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The Hodgkin-Huxley model describes the behavior of the cell membrane in neurons, treating each
part of it as an electric circuit element, namely capacitors, memristors, and voltage sources. We
focus on the activation channel of potassium ions, due to its simplicity, while keeping most of the
features displayed by the original model. This reduced version is essentially a classical memristor, a
resistor whose resistance depends on the history of electric signals that have crossed it, coupled to
a voltage source and a capacitor. Here, we will consider a quantized Hodgkin-Huxley model based
on a quantum memristor formalism. We compare the behavior of the membrane voltage and the
potassium channel conductance, when the circuit is subjected to AC sources, in both classical and
quantum realms. Numerical simulations show an expected adaptation of the considered channel
conductance depending on the signal history in all regimes. Remarkably, the computation of higher
moments of the voltage manifest purely quantum features related to the circuit zero-point energy.
Finally, we study the implementation of the Hodgkin-Huxley quantum memristor as an asymmetric
rf SQUID in superconducting circuits. This study may allow the construction of quantum neuron
networks inspired in the brain function, as well as the design of neuromorphic quantum architectures
for quantum machine learning.

I. INTRODUCTION

Brain science and neurophysiology are fascinating top-
ics posing deep questions regarding the global compre-
hension of the human being. Understanding how the
brain works catalyzed interdisciplinary research fields
such as biophysics and bioinformatics. In 1963, the No-
bel Prize in Physiology or Medicine was awarded to Alan
Lloyd Hodgkin and Andrew Fielding Huxley for their
work describing how electric signals in neurons propagate
through the axon. This work consists on modeling small
segments of the axon membrane as an electric circuit rep-
resented by a set of non-linear differential equations [1–
4], establishing a bridge between neuroscience [5, 6] and
physics [7–14].

A neuron is an electrically excitable cell that receives,
processes, and transmits information through electric sig-
nals, whose main components are the cell body, the den-
drites, and the axon. Dendrites are ramifications which
receive and transmit stimuli into the cell body, which pro-
cesses the signal. The nerve impulse is then propagated
through the axon, which is an extension of the nerve
cell. This propagation gradient is generated through the
change in the ion permeability of the cell membrane when
an impulse is transmitted. This implies a variation in ion
concentrations represented in the Hodgkin-Huxley circuit
by a non-linear conductance. Its resistance depends on
the history of electric charges crossing the cell, which is
naturally identified with a memristor [16, 17].
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In the last decade, we have witnessed a blossom-
ing of quantum platforms for quantum technologies,
where quantum simulations, quantum computing, quan-
tum sensing, and quantum communication are to be high-
lighted. Superconducting circuits is one of the leading
quantum platforms, allowing for controllability, scala-
bility, and coherence. The combination of biosciences
with quantum technologies gave rise to a variety of novel
fields, as quantum artificial intelligence [18], quantum bi-
ology [19, 20], quantum artificial life [21, 22], and quan-
tum biomimetics [23], among others. From a wide per-
spective, we are heading towards a general framework
for neuromorphic quantum computing, in which brain-
inspired architectures strive to take advantage of quan-
tum features to enhance computational power.

Recent proposals for a quantized memristor [24], as
well as its possible implementations in both supercon-
ducting circuits [25] and integrated quantum photon-
ics [26], allows for the construction of a quantized neuron
model based on Hodgkin-Huxley circuit. In the classi-
cal realm, this model reproduces the characteristic adap-
tive behavior of brain neurons. Whereas, in the quan-
tum regime, it could unveil unique characteristics or an
unprecedented learning performance. Furthermore, the
study of memristor-based electric circuits [27–30] sets a
starting position for the investigation of coupled quan-
tum memristors, which may lead to the development of
quantum neuron networks.

Classical models comprising features of real neurons
is an active research field, leaving open an extension to
the quantum domain [31–36]. This lead to the prolonga-
tion of neuromorphic computing towards the quantum



realm. Neuromorphic quantum computing consists in
the design of artificial structures that mimic neurobio-
logical architectures present in the nervous system with
the purpose of enhancing and accelerating certain com-
putational tasks, utilizing quantum resources [37]. Fur-
thermore, classical memristive devices have been used in
the simulation of synaptic [38–40] as well as learning pro-
cesses [41]. However, none of those works ever considered
the quantized version of the Hodgkin-Huxley model.

In this article, we study a simplified version of the
Hodgkin-Huxley model, preserving its biological inter-
est, in which only the potassium ion channel plays a role.
The ion channel conductance, modelled by a memristor,
is coupled to a voltage source and a capacitor, where we
study its response under a periodic driving in both classi-
cal and quantum regimes. By means of a quantum mem-
ristor [24], we quantize the elements of the considered
Hodgkin-Huxley circuit, comparing the membrane volt-
age, the conductance, and the I-V characteristic curve
for a classical input source [42]. To conclude, we look
into the implementation of the quantum memristor in
the Hodgkin-Huxley circuit as an asymmetric rf SQUID
in superconducting circuits. This work establishes a
roadmap for the experimental construction of quantum
neuron networks, as well as neuromorphic quantum ar-
chitectures and quantum neural networks [43]. These
concepts could find general applications in the field of
quantum machine learning [44] and a challenging alter-
native to a gate-based universal quantum computer.

