) ≡
∫ zc+∆+

z

zc−∆−z

dzm
1

sin θ
Pm
n (cos θ)

∆̃2(r)

2
, (B5)

so that

φmn = µ0e
imϕc

[
Y+ [Zr(zc) + Zθ(zc)]−Y− Zϕ(zc)

]
. (B6)

2. Influence of the lateral extension

If the coil is centered regarding the y-direction,

∆y ≡ ∆+
y = ∆−y and

Y±c = 2∆y

(
sinc

[
(m + 1)∆y

r̃c

]
± sinc

[
(m− 1)∆y

r̃c

])
which is represented in Figure 6. While the signal am-
plitude globally decreases with m, it exhibits oscillations
which depends on the lateral extension 2∆y, the cylin-
drical detection distance r̃c and m, suggesting that r̃c
can be adjusted to optimize the detection of a particular
mode family.

The azimuthal dependence of a considered mode can
be read in the phase of the measured magnetic flux, as
given by Eq.(B6) as mϕc. These two lateral components
Y± control the contribution of the different components
of the magnetic field to the flux envelope along z.

3. z-direction

Equations (B3), (B4) and (B5) cannot be processed
analytically. They can be simplified when working at a
resonance such that αm

n � (r/a)
2n+1

, then

∆1(r) ∼ −(n + 1)∆̃2(r) = −(n + 1)
a2n+1

rn+2
αm
n A

m
n .

The dependence of the flux φmn with 1/r̃n+2
c along the

equatorial plane partially conditions the choice of the
detection distance. In Fig. 7 we represent, for the first
spin-wave mode families with n < 6 and m < 6, the
envelopes Zr, Zθ and Zϕ followed by the total magnetic
flux φmn along the altitude axis for different values of ∆z,
the other parameters being fixed to their experimental
values (∆y = 0.3 mm, r̃c = 2 mm). Once determined the
azimuthal parameter m, we access the polar parameter
n− |m| through the number of zeroes along the altitude
z. The envelope along the z-axis is different for each

mode, providing an additional identification method if
the extent along z experimentally accessible by the probe
coil does not allow to go through all the envelope zeroes.
The spin-wave mode polar structure with higher n−|m|
gets more and more complex, requiring the height di-
mension 2∆z to be small enough for the flux not to be
a mixture of its different features (marked informally by
purple lines on Fig. 7). This limit value accounts for
∆z ∼ 0.6 mm for (7, 0) and (7, 1) families. We design the
coil such that ∆z ∼ 0.3 mm to comfortably work in the
reliable region for at least n −m ≤ 7. The complete
magnetic fluxes computed in Fig. 1c and the insets of
Fig. 4 result from the numerical evaluation of Eq.(B6)
with the coil centered along y and the following parame-
ters: ∆y = 0.5 mm, ∆z = 0.3 mm and r̃c = 2 mm.

4. Non-ideality

Coil altitude-axis tilted compared to HDC

A tilt of ξz of the coil altitude-axis compared to the
saturation axis (Figure 8) around y implies the coordi-
nates (r̃c, zc) injected in the calculations should be re-
placed by

r̃c = r̃0
c + zapp

c sin ξz,

zc = zapp
c cos ξz

with zapp
c the apparent altitude along the coil zc-axis and

r̃0
c the cylindrical distance at zc = 0. The solid lines in

Fig. 4 comes from the numerical evaluation of Eq.(B6)
with the coil centered along y with ∆y = 0.5 mm, ∆z =
0.3 mm and r̃c = 2 mm and an axis tilt of ξz = −6◦. The
axis tilt is determined by counterbalancing the predicted
lobes amplitudes with respect to zc = 0 to match the
detected modes.
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FIG. 6. a, Normalized amplitude variations of the induced flux with the lateral extension, when the coil is centered along the
y-direction following Eq.(B 2) in the limit of small lateral extension, for the ten first azimuthal parameter m. b, Displayed as
a color plot on an extended range of m, quasiperiodic patterns at fixed ∆y/r̃c appear. The experimental setting (∆y = 0.5 mm
for r̃c = 2 mm) is indicated by the vertical dashed lines.

Coil miscentered along the y-direction

Evaluating the integral with ∆−y = ∆+
y + ε such that

the total lateral extension is 2∆y ≡ 2∆+
y + ε,

Y±mc = Y±c (∆+
y )± ε

(
e−i(m−1)

∆y
r̃c sinc

[
(m− 1)ε

2r̃c

]
± e−i(m+1)

∆y
r̃c sinc

[
(m + 1)ε

2r̃c

])
. (B7)

At fixed altitude, this simply results in a constant extra
phase, innocuous for the determination of m. The phase
variations between Y+

mc and Y−mc weighted by the differ-
ent envelopes Zr + Zθ and Zϕ could induce a varying
extra phase along the altitude axis. The effect could be
neglected when Zr + Zθ �Zϕ.

