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Recently, multiferroic tunnel junctions (MFTJs) have gained significant spotlight in the litera-
ture due to its high tunneling electro-resistance together with its non-volatility. In order to an-
alyze such devices and to have insightful understanding of its characteristics, there is a need for
developing a multi-physics modeling and simulation framework. The simulation framework dis-
cussed in this paper is motivated by the scarcity of such multi-physics studies in the literature.
In this study, a theoretical analysis of MFTJs is demonstrated using self-consistent analysis of
spin-based non-equilibrium Green’s function (NEGF) method to estimate the tunneling current,
Landau-Khalatnikov (LK) equation to model the ferroelectric polarization dynamics, together with
landau-Lifshitz-Gilbert’s (LLG) equations to capture the magnetization dynamics. The spin-based
NEGF method is equipped with a magnetization dependent Hamiltonian that eases the modeling
of the tunneling electro-resistance (TER), tunneling magneto-resistance (TMR), and the magneto-
electric effect (ME) in MFTJs. Moreover, we apply the first principle calculations to estimate the
screening lengths of the MFTJ electrodes that are necessary for estimation of tunneling current.
The simulation results of the proposed framework are in good agreement with the experimental
results. Finally, a comprehensive analysis of TER and TMR of MFTJs and their dependence on
various device parameters is illustrated.

:

I. INTRODUCTION

Over the last few decades, the complementary metal-
oxide-semiconductor (CMOS) technology has been con-
tinuously downscaled following Moore’s law [1]. However,
the static power dissipation and the threshold voltage
variations of downscaled short channel transistor have be-
come dominating factors that limit the static random ac-
cess memory (SRAM) performance [2–4]. Consequently,
the high static power dissipation of SRAM inspired the
exploration of alternative memory technologies like spin
transfer torque magnetic memory (STT-MRAM). How-
ever, the limited tunneling magneto-resistance (TMR)
of magnetic tunnel junction (MTJ) together with the
threshold voltage fluctuations of the short channel ac-
cess transistor affect the STT-MRAM read error rate.
Therefore, the read performance of STT-MRAM has be-
come a fundamental limiting factor in its applicability.
Consequently, a new family of tunnel junctions, called
ferroelectric tunnel junctions (FTJs), have emerged in
literature [5–7].

An FTJ consists of a ferroelectric insulator sandwiched
between two different metal electrodes, as illustrated in
Fig. 1. The information is stored in the electric polar-
ization of the insulator. The FTJ resistance is a func-
tion of the electric polarization of the insulator. The
electric polarization of the ferroelectric insulator mod-
ulates the FTJ resistance, and hence the information
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can be extracted by sensing the FTJ resistance. The
tunneling electro-resistance (TER) of FTJ is defined as

TER = |R→−R←|
min(R→,R←) , where R→ and R← are the resis-

tance of positive and negative electric polarization states,
respectively [8]. The physical origin of TER is discussed
in detail in section II. The charge current of FTJ consists
of three main components: FowlerNordheim tunneling,
direct tunneling, and thermionic emission [9].

On the other hand, the multiferroic tunnel junctions
(MFTJ) is a nonvolatile tunnel junction that consists
of two ferromagnetic layers separated by a ferroelectric
insulator, as illustrated in Fig. 1. Intuitively, from the
structure of an MFTJ, we can predict that an MFTJ
combines the resistive switching mechanism of FTJ and
MTJ to constitute a four-state device. However, it turns
out that the MFTJ has more advantages over its con-
stituent devices due to the magnetoelectric effect (ME).
The ME effect at the FM/FE interface is observed
in LaSrMnO3(LSMO)/LaCaMnO3(LCMO)/BaTiO3

(BTO)/LSMO MFTJ [9]. It originates from the modu-
lation of the screening charges at the LCMO side by the
bound charges at the BTO interface. The change in the
electron concentration at the LCMO interface affects the
LCMO magnetic configuration. The magnetic alignment
of the LCMO layer is switched from the ferromagnetic
(FM) to the antiferromagnetic (AFM) alignment due
to the change in electron concentration [10, 11]. The
transition to the AFM alignment shifts the density of
states (DOS) of the majority spin carriers to higher
energy levels, and hence limits the majority spin current.
In brief, the overall influence of the ME effect is to
improve the TER ratio, as explained in detail in section
II and section III.

A detailed review of the state of the art in FTJs and
MFTJs could be found in [6, 7]. However, a brief re-
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view of the progress in FTJs and MFTJs literature is
provided in the following discussion. Although the FTJ
has been predicted by Esaki et al. [8] in 1971 with the
name ”polar switch”, the FTJ has not been realized until
recently. The lack of the knowledge of fabrication tech-
niques of ferroelectric ultra-thin films had prevented the
FTJ realization. However, due to the breakthrough that
has been achieved by Zembilgotov et al. [12], the fer-
roelectric ultra-thin film has been realized followed by
many other experimental studies [13, 14]. Zhuravlev
et al. [15, 16] have explained the dependence of the
barrier height on electric polarization with the help of
Thomas-Fermi equation and Landau tunneling current
formula [17]. The Wenzel-Kramer-Brillouin (WKB) ap-
proximation and one-band model [17–19] have been used
to calculate the tunneling current through the FE insu-
lator in [20]. Hinsche et al. have used Landauer-Bttiker
formula and the WKB approximation together with ab
initio calculation to model the FTJ characteristics [21].
Fechner et al. have used the ab initio method to study
the electric polarization dependent phase transition in
Fe/ATiO3 interface [22]. On the other hand, the non-
equilibrium Green’s function (NEGF) method along with
Landau-Khalatnikov (LK) equation have been used to es-
timate the FTJ I-V characteristics in [23]. However, the
study did not consider the magnetization dynamics or
the Hamiltonian dependence on the magnetization.

To conclude, the scarcity of multi-physics simulation
studies that capture the MFTJ magnetization dynamics,
along with TMR, and TER effects motivates the model-
ing and simulation framework applied in this study. In
this study, the spin-based NEGF is applied to model the
tunneling current, along with landau-Lifshitz-Gilbert’s
(LLG) equation are applied to model the magnetization
dynamics, and the LK equation is applied to describe
the FE motion. However, the accuracy of these models
depends on the parameters used to model various mate-
rials. In our study, we use the density functional theory
(DFT) to estimate the electrostatic potential, and hence
the screening lengths of the electrode that are used in the
NEGF transport simulations. The simulation results are
compared to experimental results of the MFTJ in [11, 24]
to confirm the validity of the method.