II. THEORETICAL FRAMEWORK

A. Classical Hodgkin-Huxley model

The cell membrane of a neuron shows permeability
changes for different ion species after receiving electric
impulses through the dendrites. These changes result in
variations on ion concentrations which, when a certain
threshold is overcome, can lead to a sudden depolariza-
tion of the membrane and the consequent transmission of
the signal through the axon. These ions comprise mainly
potassium and sodium, which have different roles during
a potential spike. In 1952, Hodgkin and Huxley devel-
oped a model which describes the propagation of these
stimuli by treating each component of the excitable cell
membrane as an electric circuit element, as shown in
Fig. 1(a). The equations of this circuit are

I(t) = Cg
dVg
dt

+ ḡKn
4(Vg − VK) + ḡNa

m3h(Vg − VNa
)

+ḡL(Vg − VL), (1)

dn

dt
= αn(Vg)(1− n)− βn(Vg)n, (2)

dm

dt
= αm(Vg)(1−m)− βm(Vg)m, (3)

dh

dt
= αh(Vg)(1− h)− βh(Vg)h, (4)

FIG. 1. (a) Complete Hodgkin-Huxley circuit and (b)
Hodgkin-Huxley circuit with solely a potassium ion channel.
The capacitance Cg describes the axon’s membrane capacity
to store charge, the voltage sources Vi account for the initial
ion concentrations in the axon, and the ion permeabilities of
the membrane are described by non-linear conductances i, for
i = L,K,Na.

where I is the total current, ḡi (i = L,K,Na) are con-
stants representing the maximum value each electrical
conductance can take. Cg is the membrane capacitance,
Vi is the resting potential in each ion channel, and n,m,
and h are dimensionless quantities between 0 and 1 that
represent the probability of activation or inactivation of
each ion channel.

Except for the leakage channel L, which accounts for
small unperturbed flow of non-involved (mostly chloride)
ions, and thus is described by a constant conductance,
any ion channel is characterized by a non-linear conduc-
tance due to n, m and h, which weigh each channel dif-
ferently and depend on voltage and time. Here, we keep
solely the contribution coming from the potassium chan-
nel, which only has activation gates, and not both ac-
tivation and inactivation gates as the sodium channel.
This model still conserves the most characteristic behav-
ior of neurons. In this case, we are left with two coupled
differential equations,

I(t) = Cg
dVg
dt

+ gKn
4(Vg − VK), (5)

dn

dt
= αn(Vg)(1− n)− βn(Vg)n. (6)

Naturally, this non-linear conductance can be identified
with a memristor.

B. Memristor

The memristor is a resistor whose resistance depends
on the history of electrical signals, voltages or charges,
that have crossed it. This particular description of a
resistor can be given in the context of Kubo’s response
theory [15], and it was in 1971 when L. O. Chua rescued
this idea and coined the term “memristor” [16]. In the
original work by A. L. Hodgkin and A. F. Huxley, the
memristor does not appear as an independent electric
circuit element, but as a nonlinear resistor governed by



the equations of a memristor. This identification came
about years later, and is highlighted in Ref. [45]. The
equations describing the physical properties and memory
effects of a (voltage-controlled) memristor are

I(t) = G(µ(t))V (t), (7)

µ̇(t) = f(µ(t), V (t)). (8)

G(·) and f(·) are continuous real functions satisfying

(i) G(µ) ≥ 0 for all values of µ.

(ii) For a fixed µ, f(µ, V ) is monotone, and f(µ, 0) = 0.

Property (i) implies that G(µ) can indeed be under-
stood as a conductance, so that Eq. (7) can be interpreted
as a state-dependent Ohm’s law. This ensures that the
memristor is a passive element. Property (ii) restricts
the internal variable dynamics to provide non-vanishing
memory effects for all significant voltage inputs, implying
that it does not have dynamics in the absence of voltage.

Notice that solving Eq. (8) requires time integration
over the past of the control signal, and this solution af-
fects G(µ). This means that the response in the cur-
rent given by Eq. (7) depends not only on the present
value of the control voltage, but also on the previous
ones. Hence, if a memristor undergoes a periodic control
signal, the I-V characteristic curve will display a hystere-
sis loop, which contains memory effects, identifying the
slope of this curve with the resistance of the device.

The study of a single ion channel means neutralizing
the dynamics of the other channel, which is a matter
of controlling its voltage, namely its ionic concentration.
Experimentally, an isolated study of the potassium chan-
nel is achieved by setting the membrane voltage to VNa,
or through changing the sodium concentration by replac-
ing the sodic medium by any other non-gated substance.
This was performed in Ref. [4], and allowed them to ob-
tain experimental results that could be compared to the-
oretical ones, thus testing the proposed expressions for
αx and βx, with x = n,m, h separately for each chan-
nel, so that values for n, m, h could be obtained. Then,
with the conductance of the potassium channel given by
gK = ḡKn

4, Eqs. 5 and 6 can be solved numerically for
the membrane voltage, given an input current I(t).

C. Circuit Quantization

Now we give a brief introduction to circuit quantiza-
tion. To do so, we first describe the quantization of the
memristor. The quantum memristor has been recently
introduced [24], and is described as a non-linear element
in a closed circuit with a weak-measurement scheme, used
to update the resistance. This layout can be seen in
Fig. 2(a) as a closed system coupled to a resistor and
a measurement apparatus, introducing a measurement-
based update of the resistance depending on the system
voltage.

FIG. 2. (a) Diagram of a quantum memristor as a resis-
tor coupled to a closed system with a voltage-based weak-
measurement scheme. (b) Hysteresis loops displayed by a
quantum memristor coupled to a LC circuit with a system

Hamiltonian HS = q2

2C
+ ϕ2

2L
, with C = 1F and L = 1H. The

memristor current is measured in C/s, and the charge in C.
Time is defined as the inverse of the frequency, through 3 full
cycles of the memristive device.