Appendix C: Evolution of the eigenfrequencies with
the static magnetic field HDC

The evolution of the magnon eigenfrequencies with
the static magnetic field HDC can be predicted coarsely
by solving the resonance condition in the magnetostatic
approximation[22, 38]:

n + 1 + ξ0
Pm′

n (ξ0)

Pm
n (ξ0)

±mν = 0 (C1)

with

ξ0
2 = 1 + 1/κ,

ν =
Ω

Ω2
H − Ω2

,

κ =
ΩH

Ω2
H − Ω2

,

the normalized internal field ΩH = HDC−Ms/3
Ms

, the nor-

malized magnon frequency Ω = Ωk

γµ0Ms
and the gyro-

magnetic ratio γ. We determine the effective saturation
magnetization by comparing the frequency difference be-
tween (2,1,0) and (2,2,0), which are affected similarly by
propagation effects [42]. In the magnetostatic approxi-
mation [38], their frequencies f210 and f220 are such that

µ0Ms =
10π

γ
(f220 − f210)
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FIG. 7. Decomposed magnetic flux envelopes along the z-axis as a function of the semi-extension of the coil height (in each
panel, respectively Zr, Zθ and Zϕ from top to bottom) followed by the total magnetic flux described by Eq.(B6) for modes
family with n < 6 and m < 6 (indicated on top right), calculated with the parameters ∆y = 0.5 mm and r̃c = 2 mm. The
experimental value ∆z = 0.3 mm is indicated by green vertical dashed lines. The purple lines mark the apparition of artifacts
due to an excessive height extension compared to the stray field polar features observed at this distance.
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FIG. 8. Frame of the problem when the axis considered as
the altitude degree of freedom of the probe coil is not parallel
to the saturation axis defining the z-direction but tilted by
an angle ξz around the y-axis.

which leads to an effective Ms = 187 mT/µ0 in our ex-
perimental condition with Ω110/2π = 6.414 GHz.

The solenoid wound around the magnetic circuit al-
lows us to change the static magnetic field such that
Ω110/2π could be tuned from 6.01 to 6.81 GHz. The mi-
crowave reflection spectra are reported on Fig. 9a above
the computed eigenfrequencies expected in the magneto-
static approximation on Fig. 9b.

We compare the linespacing 2π×∆fnmr = Ωnmr −
Ω110 between the uniform precession mode (1,1,0) and
others. In particular at the working point Ω110/2π =
6.414 GHz, the modes discussed in Fig. 4 reading exper-
imentally:

∆f220 = +410 MHz

∆f320 = −184 MHz

∆f310 = −994 MHz

∆f410 = −1185 MHz

are compared to the theoretical values predicted in the
magnetostatic approximation, for Ms = 187 mT/µ0:

∆f220 = + 349 MHz

∆f320 =− 249 MHz

∆f310 =− 1071 MHz

∆f410 =− 1279 MHz

resulting in the following relative discrepancies 14.9%,
−35.5%, −7.7% and −7.9%.

Appendix D: Additional details on the setup

The core of the experimental setup is depicted on
Fig. 10. The motorized rotation stage and the mag-
netic circuit are screwed on the aluminum master sup-
port, clamped to the experiment table. The magnetic
circuit is ended by conical concave elements in which
can fit 12-mm diameter NdFeB permanent ring mag-
nets. A solenoid is wound around the magnetic circuit to

tune the static field (∼ ±14 mT). The motorized rotation
stage is an Optosigma HST-120YAW (0.1◦ position ac-
curacy). The linear motors are composed by Optosigma
TAMM40-10C (10 mm travel range, 6µm position accu-
racy) and HPS60-20X-M5 (20 mm travel range, 15µm
position accuracy). The probe coil plane tilt is corrected
with a small manual rotation stage Optosigma KSP-256.

The sample is attached to the end of a Al2O3 rod going
through the upper permanent ring magnet, on a three-
axis linear actuator. The centering of the sample with
respect to the rotation stage axis is performed with the
help of a CMOS camera, placed on the rotation stage to
move jointly with the probe coil. The CMOS camera is on
a motorized translation stage — to change dynamically
the focus and evaluate distances — fixed on the rotation
stage. During the centering process, a white PVC screen
with a carved target is fixed on the opposite side of the
rotation stage. The sphere is centered along the rotation
stage axis when its position is fixed on the target for any
rotation stage angle. Designed to indicate the central
position between the two magnets, it allows positioning
the sample vertically in the static magnetic field. The
screen is removed during the measurement to insure a
maximum angular range.

