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The hardware overhead associated with microwave control is a major obstacle to scale-up of
superconducting quantum computing. An alternative approach involves irradiation of the qubits
with trains of Single Flux Quantum (SFQ) pulses, pulses of voltage whose time integral is precisely
equal to the superconducting flux quantum. Here we describe the derivation and numerical validation
of compact SFQ pulse sequences in which classical bits are clocked to the qubit at a frequency that
is roughly a factor 5 higher than the qubit oscillation frequency, allowing for variable pulse-to-pulse
timing. The control sequences are constructed by repeated streaming of short subsequence registers
that are designed to suppress leakage out of the computational manifold. With a single global clock,
high-fidelity (> 99.99%) control of qubits resonating at over 20 distinct frequencies is possible. SFQ
pulses can be stored locally and delivered to the qubits via a proximal classical Josephson digital
circuit, offering the possibility of a streamlined, low-footprint classical coprocessor for monitoring
errors and feeding back to the qubit array.

I. INTRODUCTION

A fault-tolerant quantum computer will possess a com-
putational power far exceeding that of any classical com-
puter [1], and superconducting integrated circuits are a
promising physical platform for the realization of scal-
able qubits [2]. While the error thresholds of the two-
dimensional surface code are within reach [3, 4], quan-
tum error detection involves a massive hardware over-
head: estimates suggest that a general-purpose fault-
tolerant quantum computer will require millions of phys-
ical qubits, far beyond current capabilities. Convention-
ally, qubit control pulses are generated by single-sideband
modulation of a microwave carrier tone; accurate control
of both the in-phase and quadrature pulse amplitudes
allows arbitrary rotations on the Bloch sphere [5–8]. In
order to minimize crosstalk between neighboring qubit
channels, it is generally necessary to arrange the qubit
array so that devices are biased at a handful of distinct
operating frequencies; this approach makes it possible to
address a large-scale multiqubit circuit with a small num-
ber of carrier tones, resulting in a significant hardware
savings [9]. In addition, there have been proposals to re-
cycle pulse waveforms across the qubit array [10]. How-
ever, the control waveform that is delivered to the qubit is
the convolution of the applied waveform with the trans-
fer function of the wiring in the qubit cryostat, which
in general is not well controlled. As wiring transfer func-
tions can vary substantially across the array [11], it is not
clear that recycling of control waveforms will allow high-
fidelity control. Moreover, the separate high-bandwidth
control lines for each qubit channel entail a massive heat
load on the millikelvin stage [12]. Finally, the significant
latency associated with the round trip from the quan-
tum array to the room-temperature classical coprocessor
will limit the performance of any scheme to use high-
fidelity projective measurement and feedback to stabilize
the qubits [13, 14].

An alternative approach is to control the quantum ar-
ray using a classical coprocessor that is integrated tightly

with the qubits at the millikelvin stage. Recently we pro-
posed an approach to coherent control involving irradia-
tion of the qubit with trains of quantized flux pulses de-
rived from the Single Flux Quantum (SFQ) digital logic
family. Here, classical bits of information are stored as
the presence or absence of a phase slip across a Josephson
junction in a given clock cycle [15]; the phase slip results
in a voltage pulse whose time integral is precisely quan-
tized to Φ0 = h/2e, the superconducting flux quantum.
For typical parameters, SFQ pulse amplitudes are of or-
der 1 mV and pulse durations are around 2 ps, roughly
two orders of magnitude shorter than the typical qubit
oscillation period. As a result, the SFQ pulse imparts a
delta function-like kick to the qubit that induces a co-
herent rotation in the qubit subspace [16]. In the first
experimental implementation of this idea, gate fidelity
was limited by spurious quasiparticle generation by the
dissipative SFQ pulse driver, which was integrated on the
same chip as the qubit circuit [17]. In next-generation de-
vices, we expect that segregation of classical control ele-
ments and quantum elements on the two separate chips
of a multichip module (MCM) will lead to a significant
suppression of quasiparticle poisoning [18]. Ultimately,
the fidelity of naive, resonant SFQ pulse trains will be
limited by leakage out of the computational subspace,
with simulated fidelity around 99.9% for typical values of
qubit anharmonicity and gate times around 20 ns. This
fidelity is likely insufficient for fault-tolerant operations
in a large-scale surface code array.