The dynamics of the composite system can be stud-
ied by a master equation composed of Hamiltonian,
continuous-weak-measurement, and dissipation parts,

dρ = dρH + dρm + dρd. (9)

The Hamiltonian part is given by von Neumann equation,

dρH = − i
~

[HS , ρ(t)]dt. (10)

The continuous-weak-measurement part reads

dρm = − τ

q2
0

[q, [q, ρ(t)]]dt+

√
2τ

q2
0

({q, ρ(t)}− 2〈q〉ρ(t))dW,

(11)
where [·, ·] denotes a commutator and {·, ·} an anticom-
mutator. The expectation value of an observable is
〈A〉 = tr(ρA), τ is the projection frequency, q0 is the un-
certainty, the measurement strength is defined as κ = τ

q20
,

and dW is the Wiener increment, related to the stochas-
ticity associated with weak measurements.

The dissipation is described by a Caldeira-Leggett



master equation,

dρd = − iγ(µ)

~
[ϕ, {q, ρ(t)}]dt− 2Cλγ(µ)

~
[ϕ, [ϕ, ρ(t)]]dt,

(12)
where λ = kBT/~ and γ(µ) is the relaxation rate. Solving
these equations, we can have the relation between mem-
ristive current and the charge shown in Fig. 2(b), for an
LC circuit coupled to a memristor, with a Hamiltonian of

the form HS = q2

2C + ϕ2

2L . We can observe the memristor
displays the characteristic hysteresis curve when plotting
the current response versus the charge, which is related
to the control voltage as V = q/C. In the case of a cir-
cuit with classical sources, or a circuit coupled to an open
element, there is no need to introduce the Wiener noise.

With a Hamiltonian formulation on sight, a descrip-
tion of electric circuits entails defining fluxes and charges,
from which the voltage and the current can be obtained
by time differentiation. In this case we employ a node for-
mulation, where node fluxes are the main variables and
play the role of the spatial variable, with node charges be-
ing the conjugate variables. This formulation with node
fluxes suffices to describe a circuit featuring linear capac-
itances and inductances.

In a Lagrangian formalism, dissipative elements such
as resistors can be treated by adding a dissipation func-
tion to the equations of motion of an effective La-
grangian [46]. However, the reversibility of Hamil-
ton’s equations, arising from a Hamiltonian formulation
needed for a proper circuit quantization, conflicts with
the irreversibility of dissipative terms. To describe the
quantum memristor in a Lagrangian formulation suit-
able for canonical quantization, we assume linear dis-
sipation and treat it as a linear dissipative element in
the Caldeira-Leggett model [47]. In this manner, we re-
place it by an infinite set of coupled LC oscillators with
a frequency-dependent impedance Z(ω), i.e. a transmis-
sion line. We identify the impedance of the transmission
line with the resistance of the memristor and, assuming
that the time between consecutive updates is much larger
than the memristor’s relaxation time, the impedance can
be updated (see Fig. 3).

III. QUANTIZED HODGKIN-HUXLEY MODEL

A. Classical input source

We now study the quantization of the Hodgkin-Huxley
circuit in Fig. 3. For this, we write the Lagrangian de-
scribing this circuit,

L =
Cg
2

(φ̇0 − φ̇s)2 +
Cc
2
φ̇2

0 −
(φ1 − φ0)2

2∆xL0
+

+

∞∑
i=1

[
∆xC0

2
(φ̇i − V0)2 − (φi+1 − φi)2

2∆xL0

]
.

(13)

C0 and L0 are the characteristic capacitance and
impedance per unit length of the transmission line, and

FIG. 3. Hodgkin-Huxley circuit for a single ion channel with
a classical AC source, I(t) = I0 sin(Ωt), coupled to a semi-
infinite transmission line. C0 and L0 are the capacitance and
inductance corresponding to the transmission line, Cg is the
capacitance coupling the source to the circuit, Cc accounts
for the axon’s membrane capacitance, and V0 is the resting
potential for the potassium ion channel.

the classical current source is defined as I(t) = −Cg(φ̈0−
φ̈s). The motion of this circuit can be described by Euler-
Lagrange equations, d

dt
∂L
∂φ̇

= ∂L
∂φ . Computing these equa-

tions for the intermediate node fluxes on the transmission
line, φi, we find

φ̈i =
1

L0C0

∂2φi
∂x2

(14)

after taking the continuum limit, ∆x → 0. This is
the wave equation for a flux field at position xi on the
transmission line. The general solution to this equa-
tion can be written in terms of ingoing and outgoing
waves, φ(x, t) = φin(t + x/v) + φout(t − x/v), with ve-
locity v = 1/

√
L0C0. This leads to the relations

∂φ(x, t)

∂t
= φ̇in(t+ x/v) + φ̇out(t− x/v),

∂φ(x, t)

∂x
=

1

v
(φ̇in(t+ x/v)− φ̇out(t− x/v)),

(15)

which allows us to obtain ∂φ0(t)
∂x = 1

v (2φ̇in(t) − φ̇0(t)).
The Euler-Lagrange equation for φ0 is

−I(t) + Ccφ̈0 =
1

L0

∂φ0

∂x
(16)

having taken the continuum limit. We can rewrite this
as

−I(t) + Ccφ̈0 +
φ̇0

Z0
= 2

φ̇in
0

Z0
, (17)

where Z0 =
√
L0/C0 is the impedance of the transmis-

sion line, associated with the resistance of the memristor.
φ0(t) is our main variable because 〈φ̇0(t)〉 will give us the
circuit voltage, for a given state of the transmission line.
We have identified φ0(t) with φ(x = 0, t), the flux field
inside the transmission line at x = 0, and we want then
to quantize this flux.