The quantum transport model adopted by this study is
based on the mean field approximation. In addition, the
proposed model is based on single-band effective mass
approximation of the complex band structure of the ma-
terial. A detailed discussion of the advantages and lim-
itations of the adopted quantum transport model could
be found in [25]. However, the effective mass approxi-
mation is a computationally efficient method compared
to other computationally intensive methods that account
for the complex band structure of the material. The self-
consistent solution of the magnetization dynamics, elec-
tric polarization, and quantum transport requires thou-
sands of evaluations of the quantum transport model.

The paper is organized as follows. Section II is ded-
icated to explaining the difference between MTJ, FTJ,

and MFTJ along with the origin of TER and TMR ef-
fects. Section III is devoted to DFT simulations of the
ME effect at the FM/FE interface. The magnetization
dynamics, ferroelectric dynamics, and quantum trans-
port (NEGF) are illustrated in sections IV, V, and VI,
respectively. Section VII is dedicated to the formulation
of the magnetic exchange coefficient as a function of the
electric polarization based on time-dependent perturba-
tion theory. The simulation procedure is explained in
section VIII. Finally, section IX is assigned to the simu-
lation results followed by conclusions in section X.
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FIG. 1. The layer structure of MTJ, FTJ, and MFTJ.

II. MULTIFERROIC TUNNEL JUNCTIONS

The MFTJ structure combines the FM electrodes of
MTJ together with the FE insulator of FTJ to produce a
four-state device. We start by explaining the TMR effect
in the MTJ along with the TER effect in FTJ before
describing the MFTJ characteristics. Furthermore, the
ME effect at the FM/FE interface is a unique property
of MFTJs that enhances the TER effect, as explained in
detail in this section and in section III.

The TMR effect could be explained in the light of spin
dependent transport illustrated in Fig. 2 [26–28]. In such
FM materials, the lower band of the density of states
(DOS) of the majority and minority spin carriers have
energy shift, as illustrated in Fig. 2 (a). The energy
splitting is dependent on the magnetization direction.
Therefore, in the case of anti-parallel alignment of the
electrode magnetization, the majority spin carriers that
migrate from the left electrode are restricted by the short-
age of matched spin states at the right electrode. Conse-
quently, the overall charge current is reduced in the case
of anti-parallel alignment of the electrode magnetization.
In the case of parallel alignment of the magnetization, the
majority and minority spin carriers migrate from the left
electrode and are absorbed by the matched spin states
that are sufficiently available at the right electrode. Con-
sequently, the overall charge current is not limited by the
availability of the spin states in the case of parallel align-
ment of magnetization. In other words, the MTJ resis-
tance changes according to the magnetization alignment
of the electrodes that control the DOS energy splitting
between the majority and the minority spin carriers. Fi-
nally, the TMR is defined as TMR = RAP−RP

RP
, where

2



NON-EQUILIBRIUM GREEN’S FUNCTION AND FIRST ...

RAP is the resistance of anti-parallel aligned magnetiza-
tion state, and RP is the resistance of parallel aligned
magnetization state [26].
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FIG. 2. The electrostatics of different tunnel junctions. (a)
The electrostatic potential and density of states of MTJ. (b)
The charge and electrostatic potential of FTJ. (c) The elec-
trostatic potential and magnetization dependent density of
states of MFTJ.

The TER effect of FTJ could be explained by the help
of charge screening phenomena in the metal electrode
[15]. The electric polarization of FE insulator induces
bound charges at the metal/FE interface. The bound
charges are partially screened by the free electron gas
in the metal side, as illustrated in Fig. 2 (b). The un-
compensated charges at the interface result in a constant
electric field inside the insulator, and hence linear po-
tential. Moreover, the polarization direction controls the
polarity of the bound charge, and hence the polarity of
the potential drop in the FE insulator (φ1−φ2), where φ1

and φ2 are the potential at the left and right metal/FE
interfaces, respectively. Therefore, the barrier height in-
creases by |φ1 + φ2| in the case of positive electric po-
larization. In contrast, the barrier height is reduced by
|φ1 +φ2| in the case of negative electric polarization. Fi-
nally, the large TER value of FTJ is a natural result of
the exponential dependence of tunneling current on the
barrier height. The asymmetry of the electrodes screen-

ing lengths is an important factor for MFTJs to exhibit
a nonzero TER. It is important to mention that the TER
also depends on the barrier effective thickness, which can
change upon the polarization reversal due to the change
from the insulating to metal phase, and both interface
terminations [29, 30].

The aforementioned qualitative discussion could be
formulated quantitatively, as illustrated in [15]. The
screening charges and potential distribution in the metal
side is described by the Thomas-Fermi formalism:

φ(z) =


σsδ1
ε0εr1

e−
|z|
δ1 z 6 0

− σsδ2
ε0εr2

e−
|z−d|
δ2 z > 0,

(1)

where φ is the electrostatic potential, σs is the surface
charge density of free charges, ε0 is permittivity of free
space, εr1 (εr2) is the permittivity of the first (second)
electrode, and δ1 (δ2) is the screening length of first (sec-
ond) electrode. According to Thomas-Fermi relation, the
charge and the potential of any point in the electrodes
decrease as an exponential function of the distance be-
tween the point and the interface. Moreover, the po-
tential values at the interface are defined as φ1 = σsδ1

ε0εr2

and φ2 = −σsδ2
ε0εr2

. By applying the Gauss’s law at the

metal/FE interface, we get the expression

EFE = (σs−P )
ε0

, (2)

where P is the polarization vector and EFE is the elec-
tric field in the FE layer. The potential drop φ1 − φ2 is
equal to the constant electric field inside the FE insulator
multiplied by tFE as given by

σsδ1
ε0εr1

+ σsδ1
ε0εr2

+ EFEtFE = 0. (3)

Finally, from (2) and (3), the σs that satisfies the conti-
nuity of the potential at the interface is defined as

σs = PtFE
δ1
εr1

+
δ2
εr2

+tFE
. (4)

However, for the limiting case of tFE � δ1
εr1

+ δ2
εr2

, the free
charge density σs is equal to P , and hence the potential
drop is zero which eliminates the TER effect [15]. There-
fore, a mandatory constraint is imposed on the maximum
FE thickness that maintains the TER effect. However,
the stability of the ferroelectricity imposes a lower limit
on the FE thickness. Therefore, the FE layer should have
an optimal thickness that maintains the ferroelectricity
and provides high TER ratio at the same time.