In order to achieve SFQ-based gates with fidelity well
beyond threshold, it is possible to clock SFQ bits to the
qubit at a higher rate, allowing for SFQ pulse trains with
variable pulse-to-pulse separation. In previous work, ge-
netic algorithms were used to derive optimized pulse se-
quences that lead to very low leakage and gate fidelities
better than 99.99% [18, 19]. However, the register lengths
involved were over 250 bits, and the genetic approach pro-
vides no intuition as to why a particular sequence yields
good performance. While this proof-of-principle demon-
stration suggests that SFQ control sequences might offer
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a low-footprint alternative to conventional microwave se-
quences, the following questions remain:

• What is the minimum number of classical bits
needed to control a qubit to a given level of fidelity?

• Is it possible to achieve high-fidelity control of
qubits at different frequencies using a single global
clock, as would be ideal for the surface code?

In this work, we describe a method to derive hardware-
efficient SFQ control sequences for scalable qubit control:
SCALable Leakage Optimized Pulse Sequences (SCAL-
LOPS). The sequences are built up from short subse-
quences consisting of 35-55 classical bits that are repeat-
edly streamed to the qubit. Leakage is minimized at the
subsequence level; because the subsequences are short,
it is possible to perform efficient search over the subse-
quence space in order to optimize gate fidelity. For SFQ
clock frequency roughly a factor 5 greater than the char-
acteristic qubit frequency, we achieve high-fidelity qubit
rotations for a large number of discrete qubit frequencies,
as required for low-crosstalk control of a large-scale qubit
array designed to implement the surface code.
This manuscript is organized as follows. In Section

II we present a simple analytic framework for the study
of SFQ-based pulse sequences. In Section III we intro-
duce the key features of the SCALLOPS approach: (1)
a palindromic sequence construction consisting of sym-
metric pulse pairs that suppresses errors within the qubit
subspace; (2) accurate control of qubits resonating at a
number of discrete frequencies by repeated streaming of
a short pulse subsequence; and (3) a normal graph algo-
rithm to minimize leakage from the computational sub-
space at the subsequence level. Finally, in Section IV
we summarize our results and conclude our discussion of
SCALLOPS.
Throughout this paper, we consider a fixed SFQ clock

frequency of 25 GHz, so that SFQ pulses are delivered
to the qubit at intervals that are integer multiples of
the 40 ps clock period. In addition, we consider trans-
mon qubits with fixed anharmonicity (ω10 − ω21)/2π of
250 MHz, where ω10 ≡ ωq is the qubit transition fre-
quency and ω21 is the transition frequency between the
qubit |1〉 state and the noncomputational |2〉 state. Fi-
nally, for the sake of concreteness we target high fidelity
for a single gate, the Yπ/2 rotation; the SCALLOPS ap-
proach is readily generalized to arbitrary single-qubit se-
quences.

II. MODEL FOR SFQ CONTROL OF A

TRANSMON QUBIT

A. General Model

We consider a conventional transmon qubit [20] cou-
pled via a small capacitance Cc to an SFQ driver modeled
as a time-dependent voltage source VSFQ(t), as drawn in

FIG. 1. SFQ drive circuit (yellow) capacitively coupled to a
transmon qubit (blue).

Fig. 1. The Hamiltonian of the undriven transmon is
written as

Hfr =
Q̂2

2C′
− EJ cos ϕ̂, (1)

where Q̂ and ϕ̂ are the charge and phase operators of
the transmon, EJ is the transmon Josephson energy, and
C′ = Cc+C is the sum of the coupling capacitance Cc and
the transmon self capacitance C. Hfr can be diagonalized
in closed form, with the resulting energy eigenfunctions
〈ϕ|γ〉 and energies Eγ represented by the Mathieu func-
tions and coefficients.
Interaction between the transmon and the SFQ pulse

driver adds the following term to the Hamiltonian:

HSFQ(t) =
Cc

C′
VSFQ(t)Q̂, (2)

where the SFQ pulse VSFQ(t) satisfies the condition
∫∞

−∞
VSFQ(t)dt = Φ0. Since the pulse width (around 2 ps)

is much less than the Larmor period (around 200 ps) of
the transmon, we model the SFQ pulse as a Dirac delta
function: VSFQ(t) = Φ0δ(t). The charge operator can be
constructed in the basis of |γ〉 once Hfr is diagonalized.
The free evolution of the transmon then becomes

Ufr(t) = exp

(

− i

h̄

∑

|γ〉 〈γ|Eγt

)

. (3)

The time evolution operator for a transmon subjected to
an SFQ pulse is [16]

USFQ = exp
(

−iΦ0(Cc/C
′)Q̂
)