Given that the wave equation inside the transmission
line is satisfied, the flux field can be written in terms of
ingoing and outgoing modes, fulfilling canonical commu-
tation relations for a semi-infinite transmission line. This
sets the starting point for the quantization of the field,
which has been performed for infinite electrical networks,
see Ref. [48]. To begin, we write the decomposition

φ(x, t) =

√
~Z0

4π

∫ ∞
0

dω√
ω

(ain(ω)ei(kωx−ωt)+

+ aout(ω)e−i(kωx+ωt) + H.c.),

(18)

where kω = |ω|
√
L0C0 is the wave vector. Here, ain(ω)

and aout(ω) can be promoted to quantum operators, and
thus φ0(t) is promoted to a quantum operator. By com-
bining Eq. (17) with Eq. (18) and writing the Fourier
transform of the current, I(t) =

∫∞
0

dω√
ω

(I(ω)e−iωt +

I∗(ω)eiωt), we can express the outgoing modes in terms
of the ingoing ones,

aout(ω) = ain(ω)
i− CcωZ0

i+ CcωZ0
− 1

ω

√
4πZ0

~
I(ω)

i+ CcωZ0
.

(19)
R(ω) = i−CcωZ0

i+CcωZ0
is the reflection coefficient, and we iden-

tify s(ω) = 1
ω

√
4πZ0

~
I(ω)

i+CcωZ0
as the source term, with

I(ω) =
√
ω

2π

∫∞
−∞ dteiωtI(t). Then the circuit voltage is

〈φ̇0(t)〉 = −i
√

~Z0

4π

∫ ∞
0

dω
√
ω[(

〈ain(ω)〉(1 +R(ω))− s(ω)
)
e−iωt −H.c.

] (20)

for a given state of the transmission line. By choosing this

state to be the vaccum, 〈0|ain(ω)|0〉 = 〈0|a†in(ω)|0〉 = 0,
and for a classical input current I(t) = I0 sin(Ωt), the
voltage response of the system reads

〈φ̇0〉 = I0Z0
sin(Ωt)− CcΩZ0 cos(Ωt)

1 + (CcΩZ0)2
. (21)

Actually, this is what is obtained when studying the sta-
tionary solution of Eq. (17) with φ̇in

0 = 0. However, we
claim that φ0 is a valid quantum operator, and to demon-
strate this we compute the second moment of the voltage.
We do this for a vaccum state of the transmission line,
meaning no excitations, and find

〈φ̇2
0〉 =

~Z0

π

∫ ∞
0

dω
ω

1 + (CcωZ0)2
+

+
[
Z0I0

sin(Ωt)− CcΩZ0 cos(Ωt)

1 + (CcΩZ0)2

]2
.

(22)

The second term contains the voltage squared, which
has a classical origin, at variance with the first term.
The latter is related to the reflection of the modes in the
circuit and is associated with the zero-point energy. It

diverges as ω →∞, which is a purely quantum mechan-
ical effect [47]. We can eliminate the divergence in the
voltage fluctuations by subtracting this quantity to the
second moment of the voltage computed for the transmis-
sion line in a thermal state. This state is defined through
Bose-Einstein statistics,

〈ain(ω)ain(ω
′
)〉 = 〈a†in(ω)a†in(ω

′
)〉 = 0,

〈a†in(ω)ain(ω
′
)〉 =

1

2

[
coth

(β~ω
2

)
− 1
]
δ(ω − ω

′
),

〈ain(ω)a†in(ω
′
)〉 =

1

2

[
coth

(β~ω
2

)
+ 1
]
δ(ω − ω

′
),

(23)

for the number of bosonic modes. Here, β = 1/kBT ,
kB is the Boltzmann constant and T is the temperature.
Then, we need to compute the following integral

∆ ≡ 〈φ̇2
0〉Thermal − 〈φ̇2

0〉Vacuum =

~Z0

π

∫ ∞
0

dω
ω

1 + (CcωZ0)2

[
coth

(β~ω
2

)
− 1
]
,

(24)

which by imposing ~βω � 1 reduces to

2~Z0

π

∫ ∞
0

dω
ω e−β~ω

1 + (CcωZ0)2
(25)

Approximating the solution for large β up to second or-
der, we find

∆ =
2Z0

~πβ2
. (26)

This gives the contribution of the quantum fluctuations
of the circuit voltage without the zero-point energy. As
expected, this quantity goes to cero as T → 0.

In order to observe the system memristive behavior,
we introduce the update of the resistance of the mem-
ristor, considering the dependence of Z0 on the circuit
voltage. This approach is valid as long as the relaxation
time of the set of LC oscillators, which represents the in-
stantaneous resistor, is much shorter than the time scale
associated to the change in the resistance. This is equiv-
alent to an adiabatic approximation [49], where we ini-
tially consider Z0 as constant to obtain the value of the
circuit voltage and is consistently updated later.

Identifying the inverse of the impedance (known as
admittance) with a conductance, we can use the potas-
sium channel conductance gK(t) = ḡKn(t)4 to update
the impedance Z(t) = Zminn(t)−4, via Eq. (6), such that

Ż(t) = −4Zmin

(
Z(t)

Zmin

)5/4

α(Vg)+4Z(t)
(
α(Vg)+β(Vg)

)
.