An MFTJ combines the TER effect of FTJ along
with the TMR effect of MTJ to produce a four-state
device as illustrated in Fig. 2 (c). However, it has
been experimentally observed that the LCMO electrode
of LSMO/LCMO/BTO/LSMO MFTJ [11] goes through
phase transition from the FM state to the AFM phase
by the influence of the electric polarization switching. To
understand the effect of the FM to the AFM phase tran-
sition on the TER, let us assume that both electrodes
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have the magnetization in the positive z direction. In
the case of positive electric polarization (high resistance
state), the LCMO left electrode has an AFM configura-
tion. The lower band of the DOS of the spin-up carriers
shifts to higher energy levels. Therefore, the spin-up car-
riers that migrate from the right electrode are restricted
by the shortage of spin-up states at the left electrode.
Thus, the MFTJ high resistance increases, and hence the
TER increases. In case of negative electric polarization
(low resistance state), the LCMO has an FM configura-
tion. The spin-up carriers that migrate from the right
electrode are absorbed by the matched spin states with-
out any restriction. Consequently, the overall TER of the
MFTJ improves. The details and origin of this ME effect
are explained in the following section.

III. THE FIRST PRINCIPLE CALCULATIONS
OF THE FM/FE INTERFACE

Recently, many different forms of magnetoelectric ef-
fects have been observed in the literature such as electric
field manipulated magnetization, electric field induced
magnetic phase transition, and voltage controlled mag-
netic anisotropy [31–33]. In this study, we focus on the
magnetoelectric effect that happens in the interface be-
tween La1−xAxMnO3/BaT iO3, where A is a divalent
cation, i.e., Ca, Ba, and Sr and x is the chemical dop-
ing concentration. LAMO’s phase diagram exhibits a
phase change between the ferromagnetic state and an-
tiferromagnetic state as a function of hole carrier con-
centration x [34]. The transition between the FM and
AFM phases and its dependence on hole concentration
could be explained by the existence of two competing in-
teractions that happen between the adjacent Mn sites in
LAMO: superexchange interaction and double exchange
interaction. In contrast to superexchange interaction
that prefers AFM alignments, the double exchange in-
teraction favors FM alignment [35]. The doping concen-
tration x, modulates the density of electrons in Mn eg
orbitals that mediate the double exchange interaction.
Note, the doping concentration supports one of the in-
teractions over the other, and hence favors one of the
configurations over the other.

The electrostatic doping created by electric polariza-
tion could change the electron concentrations similar to
chemical doping [36]. Since the bound charges induced by
electric polarization of BTO at the interface modulates
the screening charges at the LAMO side, the electric po-
larization could control the magnetization phase transi-
tion similar to chemical doping. The magnetoelectric ef-
fect in LAMO/BTO interface is illustrated in Fig. 3. The
second Mn site in LAMO exhibits AFM (FM ) alignment
in case of positive (negative) polarization state. How-
ever, the chemical doping concentration has to be fixed
at the magnetic phase transition point (x = 0.5) between
the FM and the AFM phases to facilitate the magnetic
phase transition by electrostatic doping [37].
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FIG. 3. The atomic structure of LAMO/BTO interface that
is used for supercell simulation. The structure consists of 4.5
unit cells of LAMO and 5.5 unit cells of BTO. The depen-
dence of the magnetic configuration of LAMO on the electric
polarization of BTO is illustrated. At the left interface, the
second Mn site in LAMO exhibits AFM and FM alignment
in case of positive and negative electric polarization of BTO,
respectively.

A. Simulation Procedure and Parameters

We applied DFT method to extract the electrostatic
potential profile of LAMO/BTO and Co/BTO struc-
tures. The screening lengths of LAMO and Co electrodes
are estimated from the electrostatic potential. The gen-
eralized gradient approximation (GGA) method [38] im-
plemented in Quantum-ESPRESSO package [39] is used
to perform all of the DFT calculations in this study. The
Vanderbilts ultrasoft pseudopotential [40] is used along
with virtual crystal approximation (VCA) [41] to handle
the La-A doping. The VCA method is used by Burton et
al. [10] to perform DFT calculations for typical structure
with acceptable accuracy. The energy cutoff of 400 eV
and Monkhorst-Pack grid of 12x12x1 of k-points are used
for all the DFT simulations in this study.

The supercell used to simulate LAMO/BTO interface
consists of 4.5 unit cells of LAMO and 5.5 unit cells of
BTO, as illustrated in Fig. 3. The structure is stacked
along (001) direction of the perovskite cell. The stack-
ing sequence at LAMO/BTO interface is AO−BO2 [10].
The supercell illustrated in Fig. 4 is utilized to model
the Co/BTO interface. The structure consists of 4.5 unit
cells of Co and 5.5 unit cells BTO along (001) direc-
tion and is rotated 45◦ in the x − y plane. The most
stable interface has TiO2 termination as described in
[42]. We did not include any vacuum regions in these
structures. As both structures are epitaxial growth on a
SrTiO3 substrate that has a bulk in-plane lattice constant
of a = 3.94Å, the lattice constant in the lateral direction
is constrained to a = 3.94Å for all the layers of LAMO,
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FIG. 4. The atomic structure of Co/BTO interface that is
used for supercell simulation. The structure consists of 5.5
unit cells of BTO and 4.5 unit cells of Co. The Co magne-
tization exhibits constant magnetization independent of the
electric polarization of BTO.