Appendix E: Data processing

Defining solid phase references is an absolute ne-
cessity for this imaging method. At each coil position,
we record the spectra (S11 and S21) in two configura-
tions: with the sample in position centered in the static
magnetic field and with the sample retracted vertically
(Fig. 11a). The latter gives access to the complex transfer
functions of the pump coil and of the local pump-probe
system which are used to normalize the magnonic spectra
measured with the sample in position (Fig. 11b).

We gather hundreds of spectra from which we ex-
tract the spin-wave modes features, constituted by 67,242
points each across a span of 2.89 GHz. These high-
resolution spectral data require few hours of acquisition
during which small temperature variations and the probe
coil positions induce slight changes in the magnon fre-
quencies and damping rates. We track and classify all
the observable peaks in the dataset, before fitting them
properly. Spectrum by spectrum, the reflection measure-
ment (as in Fig. 2a) is used to get a precise guess of their
eigenfrequencies by performing a Lorentzian fitting on a
short sliding window of size comparable to the narrowest
observed peak over the whole spectrum. The correspond-
ing feature is considered as a plausible spin-wave mode
if its fitted amplitude and linewidth fall within reason-
able limits. This process leads to the pre-detection of
tens of peaks. Comparing these peaks from spectrum
to spectrum, the slightly deviating frequencies can be
attributed to a particular mode by a nearest-neighbor
approach. The process ends with a collection of eigenfre-
quencies over the whole dataset attributed to modes to
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FIG. 9. a, Microwave reflection spectra from the pump coil as a function of the uniform mode precession frequency Ω110/2π
(vertical axis) — tuned by varying the current flowing in the solenoid from −0.8 A to 0.8 A. The uniform mode precession
frequency also serves as a reference for the frequency horizontal axis. For readers’ comfort, the colorscale has been adapted
by frequency region (separated by black dashed lines and numbered by k from 0 to 10) such that as many spin-wave modes
as possible clearly appear (mink = −0.48, −7.1, −2.5, −1.4, −2.1, −1.2, −2.3, −4.8, −0.91, −0.41 and −0.42 dB). b, Eigen-
frequencies computed in the magnetostatic approximation from Eq.(C1) for a magnetization saturation Ms = 187 mT/µ0,
γ/2π = 28 GHz/T up to n = 7 and m = 7. The orange stars mark the modes discussed in Fig. 4. The white dashed line
indicates the working point used in the main text with Ω110/2π = 6.414 GHz.

be analyzed.

Information on the mode structures is contained in
the transmission measurements. The phase of each mode
is swamped in the background constituted by all the
other modes. Great care is taken to adjust properly
the response of the modes on each spectrum, progress-
ing sequentially from the most dominant and correcting
iteratively the fits to properly take into account the con-

tribution of all the modes at a given frequency.

Once the amplitude of the dominant modes has
been established, a position-dependent phenomenological
background S0[Ω] = (aΩ2 + bΩ + c)ei(d+eΩ), likely due to
remains of direct coupling and parasitic responses, could
be piecewise-defined typically on 100 MHz, such that the
solid red lines in Fig. 2b and Fig. 2c are respectively
|Sφ[Ω] + S0[Ω]|2 and arg(Sφ[Ω] + S0[Ω]). This residual
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FIG. 10. Setup of the core of the experiment.

background with features much larger (> 1 GHz) than
the spin-wave modes (< 10 MHz) allows to study modes
appearing with small signal-to-noise ratio.

Appendix F: Generalization to other shapes

We generalize the technique by formally developing
the expression of the magnetic flux induced by spin-wave
modes in other ideal geometries.

1. Magnetic flux induced by a magnetostatic mode
of a ferromagnetic cylinder

The outside magnetic potential induced by a magne-
tostatic mode (ζ,m) of a long axially-magnetized cylinder
of radius R is given by Joseph and Schlömann [41]:

ψm
ζ (r̃, ϕ, z) = Am

ζ Km(|β|r̃)e−iβzeimϕ

with β the propagation constant, ζ = |β|R and Km the
modified Bessel function of the second kind [39].