(27)
Thus, from now on, we identify the potassium channel
conductance with the inverse of the impedance of the
transmission line. Notice that, in this treatment, we have
assumed that the voltage measurements used to update
the impedance of the memristor do not perturbe the sys-
tem, considering measurements in this setup to be au-
tomatic and non-invasive. Given the dependence of the



FIG. 4. Hodgkin-Huxley circuit for a single ion channel coupled to a semi-infinite transmission line, introducing a quantized
source on the left modelled by a second semi-infinite transmission line. C0 and L0 are the capacitance and inductance cor-
responding to the left transmission line, and the ones corresponding to the right transmission line are C1 and L1. Cg is the
capacitance coupling both transmission lines, Cc accounts for the axon’s membrane capacitance, and V0 is the resting potential
for the potassium ion channel.

impedance on the circuit voltage, we solve Eq. (27) nu-
merically to obtain the change in impedance of the mem-
ristor. Then, we compute the potassium channel conduc-
tance and the membrane voltage. This is equivalent, as
mentioned above, to a strong adiabatic approximation,
in which the impedance is considered constant in order
to update the voltage of the circuit.

B. Quantized input source

To study the circuit response to quantum state inputs,
we replace the source with a second semi-infinite trans-
mission line, thus introducing a collection of LC circuits
in which multiple frequencies can be excited. This circuit
is depicted in Fig. 4. In this scenario, the input current
will be introduced by 〈Q̇L0 〉, where QL0 = Cg(φ̇

L
0 − φ̇R0 ),

for a given state that satisfies 〈Q̇L0 〉 = I0 sin(Ωt). The
Lagrangian describing this system is

L =

∞∑
i=1

[
∆xC0

2
(φ̇Li )2 −

(φLi − φLi+1)2

2∆xL0

]
− (φL0 − φL1 )2

2∆xL0

+
Cg
2

(φ̇R0 − φ̇L0 )2 +
Cc
2

(φ̇R0 )2 − (φR1 − φR0 )2

2∆x′L1

+

∞∑
j=1

[
∆x′C1

2
(φ̇Rj − V0)2 −

(φRj+1 − φRj )2

2∆x′L1

]
,

(28)

where the capacitance and inductance corresponding
to the left transmission line are C0 and L0, and the ones
corresponding to the right transmission line are C1 and
L1. The Euler-Lagrange equations for φL0 and φR0 are

Cg(φ̈
L
0 − φ̈R0 ) =

2φ̇Lin(t)

Z0
− φ̇L0
Z0
, (29)

Cg(φ̈
R
0 − φ̈L0 ) + Ccφ̈

R
0 =

2φ̇Rin(t)

Z1
− φ̇R0
Z1

, (30)

respectively. Z0 is the impedance on the left transmission
line, and Z1 the one on the right transmission line. These
equations can be written in this manner, since the wave
equation is satisfied inside each of the transmission lines
for a flux field. We use the Euler-Lagrange equations to
find expression for the outgoing modes in terms of the
ingoing ones,

aLout(ω) = aLin(ω)R0(ω) + aRin(ω)s(ω),

aRout(ω) = aRin(ω)R1(ω) + aLin(ω)s(ω).
(31)

Now, these modes have reflected and transmitted con-
tributions on both sides of the circuit. The reflection
coefficients are given by

R0(ω) =
1− iω(Cg + Cc)Z1 + ωCgZ0(i+ ωCcZ1)

1− iω(Cg + Cc)Z1 − ωCgZ0(i+ ωCcZ1)
,

R1(ω) =
1 + iω(Cg + Cc)Z1 − ωCgZ0(i− ωCcZ1)

1− iω(Cg + Cc)Z1 − ωCgZ0(i+ ωCcZ1)
,

(32)

and the transmission coefficients by

s(ω) =
−2iωCg

√
Z0Z1

1− iω(Cg + Cc)Z1 − ωCgZ0(i+ ωCcZ1)
. (33)

Averaging over the vacuum state of the right transmis-
sion line, we write the voltage response of the circuit for
a given state for the source



〈φ̇R0 〉 =− CgZ1

√
~Z0

π

∫ ∞
0

dω ω3/2

{
(1− ω2CgCcZ0Z1)

(
〈aLin(ω)〉e−iωt + 〈aL†in (ω)〉eiωt

)
1 + ω2

(
C2
gZ

2
0 + 2C2

gZ0Z1 + ((Cc + Cg)2 + ω2C2
gC

2
cZ

2
0 )Z2

1

)
+

iω
(
(Cc + Cg)Z1 + CgZ0

)
(〈aLin(ω)〉e−iωt − 〈aL†in (ω)〉eiωt)

1 + ω2
(
C2
gZ

2
0 + 2C2

gZ0Z1 + ((Cc + Cg)2 + ω2C2
gC

2
cZ

2
0 )Z2

1

)}. (34)

Computing the second moment of the voltage, we find

〈(φ̇R0 )2〉 =
~Z1

π

∫ ∞
0

dω
ω(1 + ω2C2

gZ
2
0 )

1 + ω2
(
C2
gZ

2
0 + 2C2

gZ0Z1 + ((Cc + Cg)2 + ω2C2
gC

2
cZ

2
0 )Z2

1

)
− ~Z1

4π

∫
dωdω′

√
ωω′

{
〈aLin(ω)aLin(ω′)〉s(ω)s(ω′)e−i(ω+ω′)t − 〈aLin(ω)aL†in (ω′)〉s(ω)s∗(ω′)e−i(ω−ω

′)t

− 〈aL†in (ω)aLin(ω′)〉s∗(ω)s(ω′)ei(ω−ω
′)t + 〈aL†in (ω)aL†in (ω′)〉s∗(ω)s∗(ω′)ei(ω+ω′)t

}
,

(35)

where the first term is again related to the reflection of
the modes on the circuit, and it is purely quantum. The
second term gives the frequency correlations of the modes
on the left transmission line.