Co and BTO. The lateral strain results in tetragonal dis-
tortion in the longitudinal direction (z direction). To es-
timate the tetragonal distortion, the DFT calculation of
a single LAMO unit cell is repeated with different longi-
tudinal lattice constants c. The lattice constant that has
the minimum total energy is selected for further supercell
simulations. The longitudinal lattice constant of LAMO
that has minimum total energy is c/a = 0.99. Similarly,
the longitudinal lattice constant of BTO and Co are es-
timated to be c/a = 1.05 and c/a = 0.83, respectively.
Next, both supercells of LAMO/BTO and Co/BTO with
the in-plane constraint and the corresponding tetragonal
distortion are relaxed until the total force on the atoms is
less than 10−3 Ryd/au. As the total force on the atoms
reaches the limit of 10−3 Ryd/au, the atoms reach their
equilibrium positions. Further optimization beyond this
limit results in a negligible change in the positions of the
atoms.
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FIG. 5. The atomistic and macroscopic potential of
LAMO/BTO structure.
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FIG. 6. The atomistic and macroscopic potential of Co/BTO
structure.

B. DFT Simulation Results

The magnetic configurations that minimize the total
energy of the LAMO/BTO interface are illustrated in
Fig. 3. The second Mn site in LAMO (left interface)
exhibits AFM (FM ) alignment in case of positive (neg-
ative) polarization state. The magnetic configuration of
LAMO (left interface), that minimize the total energy, is
AFM in the case of positive polarization and FM in the
case of negative polarization [10]. The DFT simulation
results for the magnetization of Mn sites are 2.57, -2.66,
2.76, 2.87, and 3.02 µB . In case of positive polariza-
tion state, the magnitude of the magnetization of the Mn
atoms is lower at left interface and increases for the atoms
away from that left interface [10]. In contrast, the mag-
netic configuration of the Co/BTO interface, that mini-
mizes the total energy, is FM configuration independent
of electric polarization of BTO. The Co/BTO interface
exhibits a constant magnetic configuration independent
of the electric polarization of BTO [42], as illustrated in
Fig. 4. The DFT simulation result for the magnetization
of bulk Co is 1.74 µB .

The atomistic electrostatic potential of LAMO/BTO
and Co/BTO are illustrated in Fig. 5 and Fig. 6, re-
spectively. The macroscopic potential is estimated from
the atomistic potential by a moving window integral [41]
and fitted by a spline function. Finally, the screening
lengths δ/ε0εr of La0.7A0.3MO, L0.5A0.5MO, and Co are
estimated from electrostatic potential to be 1.06, 1.05,
and 1.14 m2/F , respectively. The estimated screening
lengths are used in the spin dependent transport calcu-
lations, as explained in section VI.

IV. THE MAGNETIZATION DYNAMICS

The Landau-Lifshitz-Gilbert (LLG) equation formu-
lates the precessional and damped motion of magneti-
zation induced by the magnetic field and spin current
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[43, 44]. The single domain LLG equation is used along
with NEGF self-consistently in many studies in litera-
ture. The single domain solution of LLG equation is not
appropriate for LAMO Because the LAMO material has
atoms in the FM order and other atoms in the AFM order
at the same time. Similarly, the solution of the magne-
tization as a continuum fails as well, because it requires
a second order derivative of the magnetization with re-
spect to space. The second order derivative appears in
the definition of the exchange interaction effective field

Hexch = 2A
µ0MS

∂2m
∂x2 , where A is a constant. However,

the abrupt change of the magnetization at that atomistic
scale makes the derivative with respect to space is not
possible. The usual solution in case of AFM material is
to replace the magnetization by the total magnetization
l = mj+1 + mj and the AFM Neel field n = mj+1 −mj

that are continuous variables in case of AFM material.
However, LAMO has the FM and AFM orders that exist
at the same time. The Neel field will be discontinuous at
the area between the FM and the AFM phase.

We adopted a discrete multi-domain version of the
LLG equation. The main difference between the con-
tinuum and discrete LLG equation is the definition of
the exchange field. The definition of the exchange field
in the discrete LLG equation does not require differen-
tiation with respect to spatial coordinates. The discrete
multi-domain LLG equation is similar to the atomistic
LLG equation [45]. However, the discrete multi-domain
LLG equation models the lateral direction as a single
domain to reduce the computational effort. The lateral
single domain assumption does not affect the accuracy
of the method because the cross-section area of the junc-
tion is large enough to neglect the effect of edges. The
discrete domains have a thickness equal to a single unit
cell in the normal direction.

A. The LLG Equation

The LLG equation [45] can be expressed as

∂mi

∂τ
= −mi ×Heff,i − αmi ×mi ×Heff,i +

STTi, (5)

where m is a unit vector in direction of magnetization, τ

is defined as τ = |γ|
(1+α2)dt, t is the time, Heff is the effec-

tive magnetic field, α is the Gilbert damping constant, γ
is the gyromagnetic ratio,i is index over the atoms along
the x axis, and STT is the spin transfer torque. The
first term of (5) is the precessional motion of the magne-
tization due to the effective magnetic field. The second
term models the damped part of magnetization oscilla-
tion. The third term is the spin torque exerted by the
spin current on the magnetization.

LAMO is modeled as a 1D chain of discrete domains
with a magnetization variable mi assigned to each do-
main. Each mesh cell has a length equal to the lattice

constant and cross section area equals the total cross-
section area of the MFTJ. In other words, we assumed
that the MFTJ cross-section area is large enough. There-
fore, we can neglect the effect of the boundary cell on the
magnetization dynamics.

B. The Effective Magnetic Field

The effective magnetic field is given by

Heff,i = Hext +Htherm +Hanis +Hexch,i, (6)

where Hext is the external magnetic field, Hexch,i is
the exchange interaction effective field, Htherm models
the random thermal variations, and Hanis is the mag-
netic anisotropy. The magnetic anisotropy is defined as
Hanis = 2KU

Ms
, where KU is the anisotropy constant, and

MS is the saturation magnetization.
The exchange interaction field is defined as Hexch,i =
1

µ0MS

∑N
j J
′
exch,i,jmj [45], where J ′exch,i,j is the material

magnetic exchange coefficient that is averaged by the FM
to AFM transition probability as explained in VII, and
N is the number of nearest neighbors.

C. The Thermal Fluctuations

The random variation in the magnetization due to
thermal excitations is modeled by the effective magnetic

field Htherm defined as Htherm = ζ
√

2αKT
|γ|MSVcelldt

, where

K is Boltzmanns constant, T is the temperature, Vcell is
the mesh cell volume that equals to the lattice constant
multiplied by the total cross-section area of the MFTJ, dt
is the numerical time step, and ζ is a vector with random
components which are selected from standard normal dis-
tribution [46].