. (4)

B. Three-level Model

It is advantageous to restrict the size of the transmon
Hilbert space in order to accelerate the search for high-
fidelity pulse sequences. Since leakage outside the compu-
tational subspace is dominated by population of the first
noncomputational state |2〉, we truncate the transmon to
a three-level qutrit; subsequent sequence validation will
be performed on a more complete model of the transmon



3

consisting of 7 states. Within the three-level subspace,
the operators Hfr and HSFQ(t) take the form

H
(3)
fr =

h̄ωq

2
Σ̂z, H

(3)
SFQ(t) =

h̄ωy(t)

2
Σ̂y; (5)

Σ̂z =





0 0 0
0 2 0
0 0 4− 2η



 , Σ̂y = i





0 −1 0
1 0 −λ
0 λ 0



 . (6)

Here, we have introduced the notation ωy(t) =

− (2V (t)/h̄) (Cc/C
′) 〈1| Q̂ |0〉; η = 1 − ω21/ωq repre-

sents the fractional anharmonicity of the transmon; and
λ = 〈2| Q̂ |1〉 / 〈1| Q̂ |0〉.
Next, we derive the three-level matrix form for the

free evolution of the transmon and for the evolution of
the transmon subjected to a single SFQ pulse. The

free evolution is given by the diagonal matrix U
(3)
fr (t) =

exp
(

−iωqtΣ̂z/2
)

. In the qubit subspace, the effect of

U
(3)
fr is clearly a precession at the rate ωq. For the time

evolution under a single SFQ pulse, we can write

U
(3)
SFQ = exp

(

− iΣ̂y

2

∫ ∞

−∞

ωy(t)dt

)

= exp

(

−iδθΣ̂y

2

)

,

(7)

where

δθ =

∫ ∞

−∞

ωy(t)dt = (2Φ0/h̄)(Cc/C
′) 〈1| Q̂ |0〉 (8)

is the tip angle associated with a single SFQ pulse. Using
the Cayley-Hamilton theorem on Σ̂y, we obtain the prop-

erty Σ̂3
y = (λ2 + 1)Σ̂y, which yields Σ̂n

y = (λ2 + 1)
n−2

2 Σ̂2
y

for even n and Σ̂n
y = (λ2 + 1)

n−1

2 Σ̂y for odd n. We then
expand and regroup Eq. (7):

U
(3)
SFQ = 1̂ +

∞
∑

even,n≥2

(λ2 + 1)
n−2

2 (−iδθ/2)n

n!
Σ̂2

y

+

∞
∑

odd,n≥1

(λ2 + 1)
n−1

2 (−iδθ/2)n

n!
Σ̂y.

(9)

The two sums in Eq. (9) yield

U
(3)
SFQ =

1

κ2
×





λ2 + cos (κδθ/2) −κ sin (κδθ/2) 2λ sin2 (κδθ/4)
κ sin (κδθ/2) κ2 cos (κδθ/2) −κλ sin (κδθ/ 2)
2λ sin2 (κδθ/4) κλ sin (κδθ/ 2) 1 + λ2 cos (κδθ/2)



 ,

(10)

where κ =
√
λ2 + 1.

To see the effect of a single SFQ pulse, we compare this
time evolution to a y-rotation by angle δθ in the qubit
subspace:

Yδθ =

[

cos (δθ/2) − sin (δθ/2)
sin (δθ/2) cos (δθ/2)

]

. (11)

We observe that: (1) within the three-level model, the
SFQ pulse provides a rotation in the qubit subspace that
is slightly smaller than δθ; and (2) leakage from state |1〉
to state |2〉 is first order in δθ, while leakage from state
|0〉 to state |2〉 is second order in δθ.

C. Pulse Sequences and Gate Fidelity

The above analysis shows that it is impossible to per-
form coherent qubit rotations with a single SFQ pulse
without incurring significant excitation of noncomputa-
tional states. However, composite sequences consisting
of multiple SFQ pulses spaced by appropriate time inter-
vals can achieve low leakage and high gate fidelity. More
specifically, we consider a high-speed SFQ clock that de-
livers pulses to the transmon according to a vector of
binary variables S, where Si = 0 if no SFQ pulse is ap-
plied on the ith clock edge and Si = 1 if an SFQ pulse
is applied. Using these expressions, the total time evo-
lution operator of the gate UG, time ordered in terms of
clock edges, can be written as