The following step would be to find a quantum state
of the source which gives the desired input current in
the circuit, and to explore what quantum features can
be used to enhance this model or to reveal interesting
dynamics.

IV. NUMERICAL SIMULATIONS

In this section, we present the results of the mem-
brane voltage and the potassium channel conductance
for the single-ion channel Hodgkin-Huxley model. This
is done by solving Eq. (27) for the update of the mem-
ristor impedance using the results of the membrane volt-
age. We introduce the solutions of membrane voltage
and potassium ion channel conductance for the single-
channel Hodgkin-Huxley model, which we use to compare
with the results for the quantized Hodgkin-Huxley model
with a classical AC current source. In each case, we find
that the potassium conductance reproduces qualitatively
and approximately the s-shaped curve of Ref. [4].

A. Classical Hodgkin-Huxley model

The single-channel Hodgkin-Huxley model with an
AC current source is simulated by solving the Hodgkin-
Huxley equations, i.e. Eq. (5) together with Eq. (6).
Then, we plot in Fig. 5 the membrane voltage, the
potassium channel conductance, and the sodium chan-
nel conductance, for a periodic input of the form I(t) =
I0 sin(Ωt). For the membrane voltage taken to be ini-
tially zero, we plot it versus time in Fig. 5(a) as the blue
curve, the red curve in Fig. 5(b) corresponding to the
potassium channel conductance.

A spike in the membrane voltage can be observed, with

a subsequent decrease and adaptation to the input, lead-
ing to oscillations around the zero value. This is be-
cause we have taken the resting membrane voltage to
be zero initially, and have set VK = 0, where normally
it is taken to be VK = −77mV. We have chosen this ac-
cording with the results for the response of the quantized
model, in which this classical DC voltage source does not
appear. This does not change the dynamical behavior,
it just gives a displacement of the voltage. In fact, the
profile of the voltage, aside from the oscillations caused
by our choice of input current, accurately fits the plots
depicted in Ref. [4]. The potassium conductance is repro-
duced with great accuracy according to Ref. [4], featuring
rising and adaptive behavior.

Comparing the conductance as the red curve in
Fig. 5(b) with the ones obtained in Ref. [4], it can be ap-
preciated that, with the introduction of an input signal,
the conductance rises and adapts to this signal, according
to the depolarization of the membrane, with oscillations
caused by our choice of I(t). The I-V characteristic curve
in Fig. 5(c) displays a hysteresis loop due to the periodic
driving, which forms a limit cycle when the system satu-
rates.

It is interesting to see that the spiking behavior of
the membrane voltage can be reproduced in this sim-
plified model featuring only potassium conductance. As
the values for the coefficients α(Vg) and β(Vg) were ob-
tained through comparison with experimental results [4],
the gate-opening probabilities for different ion channels
may not be completely independent. The, the mechanism
of each ion channel cannot be isolated, as the transmis-
sion of the nerve impulse is a balanced process involving
(in this case, two) different ion permeability changes.

When we solve the quantized Hodgkin-Huxley model,
we use an adiabatic approximation. In order to fairly
compare the classical and quantized models, we need to
study the classical Hodgkin-Huxley model with an adi-
abatic approximation. The potassium conductance is
given by gK = ḡKn

4(t). Then, when solving Eqs. (5)
and (6), we consider n(t) to be constant. Consequently,



FIG. 5. Classical Hodgkin-Huxley model for a single ion channel with a periodic input I(t) = I0 sin(Ωt): (a) Membrane
voltage (blue) over time. (b) Potassium channel conductance (red) over time. (c) Membrane voltage versus input current. (d)
Membrane voltage (blue) and potassium channel conductance (red) over time with an adiabatic approximation. The membrane
voltage is measured in mV, the input current is in mA, and the potassium channel conductance appears in S.

the straightforward solution of Vg(t) with the choice of
input current, I(t) = I0 sin(Ωt), reads

Vg(t) = VK + I0
gK sin(Ωt)− ΩCg cos(Ωt)

g2
K + C2

gΩ2
. (36)

Here, we have only considered the stationary solution,
given that the transient one provides fast decay. Using
this result, we solve n(t) at any time step. Then, we plot
the results of the membrane voltage and the potassium
channel conductance as the blue curve and the red curve
in Fig. 5(d), respectively. This result is exactly what we
obtained in Eq. (21), meaning that the voltage response
of the system is classical while the second moment of the
voltage displays purely quantum terms.

B. Quantized Hodgkin-Huxley model

The simulation of the quantum Hodgkin-Huxley model
uses a classical AC current source. On the other hand,
the solutions for the membrane voltage, the potassium

channel conductance, and the characteristic I-V curve
are presented below. By solving Eqs. (21) and (27), we
obtain the membrane voltage and the potassium con-
ductance in the quantum model with a classical input
I(t) = I0 sin(Ωt). The membrane voltage against time is
plotted as the blue curve in Fig. 6(a). There, we observe
a decrease in amplitude and a relaxation of the oscilla-
tions as it adapts to the input.