The thermal fluctuations term makes the LLG equa-
tion stochastic differential equation (SDE). The integra-
tion of the thermal fluctuations results in Wiener stochas-
tic process [47, 48] that is not differentiable with respect
to time. Therefore, the Stieltjes integral is used instead
of the Riemann integral to integrate the thermal term
[47, 48]. The Stieltjes integral of the thermal term is
defined in terms of the differential increments of Wiener
process that has a variance proportional to the integra-
tion time step. Therefore, time-step dt appears in the
denominator of the thermal field. The details of the in-
tegration of the LLG equation as a stochastic differential
equation is explained in [45, 47, 49].

D. The spin transfer torque

The STT term is defined as STT = ~
2µ0Msa

m × (m ×
Jspin) [50], where a is lattice constant, and Jspin is the
spin current that is calculated from the quantum trans-
port, as explained in VI. The definition of STT term
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adopted in this paper is preferred over the Slonczewski
STT term in the context of the quantum transport. The
Slonczewski STT term has parameters that depend on
the material and geometry of the junction to account for
the junction efficiency of producing spin current. These
effects are already included in the quantum transport.
Therefore, we avoided using the Slonczewski STT term
in favour of the quantum transport formulation of the
spin current.

V. THE FERROELECTRIC DYNAMICS

The Landau-Devonshire (LD) expression of the free
energy of FE material that describes the dependence of
free energy of the FE material on the electric polarization
and the electric field is defined as

F =α1P
2 + α11P

4 + α111P
6 − VaP

tFE
, (7)

where α1, α11, and α111 are the free-energy expansion co-
efficients for bulk material [51, 52]. The polarization of
the material could be determined by minimizing the free
energy (F) with respect to the electric polarization in (7).

However, the LD expansion describes the static relation
between electric field and polarization. The dynamic be-
havior of FE and its dependence on time is described by
Landau-Khalatnikov (LK) equation:

λ
∂P

∂t
= −∂F

∂P
, (8)

where λ is the viscosity coefficient that represents the re-
sistance of FE polarization motion toward the free energy
minimum state.

VI. QUANTUM TRANSPORT:
NON-EQUILIBRIUM GREEN’S FUNCTION

MODELING OF MFTJ

The NEGF models the magnetization dependent tun-
neling current by splitting the device into two indepen-
dent channels for the spin-up and spin-down carriers.
The schematic diagram in Fig. 7 shows the device mesh-
ing and the magnetization dependent DOS. The spin-
based channel Hamiltonian Hch and the left (right) con-
tact Hamiltonian HL(R) [50, 53] of the MFTJ are defined
as

HL(R) =



(
αL(R) ± qVa

2

)
I ±

(
I − σ.ML(R)(i)

) ∆L(R)

2 , i = j

−tL(R)I, j = i± 1

0, o.w.

(9)

Hch =


(αch + UB)I + (qVa + φBI + φ1 − φ2)(N+1−2i

2N+2 )I, i = j

−tchI, j = i± 1

0, o.w.

(10)

where a is the length of the mesh element, N is the num-
ber of the mesh elements, q is the electron charge, Va is
the applied voltage, φBI is the built-in potential, I is the
identity matrix, i is the horizontal index of the Hamilto-
nian matrix, j is the vertical index of the Hamiltonian ma-
trix, σ are the Pauli spin matrices, ∆L(R) is the splitting
energy of the left (right) contact as illustrated in Fig. 7,
respectively, and ML(R) is the normalized magnetization
of the left (right) contact. The Hamiltonian tight bind-

ing parameters are defined as αch(Kt) = 2tch +
~2K2

t

2m∗ch
,

αL(R)(Kt) = 2tL(R) +
~2K2

t

2m∗
L(R)

, tch = ~/(2m∗cha2), and

tL(R) = ~/(2m∗L(R)a
2), whereKt is the momentum vector

in the transverse direction, m∗L(R) is the electron effective

mass of left (right) electrodes, and m∗ch is the electron ef-
fective mass of the channel.

The Hamiltonian HL(R) dependence on the
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FIG. 7. The MFTJ structure with the spin based NEGF
meshing projected. The Hamiltonian definitions along with
magnetization directions and DOS.
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magnetization direction is modeled by the term(
I − σ.ML(R)(i)

) ∆L(R)

2 . The term (qVa + φBI + φ1 −
φ2)(N+1−2i

2N+2 )I in Hch linearly interpolates the applied
field and built-in potential Va + φBI + φ1 − φ2 over
the channel. UB is the barrier height relative to the
conduction band. The term φ1−φ2, that is estimated by
(1-4), represents the dependence of the potential on the
electric polarization of the FE insulator. The screening
lengths estimated by the DFT method and the electric
polarization estimated by LK equation are plugged in
Thomas-Fermi relation (1) to determine |φ1 − φ2|. The
term |φ1 − φ2| is necessary for evaluating the NEGF
Hamiltonian (9).

The Green’s function G is defined as

G = [EI −H − ΣL − ΣR]
−1
, (11)

where H is the full device Hamiltonian, ΣL(R) is the left
(right) contact self-energy that is defined as

ΣL =



−tLeiK
↑
La 0 0 . . 0

0 −tLeiK
↓
La 0 . . .

0 0 . . . .
. . . . . .
. . . . . .
0 . . . . 0


, (12)

ΣR =



0 . . . . 0
. . . . . .
. . . . . .
. . . . 0 .