UG = T
{

Nc
∏

i

(δSi1Ufr(Tc)USFQ + δSi0Ufr(Tc))

}

. (12)

Here, Nc is the number of clock cycles in the sequence
and Tc is the clock period.
We evaluate the fidelity of the gate UG as in [21];

Favg =
1

6

∑

|α〉∈V

∣

∣

∣
〈α|U †

GYπ/2 |α〉
∣

∣

∣

2

, (13)

where the summation runs over the six states V aligned
along the cardinal directions of the Bloch sphere

|x±〉 =
|0〉 ± |1〉√

2
, (14)

|y±〉 =
|0〉 ± i |1〉√

2
,

|z+〉 = |0〉 , |z−〉 = |1〉 ;

and where the gate Yπ/2 gate is represented by the fol-
lowing matrix in the qubit subspace:

Yπ/2 =
1√
2
(|0〉〈0|+ |1〉〈1|+ |1〉〈0| − |0〉〈1|) . (15)

The crux of the problem then becomes proper selection
of S so that UG becomes a high-fidelity Yπ/2 gate.

III. SCALLOP SEQUENCES

A. Symmetric SFQ Pulse Pairs

In the simplest scheme for SFQ-based coherent con-
trol, one applies a regular train of SFQ pulses that is
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FIG. 2. SFQ pulse sequences. The shaded regions denote
time windows in which SFQ pulses can induce a positive y-
rotation. The right-hand panels depict the qubit trajectory
on the front hemisphere (〈x〉 > 0) of the Bloch sphere. (a)
Resonant pulse sequence. Here, pulses are applied at regular
intervals of 2π/ωq . The SFQ pulses induce small y-rotations
spaced by free precession for a full period. (b) Symmetric
pulse pairs. Three symmetric pairs are shown, denoted by
the different colors. For the black pair, one pulse is delivered
at φ/ωq and the other at (4π−φ)/ωq. For each pulse pair, the
pulses are symmetric around mπ/ωq (arrows). It is possible
to overlay multiple symmetric pairs to induce larger qubit
rotations.

synchronized to the qubit oscillation period Tq = 2π/ωq

(Fig. 2a); this is the situation considered in [16]. In this

method, because Ufr(Tc) = 1̂ in the qubit subspace, only
the desired y-rotations can be induced by Ufr(Tc) and
USFQ; however, leakage out of the qubit subspace can be
significant. To attain higher fidelity, it is necessary to
clock SFQ pulses to the qubit at a higher rate and to
employ more sophisticated sequences. When the qubit
is no longer resonant with the SFQ clock, Ufr(Tc) 6= 1̂,
and the time evolution of an arbitrary sequence of Ufr(Tc)
and USFQ is generally not confined to y-rotations. To en-
sure high overlap with the target y-rotation, we construct
a composite sequence built up from symmetric pairs of
SFQ pulses delivered to the qubit at times φ/ωq and
(2mπ − φ)/ωq for some integer m, as shown in Fig. 2b.
The pulses of the symmetric pair occur symmetrically
with respect to time mTq/2. We represent the symmet-
ric pair by the tuple notation (m,φ). As an example,
we can write the resonant sequence in terms of symmet-
ric pairs: the first and last pulses form the pair (Nq, 0),
where Nq is the number of qubit cycles in the sequence;
the second and penultimate pulses form the pair (Nq, 2π),
etc. In general, the sequence can be described as the set
of symmetric pairs (Nq, 2πk) for each k between 0 and
Nq/2.

To see that application of symmetric pulse pairs has
the net effect of a y-rotation within the qubit subspace,
we inspect the time evolution operator U(m,φ) associated

with symmetric pair (m,φ):

U(m,φ) = Ufr (φ/ωq)USFQUfr ((2mπ − 2φ)/ωq)

× USFQUfr (φ/ωq) . (16)

We substitute USFQ from Eq. (10), expand to the first
order in δθ, and obtain

U(m,φ) =





1 − cos(φ)δθ 0
cos(φ)δθ 1 −λµδθ

0 λµδθ . . .