The magnetic flux intercepted by a well-centered coil
is

φmξ = µ0

∫∫
S

∇ψ(r̃, ϕ, z) · dSB = µ0

∫∫
S

dS (Ir̃ + Iϕ)

with

Ir̃(r̃, ϕ, z) = eimϕc

[
ei(m+1)ϕ + ei(m−1)ϕ

]
e−iβz∆r̃(r̃),

Iϕ(r, θ, ϕ) = eimϕc

[
ei(m+1)ϕ − ei(m−1)ϕ

]
e−iβz∆ϕ(r̃)

and

∆r̃(r̃) =− |β|
4

[Km−1(|β|r̃) +Km+1(|β|r̃)]

∆ϕ(r̃) =− m

2r̃
Km(|β|r̃)

Considering Y± previously presented, it can all be
compacted as

φmξ = µ0e
imϕce−iβzc

(
2∆zsinc(β∆z)

[
Y+∆r̃(r̃c) +Y−∆ϕ(r̃c)

] )
. (F1)

The presented imaging technique can be directly applied
to cylinders by reading the azimuthal and the altitude

dependences in the phase evolution along the cylindrical
orbital of radius r̃c.
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FIG. 11. a, Typical raw spectra in reflection S11 and in transmission S21 with the sphere centered in the static magnetic field
HDC (grey lines) and vertically retracted (purple lines) as measured at a particular coil coordinate (ϕc, zc). b, Subsequent
calibrated spectra obtained by normalizing the magnonic response with coils’ local transfer function.

2. Magnetic flux induced by a magnetostatic mode
of a spheroid

Following the description given by Walker [16] in
oblate spheroidal coordinates (ξ, η, ϕ), the magnetic po-
tential outside an oblate spheroid of transverse semi-axis
a and longitudinal semi-axis b reads:

ψm
n (ξ, η, ϕ) = Qmn (iξ)Pmn (η) eimϕ

with Qmn the Ferrers function of the second kind [39] and
defining ι2 ≡ a2 − b2,

x = ι (1 + ξ2)1/2 (1− η2)1/2 cosϕ,

y = ι (1 + ξ2)1/2 (1− η2)1/2 sinϕ,

z = ι ξ η.

These oblate coordinates can be expressed in cylindri-
cal coordinates:

ξ2(r̃, z) =
1

2ι2
[Λ(r̃, z) + Υ(r̃, z)] ,

η(r̃, z) =
√

2 z [Λ(r̃, z) + Υ(r̃, z)]
− 1

2 .

with

Λ(r̃, z) = r̃2 + z2 − ι2,

Υ(r̃, z) =
[
4ι2z2 + Λ2

] 1
2 .

With a well-centered coil,

φmn = µ0

∫∫
S

∇ψ(r̃, ϕ, z) · dSB = µ0

∫∫
S

dS (Ir̃ + Iϕ)

with

Ir̃ = eimϕc

[
ei(m+1)ϕ + ei(m−1)ϕ

] 1

2
∂r̃[Q

m
n (iξ)Pmn (η)],

Iϕ = eimϕc

[
ei(m+1)ϕ − ei(m−1)ϕ

] −m
2r̃

Qmn (iξ)Pmn (η)

so that

φmn = µ0e
imϕc

[
Y+Zr̃(zc)−Y−Zϕ(zc)

]
. (F2)

The dependence along the azimuth is the same as seen
previously. Along the altitude,
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FIG. 12. Norm of the induced magnetic flux by a magnetized spheroid described by Eq. (F2) computed for modes family
with n < 6 and m < 6, in the experimental conditions (∆y = 0.5 mm, ∆z = 0.3 mm, r̃c = 2 mm, a = 1 mm) for values of the
longitudinal semi-axis b varying from 0.1 mm (dark green) to 0.9 mm (yellow). For each mode (n,m), the data are normalized
by the maximum in b = 0.1 mm. Approaching the sphere limit when b ∼ a, the pattern is the same as observed in Appendix B.

Zr̃(zc) ≡
1

2

∫ zc+∆+
z

zc−∆−z

dz ∂r̃[Q
m
n (iξ[r̃c, z])P

m
n (η[r̃c, z])],

Zϕ(zc) ≡
m

2r̃c

∫ zc+∆+
z

zc−∆−z

dz Qmn (iξ[r̃c, z])P
m
n (η[r̃c, z])

with the derivatives along r̃ reading

∂r̃ξ(r̃, z) =
1√
2ι

r̃
[Λ(r̃, z) + Υ(r̃, z)]

1
2

Υ(r̃, z)
,

∂r̃η(r̃, z) = −
√

2 zr̃
[Λ(r̃, z) + Υ(r̃, z)]−

1
2

Υ(r̃, z)
.

These expressions can be numerically computed to pro-
vide analog patterns to Fig. 7 and be similarly used for
identification. For illustration, in Fig. 12 we plot the
norm of the flux that would be intercepted for the first
modes in our experimental conditions for various values
of ellipticity. These developments suggest the imaging
method can be directly applied to any spheroid.
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