. . . 0 −tReiK
↑
Ra 0

0 . . . 0 −tReiK
↓
Ra

 , (13)

where K↑L(R) is the left (right) contact longitudinal wave

vector of spin-up electron given by

K↑L(R) = cos−1

1−
E± qVa2 −

h2K2
t

2m∗
L(R)

+
∆L(R)

2

2tL(R)

 , (14)

and K↓L(R) is the left (right) contact longitudinal wave

vector of spin-down electron given by

K↓L(R) = cos−1

1−
E± qVa2 −

(
h2K2

t
2m∗

L(R)

)
−

∆L(R)
2

2tL(R)

 .(15)

Finally, the Landau’s current formula is defined as

J =
−e

2π2h

∫ ∞
−∞

∫ ∞
−∞

dkxdky

∫
dEt (fL − fR) , (16)

where t is the transmission coefficient of the channel given
by the expression

t = Trace
(
ΓLGΓRG

†) , (17)

and ΓL(R) is the left (right) broadening function defined
by

ΓL(R) = i
(

ΣL(R) − Σ†L(R)

)
. (18)

The Fermi-Dirac distribution fL(R) is defined as

fL(R) =
1

e(E−µL(R))/KBT + 1
. (19)

The spin current is defined as [53]

Jspin =
i

2π2h

∫
dkxdky

∫
Trace[σ.(HGn − ...

GnH)j,j ]dE, (20)

where Gn defined as

Gn = G(ΓLfL + ΓRfR)G†. (21)

VII. TIME-DEPENDENT FORMULATION OF
EXCHANGE INTERACTION COEFFICIENT

BASED ON TIME-DEPENDENT
PERTURBATION THEORY

In the following discussion, we formulate a time-
dependent formulation of the evolution from the FM to
AFM phase induced by electric polarization. The sign
of exchange interaction constant Jexch,i,j is responsible
for the magnetic order. The FM to AFM phase tran-
sition is controlled by the electrical polarization of the
BTO. The change in the potential results from polariza-
tion switching can be considered as a small perturbation.
Therefore we can use the time-dependent perturbation
theory to model the time evolution of the exchange coef-
ficient due to the perturbation potential [54]. The time-
dependent perturbation potential can be formulated from
the Thomas-Fermi relation as

V (z, t) =
P (Va, t)tFE

δ1
εr1

+ δ2
εr2

+ tFE

δ1
ε0εr1

e−
|z|
δ1 − V0, (22)

V0 =
P (Va, t = 0)tFE
δ1
εr1

+ δ2
εr2

+ tFE

δ1
ε0εr1

e−
|z|
δ1 , (23)

where V0 is the initial value of the potential. Assum-
ing that the FM to AFM phase transition results from
the transition from wave function ψb to ψa. The time
dependent wave function can be written as Ψ(z, t) =

a(t)ψa(z)e−i
Ea
~ t + b(t)ψb(z)e

−iEb~ t. The time evolution
of a(t) can be formulated as [54]

a(t) = − i
~

tFE
δ1
εr1

+ δ2
εr2

+ tFE

δ1
ε0εr1

〈
ψa|e−

|z|
δ1 |ψb

〉
× ...∫ t

0

(P (t)− P (t = 0))e−iωtdt, (24)

8
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where ω = Eb−Ea
~ , Ea is the energy of ψa, and Eb is the

energy of ψb. finally, the transition probability from state

ψa to state ψb is Pb→a = |a(t)|2. The term
〈
ψa|e−

|z|
δ1 |ψb

〉
can be determined from the normalization of the prob-
ability density. However, the polarization as function of
time P(t) is not known analytically. Therefore the inte-
gration (24) has to be numerically evaluated. The time
evolution of the exchange interaction coefficient can be
formulated as

J ′exch,i,j = |Jexch,i,j |
(
1− |a(t)|2

)
− ...

|Jexch,i,j ||a(t)|2, (25)

where Jexch,i,j is the material-dependent magnetic ex-
change constant.

VIII. SIMULATION PROCEDURE AND
PARAMETERS SELECTION

In the previous discussion, we explained the quantum
transport model, the magnetization LLG equation, and
the LK equation, separately. In the following discussion,
we explain the methodology we used to solve these mod-
els together to get the MFTJ characteristics. The steady-
state characteristic of the MFTJ is calculated by the fol-
lowing procedure. Given the initial polarization P and
the external applied voltage Va, the term dF

dP is calculated

by differentiating the LD equation analytically. The dF
dP

obtained in the previous step is substituted in the LK
equation to get dP

dt . Then the forward difference formula

is used to update the polarization P (t+dt) = P (t)+ dP
dt dt.

The previous steps are repeated iteratively until the elec-
tric polarization reaches its steady-state value. After the
steady-state electric polarization is obtained, the elec-
trostatic potential is calculated from (1) and (4). Next
the current is calculated from the quantum transport
model. However, the solution of the transport model
is dependent on the magnetization directions of the elec-
trodes which are calculated by the LLG equation. At
the same time, the solution of the LLG equation depends
on the current obtained from the NEGF equation. This
raises the need for a self-consistent solution of the quan-
tum transport and the LLG equation iteratively until the
steady state current and magnetization are reached. The
LLG equation is solved using Huen’s method [45, 46].
The existence of the thermal fluctuation in the LLG equa-
tion makes it a stochastic differential equation (SDE).
The integration of the SDE is explained in [45–47].

The time-dependent response of the MFTJ is calcu-
lated using the following procedure. Step 1: the term
dF
dP is calculated from the LD equation, given the ini-
tial polarization P and the external applied voltage Va.
The dF

dP obtained in the previous step is substituted in

the LK equation to get dP
dt . Then the forward difference

formula is used to update the polarization as following
P (t + dt) = P (t) + dP

dt dt. Step 2: the electrostatic po-
tential is calculated from (1) and (4). Step 3: The spin

current is calculated from the quantum transport model.
The magnetization obtained from the solution of LLG
and the electrostatic potential obtained in the previous
step are used to solve the quantum transport. Step 4:
the exchange coefficient J ′exch,i,j is calculated from (24)-

(25) using the electric polarization at time t obtained
from the LK equation. Step 5: the LLG equation is
solved to get m(t + dt) using the spin current obtained
from the quantum transport. Finally, the steps (Step 1)
to (Step 5) are repeated iteratively at each time step.

The transport parameters are usually estimated by fit-
ting the parameters on the experimental I-V character-
istic [29, 50, 55]. However, the estimation process is not
straight forward and more than one solution could pro-
duce the same transport properties. In this study, we
try to go beyond that and predict some of the parame-
ters from DFT calculations to reduce the complexity of
the estimation process. On the other hand, some trans-
port processes cannot be included in the DFT calcula-
tion. Note, the DFT by definition describes the system
at the ground minimum energy state. In contrast, the
quantum transport model exhibits nonequilibrium con-
ditions by definition. Therefore, it is better to estimate
certain parameters from experimental data to account for
these limitations of DFT. Because of the aforementioned
discussion, we adopted a combination of estimating the
parameters directly from experimental data and estimat-
ing the parameters from DFT to improve the quality of
parameter estimation.