+O(δθ2),

(17)

where

µ = exp

(

imπ(2ωq + ω21)

ωq

)

cos

(

ω21

ωq
(mπ − φ)

)

. (18)

We observe that, to first order in δθ, U(m,φ) is indeed
a y-rotation in the qubit subspace. Moreover, the de-
pendence of leakage on the timing of the symmetric pair
through φ provides a degree of freedom that will enable
us to tailor subsequences in order to minimize leakage er-
rors, as we discuss in Sec. III C. We remark that although
it is tempting to set µ = 0 by appropriate selection of φ
and thereby eliminate the 1-2 transition, the 0-1 transi-
tion will become very weak as a side effect. In fact, there
is an analogous composite microwave pulse method that
exploits a restricted form of this idea corresponding to
m = 1 [22]; however, the gate performance is no better
than that of naive Gaussian pulses.
As we shall see below, the construct of symmetric pairs

becomes particularly advantageous when it is extended
to the case of multiple symmetric pairs (mi, φi) applied
at times φi/ωq and (2miπ−φi)/ωq for i ∈ N, as shown in
Fig. 2b. We note that the pulse pairs do interfere with
each other because they generally do not commute; how-
ever, the resulting error is acceptably small for practical
choices of δθ.

B. Control of Qubits at Multiple Frequencies

In general, the qubit oscillation period will not be com-
mensurate with the SFQ clock, so that the optimal de-
livery times of the symmetric pairs will not exactly co-
incide with SFQ clock edges. As a result, it is necessary
to round a symmetric pair to a particular pair of clock
edges ni and nj . We first note that ni and nj preserve the
symmetry precisely if the times at which the pulses are
applied are symmetric with respect to mTq/2 for some
integer m:

1

2

(

ni

Nc
· 2πNq

ωq
+

nj

Nc
· 2πNq

ωq

)

= mTq/2, (19)

where Nc is the number of clock cycles. This condition
is equivalent to the expression

Asym =

∣

∣

∣

∣

(

ni

Nc
Nq

)

mod 1 +

(

nj

Nc
Nq

)

mod 1− 1

∣

∣

∣

∣

= 0,

(20)
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FIG. 3. Map of qubit frequencies permitting high-fidelity
control. Each grid point represents a qubit oscillation fre-
quency that satisfies Eq. (21). The grid points highlighted
with the color scale span qubit frequencies from 4.5 to 5.5
GHz, assuming an SFQ clock frequency of 25 GHz.

where Asym is now a measure of the violation of sym-
metry due to mismatch between the SFQ clock and the
qubit oscillation period. We find empirically that coher-
ent pulse errors are acceptably small for pulse pairs de-
livered at times such that Asym < 0.05. In the following,
pulse pairs that are termed symmetric are understood to
satisfy this condition.
The delivery of SFQ pulses to the qubit as symmet-

ric pairs constrains the time evolution to the desired y-
rotation; however, it is not obvious how to control mul-
tiple qubits resonating at different frequencies, as de-
manded by the surface code. For a qubit frequency that
is not a subharmonic of the SFQ clock frequency, the
concern is that mismatch between the qubit oscillation
period and the SFQ clock will lead to phase error, as the
precession of the qubit during the gate is not an integer
number of qubit cycles.
To avoid these phase errors, the key is to tune the qubit

frequency such that the total gate time Tg corresponds
to both an integer number Nc of clock cycles Tc and
an integer number Nq of qubit cycles Tq, so that Tg =
NcTc = NqTq. This relation translates into the following
frequency matching condition:

Nq

ωq
=

Nc

ωc
, (21)

where ωc = 2πfc is the angular frequency of the clock.
We can use Fig. 3 to find frequencies that satisfy
Eq. (21). In this diagram, each grid point represents a
qubit frequency (shown in color scale) determined from
the above matching condition. Again, we consider a
25 GHz SFQ clock; for a small range of frequencies
around each of the “magic” qubit operating points given
by Eq. (21), accurate qubit control is possible.
From frequency-matching relation (21), it is clear that

longer gate times will permit high-fidelity control of a
larger number of distinct qubit frequencies. However,
the number of register bits needed to describe the pulse
sequence can be drastically reduced by the repeated
streaming of high-fidelity subsequences. This strategy
leads to compact registers that are efficient to implement

FIG. 4. Basic SCALLOP sequence. We show the trajec-
tory on the Bloch sphere for qubits initialized in states |x+〉
(green), |y+〉 (purple), and |z+〉 (red). Under the influence of
the pulse sequence, the state |x+〉 is rotated to |z

−
〉; the state

|y+〉 undergoes small oscillations on the equator but returns
to itself; and the state |z+〉 moves to |x+〉, as expected for a
Yπ/2 gate.

in hardware, and it provides a desirable periodic suppres-
sion of leakage as a side effect, as we discuss below in Sec.
III D.