The conductance in Fig. 6(a) (red curve) does not fea-
ture a desired delay in its growth, but its saturation is
clear, and it resembles the desired s-shaped curve dis-
played by the saturation of the potassium conductance
in Ref. [4]. Note that the membrane voltage and the
potassium channel conductance plotted in Fig. 6(a) are
the same as in Fig. 5(d), illustrating our statement that
the response to a classical input source in the quantum
regime is the same as in the classical one with an adi-
abatic approximation. We introduce the I-V character-
istic curve as we plot the membrane voltage versus the
input current, shown in Fig. 6(b), featuring a memristive
hysteresis loop. The system will have longer saturation



FIG. 6. Quantum Hodgkin-Huxley model for a single ion channel with a classical periodic input I(t) = I0 sin(Ωt) : (a) Membrane
voltage (blue) and potassium conductance (red) over time. (b) Membrane voltage versus input current. The membrane voltage
is measured in mV, the input current is in mA, and the potassium channel conductance appears in S.

times when the initial values are further away from the
final value of the impedance. However, the system al-
ways relaxes into a limit cycle independent of the initial
conditions.

The area of the hysteresis loop can give us a hint about
the memory persistence in the system [25, 26], such that
the larger the area, the greater the memory persistence.
Then, it would be interesting to test whether the intro-
duction of a quantized Hodgkin-Huxley model, allowing
for the use of quantum state inputs, represents an im-
provement in the persistence of the memory. Particu-
larly, entangled states are the desired states for this test.
The information carried out by quantum states can be
related to classical information through Landauer’s prin-
ciple, being classical dissipation the link, where the area
of the hysteresis loop intervenes.

V. FEASIBILITY OF THE IMPLEMENTATION
IN SUPERCONDUCTING CIRCUITS

To complete our description of the Hodgkin-Huxley
model in the quantum regime, we present a range in
which the Hodgkin-Huxley circuit can be implemented
in a superconducting platform. For that, we make use of
the quantum memristor in superconducting circuits, as
presented in Ref. [25]. This model consists of a super-
conducting loop interrupted by a dc SQUID with negli-
gible loop inductance, and threaded by a bias flux. In
this circuit, the dc SQUID behaves as an effective flux-
tunable Josephson junction, controlled by the bias flux
that threads the superconducting loop. In the latter,
critical currents can be suppressed by applying to it a
bias flux of half a flux quantum. Furthermore, the two
junctions in the dc SQUID are chosen to be from differ-
ent materials, so that their conductances are different. In
the limit of strong conductance asymmetry (G1 � G2),
tunneling of quasi-particles is favored (∆1 � ∆2), while

critical currents can still be suppressed [50]. This intro-
duces nonlinearities in the circuit by means of a leakage
current in the effective junction.

A requirement for this description is that the bias
flux is changed adiabatically to avoid the generation of
quasiparticles, thus restricting the adiabatic parameter
to max(αrs) ≈ 0.15 for a sinusoidal driving of the bias
flux. Furthermore, this device operates in the low-energy
regime, ~ω10, δE � 2∆, with a high frequency require-
ment, ~ω10 � δE. Here, ω10 =

√
2ECEL/~ is the system

transition frequency, being EC and EL the capacitive and
inductive energies of the junction, respectively. Also, δE
is the characteristic energy of quasiparticles above the
superconducting gap ∆ ∼ EL. The regime in which this
implementation would function can be seen in Table I.

The equations of a memristive system can be obtained
by means of the conductance of this device, which rep-
resents the connection between the quasi-particle (qp)
current and the voltage across the total junction, having
eliminated the critical currents in the dc SQUID. This
way, we obtain a set of equations that mimic those of the
clasical memristor introduced in Ref. [50].

〈Îqp〉 = Gqp[〈ϕ̂〉, 〈V̂ 〉, t]〈V̂ 〉,

Gqp[〈ϕ̂〉, 〈V̂ 〉, t] = G0 sin2

[
π

4
+

1

2
sin(ω10t)

]
,

〈V̂ 〉 = V0 cos(ω10t),

where

G0 = g2
0e
−g20ω10

Cd
2
· 10−4 ≈ 3.045 · 10−9S,

g0 =

(
Ec

32EL

)1/4

≈ 7.476 · 10−2,

and 〈ϕ̂〉 is the internal variable of the quantum memris-
tor. In this setting, the dynamics of the internal variable
is suppressed in favor of the dynamics of the conductance.



FIG. 7. Numerical simulations of the quantized Hodgkin-Huxley model with a classical current source, introducing a quantum
memristor engineered in a superconducting platform. (a) Membrane voltage versus input current for one period of the driving
current. (b) Membrane voltage versus input current for three periods of the driving current. (c) Membrane voltage versus
input current for the duration of the potential spike. (d) Membrane voltage versus time for the duration of the potential spike
(5 ms). The membrane voltage and input current presented here are normalized to V/V0 and I/I0, respectively.

EC EL ω10 ∆ δE αrs

Capacitive
energy

Inductive energy
Transition
frequency

Superconducting
gap energy

Quasiparticle
energy

Adiabatic
parameter

2π~ GHz 103 · 2π~ GHz 44.72 · 2π GHz ∼ EL � ~ω10
≤ 0.15

TABLE I. Numerical values for the regime in which the quantum memristor is implemented in superconducting circuits, taken
from Ref. [25].