The simulation parameters used in this study are se-
lected according to the following criterion. The satura-
tion magnetization, magnetic exchange constant are esti-
mated from DFT calculations. The magnetic anisotropy
is selected from the experimental study [11]. The mag-
netic damping factor is set within the acceptable range
of similar structure. The screening lengths and the split-
ting energy are estimated by the DFT calculation. The
effective mass are tuned within the acceptable range in
literature to produce the experimental results. This is
a very common procedure for selecting effective mass
[29, 50, 53, 55].

The Landau-Devonshire equation parameters α1, α11,
and α111 are calculated from the critical voltage at which
the electric polarization is switched and the values of the
polarization at zero voltage. The values of the critical
voltage and polarization at zero voltage are known from
the experimental results in [11]. The two values of the
polarization at zero voltage are local minimum points of
the free energy. The free energy has a maximum point at
zero polarization. The maximum and minimum points
are located at the zeros of the first derivative of the free
energy and impose constraints on the sign of the second
derivative of the free energy. In addition, the coefficient
of the highest order term in the free energy has to be posi-
tive because the free energy has to reach positive infinity
as the polarization reaches ±∞. We used a numerical
grid search to solve for α1, α11, and α111 that considers
the aforementioned constraints. The viscosity coefficient

9
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is estimated by a grid search to get 5ns switching time.
Finally, the energy Ea and Eb in (24) are estimated from
DFT calculations.

IX. SIMULATION RESULTS AND ANALYSIS

A. Comparison with Experimental MFTJ
Characteristics

The main advantage of spin-based NEGF is the
ability to model the four resistance states of the
MFTJ. The LSMO/LCMO/BTO/LSMO MFTJ in [11]
is the most appropriate device to demonstrate these
physical characteristics. The simulation results of
LSMO/LCMO/BTO/LSMO are illustrated in Fig. 8.
The proposed framework can capture the majority of
the MFTJ I-V characteristic for positive (low resis-
tance) and negative (high resistance) polarization states,
as illustrated in Fig. 8. The simulation results for
LSMO/BTO/Co FTJ are in agreement with the experi-
mental results [5], as illustrated in Fig. 9. The simulation
parameters of the LK and the LLG equations are α1 =
−1.0654 × 109 m/F , α11 = −6.0878 × 109 m5/(C2.F ),
α111 = 5.0499 × 1010 m9/(C4.F ), dt = 1 × 10−14 s,
KU = 7.8 × 104 erg/cm3, α = 0.05, λ = 1.8 s/F ,
jexch,i,j = 4.5× 105 erg/cm3, |Ea − Eb| = 0.029 eV and
Ms = 414.15 emu/cm3.
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FIG. 8. The current of LSMO/LCMO/BTO/LSMO MFTJ
is illustrated at different applied bias voltages Va for the four
MFTJ states. The experimental data for the same device is
demonstrated in [11]. The simulation parameters are m∗

ch =
0.8m0, m∗

L = 0.9m0, m∗
R = 0.9m0, m0 is the free electron

mass, µL = 3 eV , µR = 3 eV ∆L = 2.4, ∆R = 2.4 eV ,
UB = 3.1 eV , φBI = 1 eV tFE = 2 nm, T = 80K [11], and
the MFTJ radius is 8.5 µm. The screening lengths of the
electrodes used in NEGF simulation are estimated by DFT,
as illustrated in section III.

As explained in section III, the LCMO layer goes
through a phase transition from the FM to the AFM
alignment by the influence of the electric polarization
switching. The phase transition is confirmed by the fol-
lowing experimental procedure [11]. Starting by applying
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FIG. 9. The current of LSMO/BTO/Co FTJ is illustrated
at different applied bias voltages Va. The experimental data
for the same device is demonstrated in [5]. The simulation
parameters are m∗

ch = 0.8m0, m∗
L = 0.9m0, m∗

R = 2m0,
µL = 3 eV , µR = 2.9 eV , ∆L = 2.4, ∆R = 1.8 eV , UB =
3.16 eV , φBI = 1.2 eV tFE = 3 nm, m0 is the free electron
mass, T = 300K [23], and the FTJ radius is 350 nm. The
screening lengths of the electrodes used in NEGF simulation
are estimated by DFT, as illustrated in section III.

an external magnetic field to the MFTJ, the change in
the resistance of the MFTJ due to the increase of the ex-
ternal magnetic field is measured. In the case of positive
polarization, the device resistance diminishes due to the
increase of the external magnetic field. In contrast, the
negative polarization state exhibits a constant resistance
independent of the magnetic field. This behavior of the
MFTJ resistance is explained by the influence of the ex-
ternal magnetic field on the AFM aligned Mn site and
the ability of the external magnetic field to switch the
AFM aligned Mn site back to FM alignment [11]. Fig.
10 illustrates the effect of the external magnetic field on
the MFTJ resistance that is produced by the quantum
transport and magnetization dynamics. The simulation
mimics the same physical device behavior because the
FM electrode Hamiltonian has a magnetization depen-
dent term (10).

B. Analysis of Various MFTJ Parameters

The TER is estimated at different values of the split-
ting energy, as illustrated in Fig. 11. The TER depen-
dence on splitting energy originates from the ME effect
that happens in the LCMO/BTO interface. Moreover,
the TMR→ is consistently lower than TMR← as illus-
trated in Fig. 8. This asymmetric behavior is due to
the antiferromagnetic alignment of the Mn sites of the
LCMO electrode in the case of P→ state that reduces
the TMR effect at that state. In contrast, the LCMO ex-
hibits FM alignment in the case of P← state, and hence
the TMR← is higher compared to TMR→.