In more detail, the length of the subsequence involves
a trade-off between the number of register bits and the
performance of the subsequence. If the length is too
short, the search space will be too restricted to contain
high-fidelity subsequences, and the number of qubit fre-
quencies we can control will be reduced (see Fig. 3). In
our simulations, we find a good balance for subsequences
consisting of 35 − 55 bits. The number of subsequence
repetitions, and thus the overall length of the gate, is
set by the size of the coherent rotation δθ imparted to
the qubit per SFQ pulse. Since the minimum gate time
scales with tip angle as Tg ∝ Tc/(2δθ), it is tempting to
reduce the gate time by increasing δθ; for large tip angle,
however, errors that are second order in δθ will become
significant. In contrast, small tip angle leads to long gate
time. Empirically, we find that δθ ≈ 0.03 is optimal,
corresponding to a reasonable coupling capacitance from
the SFQ driver circuit to the qubit island of order 100 aF
for typical transmon parameters. For the simulations de-
scribed here, we target Yπ/2 gate time around 12 ns.

The choice of clock frequency involves a compromise
to avoid leakage while maintaining hardware efficiency.
For clock frequencies below around 10 GHz, very large
tip angles per SFQ pulse are needed in order to maintain
short sequence lengths. These pulses induce significant
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leakage to states beyond |2〉, leading to errors that can’t
be mitigated by the SCALLOP approach. On the other
hand, leakage minimization places a lower limit around
π/(ω10 − ω21) on the duration of the subsequences. For
very high clock frequency, the subsequences will therefore
require a large number of register bits, making them less
hardware efficient. In our simulations, we find that 25
GHz is a good compromise.
With this frequency matching condition and approach

to hardware optimization, we can immediately construct
some basic subsequences as follows. Given the number of
clock cycles N ′

c and qubit cycles N ′
q in a subsequence, for

each clock cycle i ∈ [0, N ′
c] we apply an SFQ pulse on a

given clock edge provided the pulse induces a rotation in
the positive y-direction. We then repeat the subsequence
an appropriate number of times to achieve the target
rotation. Explicitly, we deliver an SFQ pulse to the qubit
on the kth clock edge of the subsequence provided the
following condition is fulfilled:

(

N ′
q ·

k

N ′
c

)

mod 1 ≤ 1/4 or ≥ 3/4. (22)

This class of subsequences is expected to yield reasonably
high fidelity because it has a palindrome structure, which
implies that pulses are delivered to the qubit as symmet-
ric pairs. For example, the first and last pulses form the
pair (Nq, 0); the second and penultimate pulses form the
pair (Nq, ωqTc), etc. In general, the sequence contains
a pair (N ′

q, kωqTc) for each k between 0 and N ′
c/2 that

satisfies (22).
As an example, we simulate a sequence built from 10

repetitions of a basic subsequence using N ′
c = 39 and

N ′
q = 8; a plot of the qubit trajectory on the Bloch

sphere is shown in Fig. 4 for a 5.12781 GHz qubit ini-
tialized along the +x (green), +y (purple), and +z (red)
directions. Here, the tip angle δθ = 0.0126 is chosen to
achieve the Yπ/2 rotation in 390 clock steps. Assuming
a qubit anharmonicity of 250 MHz and a 25 GHz SFQ
clock frequency, this sequence achieves fidelity of 99.9%
in under 16 ns. Although this scheme for constructing
basic subsequences demonstrates the possibility of con-
trolling multiple qubit frequencies using a single global
clock, it is by no means optimal, as the achieved fidelity
is rather modest. The dominant source of infidelity is
leakage from the computational subspace. In the follow-
ing subsection, we describe an approach to suppress this
leakage.

C. Leakage Suppression

At the core of SCALLOPS is the optimization algo-
rithm that eliminates leakage from the computational
subspace. Starting with a basic subsequence of the type
described in Sec. III B, we need to flip bits in order to
suppress leakage while preserving the target rotation in
the qubit subspace. The major difficulty in subsequence

FIG. 5. Subsequence Graph. Each vertex represents a 10-
clock cycle (2-qubit cycle) subsequence with a distinct tip
angle δθi in the qubit subspace (we consider a 25 GHz clock
and a 5 GHz qubit). The shaded regions denote windows in
which positive y-rotations can be induced by the application
of SFQ pulses. Vertices that are connected differ by a single
symmetric pair (m,φ), which labels the connection. For ex-
ample, the subsequence at the top of the graph differs from its
left neighbor by the pair (3, 12π/5), corresponding to pulses
applied on the sixth and ninth clock edges following initiation
of the sequence (clock edge zero).