We then introduce this conductance as the inverse of the
impedance in the equation for the membrane voltage in
the Hodgkin-Huxley model,

〈φ̇0(t)〉 = Vg(t) = I0Z
sin(Ωt)− CcΩZ cos(Ωt)

1 + C2
cΩ2Z2

. (37)

In Table II we give a regime in which the quantum mem-
ristor can be implemented in this architecture, and pro-
pose a complementary regime in which the behavior of
the Hodgkin-Huxley circuit elements can be observed. At

the same time, claims about the relaxation time of the
memristor and the adiabatic approximation need to be
fulfilled. See that this claim is satisfied, as the relaxation
time of the memristor is given by T10(∼ µs), which is
much smaller than the estimated duration of a potential
spike, Tspike(∼ 5ms), in the membrane of the axon. Also,
the frequency of the driving is larger than that associated
with the period of the spike. With these values, we are
able to reproduce the hysteresis loop of the memristor
when displaying the membrane voltage versus the input



Architecture ω(2π Hz) T (s) C(F) G0 (S)

Superconducting Q.
Mem.

ω10 ∼ 4.5 · 1010 T10 ∼ 10−6 Cd ∼ 5 · 10−13 3 · 10−9

Hodgkin-Huxley
model

Ω ∼ 103 Tspike ∼ 5 · 10−3 Cc ∼ 10−13 -

TABLE II. Numerical values for the simulation of the Hodgkin-Huxley circuit with the equations of the quantum memristor
engineered in superconducting circuits.

current, as we have CcΩ/Ḡ ∼ 0.0328 � 1 on average,
which leads to

V (t) ∼ I(t)

G(t)
=

I0
G0

sin(Ωt)

sin2
[
π
4 + 1

2 sin(ω10t)
] (38)

In Fig. 7 we plot the membrane voltage versus the in-
put current (V/V0 vs I/I0), displaying multiple hystere-
sis loops as the system relaxes. In this plot we can ob-
serve three different time scales, T10 ∼ µs, TΩ ∼ ms, and
Tspike ∼ 5ms. We have plotted three different stages
of the I-V curve: (a) 1 ms, describing one period of the
input current source, (b) 3 ms, describing three periods
of the input current source, and (c) 5 ms, describing 5
periods of the input current source, equivalent to the du-
ration of the voltage spike in neurons. In (d) we plot the
membrane voltage (V/V0) versus time, for the duration
of the voltage spike. We observe a modulation of the os-
cillations of the circuit voltage due to the different time
scales in this implementation.

The conductance in this case oscillates rapidly. As
the internal dynamics of the quantum memristor are su-
pressed, we cannot see the rise of the potassium chan-
nel conductance. A solution for this could be to study
a model with two parallely connected quantum memris-
tors, but perhaps more effective would be to modify the
superconducting qubit that produces memristive behav-
ior. Adding another Josephson junction to the SQUID
that interrupts the superconducting loop could add a flux
which can be controlled. This way we can compensate
for the suppression of the internal variable dynamics.

VI. CONCLUSIONS & PERSPECTIVES

We have studied a simplified version of the Hodgkin-
Huxley model with a single ion channel as a circuit fea-
turing a capacitance, a voltage source, and a memristor,
both under a periodic input in the classical regime and
in the quantum regime. The latter was achieved by in-
troducing the concept of quantum memristor. Then, we
compared the membrane voltage, the potassium conduc-
tance, and the I-V characteristic curve in both regimes.

This work shows that the behavior of this simplified
version of the classical Hodgkin-Huxley model can be re-
produced in the quantum regime. The voltage response
of the circuit is found to be classical, but the second mo-
ment features a quantum mechanical term given by the
reflection of the modes in the circuit. The conductance

is in good accordance with the experiments carried out
in Ref. [4], rising as a s-shaped curve. This is a result of
a displacement from a resting value by an input source
with an eventual adaptation, unaffected by intermediate
and relaxation oscillations. This saturation or adapta-
tion is identified with a learning process by the quantum
memristor.

We have also studied the implementation of this cir-
cuit in current state-of-the-art quantum technologies, by
replacing the ion channel quantum memristor by a super-
conducting quantum memristor. In this setup, we have
found a regime in which the properties of the supercon-
ducting quantum memristor can be observed, while the
dynamics of the Hodgkin-Huxley circuit remain relevant.

A study of the two-ion channel Hodgkin-Huxley model
in the quantum regime amounts to adding a second mem-
ristor corresponding to the conductance of the sodium
channel [51]. This would unveil new characteristics of
the mechanism that rules the conduction of nerve im-
pulses in neurons. Among other things, we would expect
to see an initial spike in the sodium conductance, know-
ing that the mechanism of the sodium channel consists
of a fast activation gate followed by inactivation. All this
will require an additional effort in the model, a study of
two quantum memristors coupled in parallel.

Another interesting line to follow is to study the effects
of quantum state inputs on the system, where memory ef-
fects are revealed by the area of the hysteresis loop. How-
ever, memory effects are more relevant when displayed in
connected neuron networks. Studying, for example, the
output of a string of neurons with an entangled state
input would imply yet another novel discovery: the dy-
namics of two serially-connected circuits involving quan-
tum memristors. Recent work describing the dynamics
of serially and parallelly coupled quantum memristor cir-
cuits [27–29] can give an answer to these two questions
when taken to a quantum regime. This would set ex-
cellent starting points for any advances in neuromorphic
quantum computing and quantum neural networks, with
direct applications on quantum machine learning.
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