optimization is that bit flips that reduce leakage will gen-
erally disrupt the rotation in the qubit subspace. This
problem is analogous to solving a Rubik’s cube: when
the cube mismatched at the top layer, a naive set of op-
erations to complete the top layer will generally disrupt
the other layers that are already matched. This difficulty
can be circumvented by using a sequence of operations
whose net effect is felt only at the top layer. We can
solve the qubit control problem analogously: the corre-
sponding sequence of operations is to flip a symmetric
pair of bits in the subsequence and to scale the tip angle
δθ to preserve rotation in the qubit subspace. While this
latter step might seem dubious, given that δθ is fixed by
the geometric coupling of the SFQ driver to the qubit, we
will show that for a given qubit frequency satisfying the
matching condition Eq. (21) there exists a high density
of high-fidelity subsequences in the space of tip angles δθ.
Our strategy will be to allow δθ to vary as we search for
a cluster of high-fidelity, low-leakage subsequences. Then
we will select those subsequences that achieve highest fi-
delity for the specific value of δθ dictated by the available
hardware.
More formally, we can describe this method in terms

of a subsequence graph G = (V,E), where the vertices
V represent individual SFQ subsequences with their op-
timal tip angles δθ and the connections E link subse-
quences that are separated by a single symmetric pair of
bit flips. Explicitly,

• Each vertex V is described by a subsequence
bit pattern S and its optimal tip angle δθopt =
argmaxδθ̂Favg.

• Each connection E links subsequences (S,L) that
differ by a single symmetric pair (m,φ).

We define V and E in this way with the goal of separating
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FIG. 6. Gate infidelity versus tip angle δθ. Each horizontal bar represents a unique subsequence. The bars are centered
horizontally at the optimal tip angle δθopt, and the vertical position of the bars represents the minimum subsequence infidelity.
The horizontal extent of each bar denotes the range of δθ over which the infidelity of the subsequence remains below 10−4 (see
inset). The cyan trace is the projection of all subsequences onto the line 1− Favg = 10−4; these segments merge into a nearly
continuous line that spans the range of tip angles from 0.03 to 0.06 rad.

FIG. 7. A collection of SCALLOP subsequences. The subsequences are labeled below with the frequency of the target qubit
and above with the achieved gate fidelity (in units of 10−4) and number of repetitions required to achieve the Yπ/2 gate. Here,
time flows upward; red (grey) bars correspond to clock cycles during which SFQ pulses are applied (omitted). The SCALLOP
sequences span 21 qubit frequencies and share a fixed tip angle δθ = 0.032. The frequency spacing of the subsequences is
slightly adjusted for improved readability.

control in the qubit subspace from leakage elimination:
navigation through the subsequence graph G preserves
rotation in the qubit subspace, but movement from ver-
tex to vertex can change leakage out of the computational
subspace substantially, as one can see from Eq. (18). A
trivial example of the subsequence graph is shown in Fig.

5.

With this definition of the subsequence graph G, we
describe a simple procedure to find high-fidelity subse-
quences. We first construct a basic subsequence S as
defined in Sec. III B. This subsequence serves as the en-
trance point to the subsequence graph. We then explore
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all vertices adjacent to S and greedily move to the ver-
tex with the highest fidelity. We repeat this greedy move
until we reach a local fidelity maximum. This typically
takes only 5-10 steps. In our simulations, 5-8 repetitions
of such high-fidelity subsequences will yield gates with fi-
delity greater than 99.99% in a total sequence time under
12 ns.
The subsequences generated by the algorithm de-

scribed above are not yet sufficient for experimental im-
plementation because we have allowed the tip angle per
SFQ pulse to vary during our search. In practice, the
tip angle is determined by the coupling capacitance of
the SFQ driver to the transmon qubit and cannot be
exquisitely controlled during fabrication, or varied in situ

following fabrication.
The solution to the problem is to explore a larger re-

gion of the subsequence graph and to identify a large
ensemble of high-fidelity candidate subsequences corre-
sponding to a range of optimal tip angle δθopt. For each
of these subsequences, high-fidelity rotations (say, infi-
delity under 10−4) are achieved over a range of δθ, so
that it is straightforward to identify from this ensemble
specific subsequences that yield high fidelity for a fixed
δθ. More specifically, we ignore all vertices with fidelity
lower than 99.99% and perform a standard breadth-first
search to traverse the remaining vertices of the graph,
leading to a set of characterized subsequences which we
call the subsequence neighborhood.
In Fig. 6 we plot the simulated infidelities achieved

versus the tip angle δθ for a subsequence neighborhood
associated with a 4.65200 GHz qubit. For each individual
subsequence in the neighborhood, high fidelity is reached
for only a small range of tip angles around the optimal
value. However, given a fixed value of δθ, numerous sub-
sequences are available that achieve gate fidelity well be-
yond the target of 99.99%. This is true for SFQ tip angle
spanning a broad range from 0.03 to 0.06, which is more
than enough to accommodate any inaccuracy in the de-
sign of the coupling capacitance between the SFQ driver
and the transmon.

D. Sequence Verification

We have performed the above-described neighborhood
search for 21 different frequencies satisfying the match-
ing condition given by Eq. (21). The result is shown in
Fig. 7. While a 3-level model of the transmon was used
to derive the sequences, the presented fidelities were cal-
culated for a model incorporating 7 energy levels.
In Fig. 8, we examine leakage into the noncomputa-

tional states |2〉, |3〉, |4〉, and |5〉 for the SCALLOP se-
quence corresponding to the 4.89201 GHz qubit. We ob-
serve that the dominant leakage into state |2〉 is roughly
bounded at 10−2 for initial qubit states spanning the car-
dinal points on the Bloch sphere. Moreover, as the qubit
state approaches |0〉, we see that leakage into |2〉 is partic-
ularly low, as demonstrated in the curves corresponding

FIG. 8. Leakage into noncomputational states for the se-
quence of Fig. 6 corresponding to the 4.89201 GHz qubit.
The sequence involves 6 repetitions of a subsequence consist-
ing of 46 bits. (a) Population of |2〉 for initial qubit states
aligned along the cardinal directions of the Bloch sphere. (b)
Population of states |2〉, |3〉, |4〉, and |5〉 averaged over the
same initial qubit states.

to initial states |z+〉 and |x−〉. While the population of
state |2〉 can approach 10−2 toward the middle of the sub-
sequence, the population always drops below 10−4 at the
completion of each subsequence repetition, as the sub-
sequences are explicitly constructed to minimize leakage
from the qubit subspace. The population of states |3〉
and |4〉 is well below 10−4 throughout, while states |5〉
and higher have negligible populations.
Finally, in Fig. 9 we simulate the effect of qubit param-

eter variation on SCALLOP gate fidelity. Error from fre-
quency drift can be modeled as an ideal gate followed by a
small precession: Ufr(δωTg/ωq)Yπ/2. From Eq. (13), the

infidelity of this gate is then approximately (δωTg)
2/6.

For gate fidelity to degrade by 10−4, the qubit frequency
drift δω/2π must reach about 300 kHz, given a gate time
of 12 ns. This naive estimate is in qualitative agree-
ment with the full simulation results in Fig. 9a; note
that based on the above argument, we expect microwave-
based qubit gates to display similar sensitivity to qubit
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FIG. 9. Sensitivity of gate fidelity to variation in (a) qubit
frequency and (b) anharmonicity. The simulation is run for
six different qubit frequencies.

frequency drift. In Fig. 9b we see that SCALLOP gate

fidelity is relatively insensitive to variation in qubit an-
harmonicity. In a practical system, the anharmonicity of
each qubit would be calibrated upon system bringup. As
anharmonicity is set by the transmon charging energy, it
is not expected to fluctuate in time.

IV. CONCLUSION

We have performed numerical simulations to demon-
strate coherent qubit control across multiple frequencies
using irradiation with classical bits derived from the SFQ
logic family. Using a single global clock at 25 GHz to
stream pulses from compact registers consisting of 35-55
bits, we achieve gate fidelity better than 99.99% across 21
qubit frequencies spanning the range from 4.5 to 5.5 GHz.
The control subsequences are readily amenable to stor-
age in compact SFQ-based shift registers, as outlined in
[18]. We have described an intuitive, efficient method
for the derivation of high-fidelity SFQ-based pulse se-
quences that is readily adapted to arbitrary single-qubit
gates. The SCALLOPS method is robust in the sense
that large imprecision in the tip angle per SFQ pulse is
readily accommodated by appropriate variation in the
subsequence bitstream. The control approach is immune
to wiring parasitics and offers the possibility for tight in-
tegration of a large-scale quantum array with a proximal
classical coprocessor for the purposes of reducing system
footprint, wiring heatload, and control latency.
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