The asymmetry in the electrodes screening lengths is
necessary for an FTJ to exhibit a TER effect, as ex-
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FIG. 10. The resistance of LSMO/LCMO/BTO/LSMO
MFTJ is illustrated under the effect of external magnetic field.
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FIG. 11. The TER of the MFTJ as a function of splitting
energy ∆L.

plained in section II. However, the NEGF transport sim-
ulations show a significant TER ratio for a hypothetical
device that has electrodes of identical screening lengths.
Fig. 12 shows the TER ratio as a function of the built-
in potential φBI along with the electrostatic potential of
the positive and negative polarization states at different
values of φBI . Although the electrodes screening lengths
are identical, the TER ratio increases significantly due to
the increase of the built-in potential. The origin of the
TER effect in the case of symmetric electrodes screen-
ing lengths could be explained by observing the potential
profile of the positive and negative polarization states. In
the case of φBI = 0, the potential profiles of P→ and P←
are symmetric, and hence the TER ratio is zero as ex-
pected. However, as the built-in potential φBI increases,
the potential profile of P→ and P← start to deviate from
the symmetric shapes to asymmetric potential profiles
that have different average barrier height, as illustrated
in the inset of Fig. 12. In other words, the built-in poten-
tial introduces another source of asymmetry that allows
the modulation of the barrier average height by the elec-
tric polarization.

The exponential dependence of the TER on the left and
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FIG. 12. The TER as a function of the built-in potential φBI .

right electrode screening lengths ratio is demonstrated in
Fig. 13. In order to understand the TER behavior as a
function of δ1

δ2 , we have reordered the TER definition as

TER = j←
j→
−1, where j→ and j← are the current at pos-

itive (high resistance) and negative (low resistance) po-
larization states, respectively. The strength of the barrier
height modulation, induced by polarization switching, is
enhanced by increasing the difference between the screen-
ing lengths of the electrodes. Therefore, the current j→
increases and the current j← decreases, as illustrated in
Fig. 13. Consequently, the TER improves exponentially
as the ratio δ1

δ2 reaches zero. The same conclusion can
be quantitatively derived from the Thomas-Fermi rela-
tion (1) that formulates the potential at the interface as
φ1 = σsδ1

ε0εr1
. Therefore, the potential φ1 decreases as δ1

shrinks, and hence the the potential difference ||φ1|−|φ2||
rises along with the ratio j←

j→
. As a result of j←j→ exponen-

tial increase, the TER exponentially improves.
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FIG. 13. The TER of the MFTJ as a function of the screening
lengths ratio δ1/δ2.

Interestingly, the TER shows exponential dependence
on the ratio δ1

δ2
, but weaker dependence on the barrier

height UB . The rationale behind the difference in the
dependence of TER on δ1

δ2
and UB is explained in the

following comparative analysis. The decay of the ratio
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FIG. 14. The current and TER of the MFTJ as a function of
barrier height UB .

δ1/δ2 results in increasing j→ and decreasing j← that
exponentially enhance the TER. In contrast, the increase
in the barrier height UB reduces both j→ and j← but with
different rates. Therefore, the TER changes with a weak
rate because it is proportional to j←

j→
, as illustrated in Fig.

14. However, the TER curve looks approximately linear
because of the narrow range of UB along with the weak
exponential dependence of the TER on UB . The MFTJ
high and low resistances is exponentially augmented as
UB elevates, as observed from the currents j→ and j← in
Fig. 14. The barrier height is dependent on the insulator
and electrodes work functions. Therefore, the electrodes
work functions together with the screening lengths have a
strong influence on the resistance and the TER of MFTJ,
respectively.

C. MFTJ Dynamic Characteristics

The time-dependent response of the MFTJ switching
is illustrated in Fig. 15. The MFTJ dynamic response is
calculated according to the procedure explained in sec-
tion VIII. The electric polarization takes around 5ns to
switch from from negative to positive value and satu-
rate. The transition probability elevates from zero to
one and saturates following the electric polarization, as
illustrated in Fig. 15. The transition probability of the
FM phase to the AFM phase is calculated from (24) that
is based on the time-dependent perturbation theory. The
exchange coupling coefficient follows the transition prob-
ability according to (25). Therefore, the exchange coef-
ficient change from a positive value (FM alignment) to
a negative value (AFM alignment). The magnetization
of the second Mn atom switches from positive to nega-
tive magnetization following a magnetic precession mo-
tion because of the change in the exchange coupling. The
precession motion of the magnetization causes the oscil-
lation of the MFTJ current, as illustrated in Fig. 16.

Interestingly, the electric current decreases signifi-
cantly after 4ns from the start of the switching process.
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FIG. 16. The current of the MFTJ as a function of time.

The large variations of the current are due to the electric
polarization switching. In contrast, the change in mag-
netic configuration lags the electric polarization switch-
ing, as illustrated in Fig. 15 and Fig. 16. During the
switching process, the electric polarization changes from
negative to positive direction passing by P = 0. The elec-
trostatic potential is modulated by the electric polariza-
tion as described by Thomas-fermi relation. The current
reaches its minimum value because the tunneling current
changes from Nordheim tunneling to direct tunneling at
that point. The current changes back to Nordheim tun-
neling after the minimum point. Therefore, the current
starts to increase after the minimum current point. Note,
non-ideal contacts are assumed at high switching voltage
to allow a constant voltage drop at each contact of 0.2V
during quantum transport.

In contrast, the oscillations that start after the cur-
rent minimum point are due to the precession motion of
the Mn atoms. The precession motion of the Mn atoms
is derived by the magnetic exchange torque of neighbor
atoms. Due to the time-dependent perturbation poten-
tial caused by electric polarization switching, the proba-
bility of magnetization switching to AFM alignment in-
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creases from zero to one. The magnetization switching
lags the switching probability by hundreds of picosec-
onds. The reason behind the delay in the magnetization
switching is that the magnetization and the effective ex-
change field have almost an angle of π at the initial po-
sition. Therefore, the magnetization motion under the
effect of magnetic torque is slow at the beginning. The
thermal fluctuations could assist the switching process
at the slow-starting part of the switching process. How-
ever, the thermal fluctuations are small compared to the
magnetic anisotropy due to the large area of the MFTJ.

X. CONCLUSION

In this study, we propose a modeling and simulation
framework that captures the behavior of MFTJ as a four-
state device. Furthermore, the DFT method is used to
estimate the screening length of the electrodes that have
a strong influence on the TER. The estimated screening
lengths are used in the quantum transport calculations
to mimic the realistic device behavior at different bias
voltages. The TER and TMR estimated by the proposed
framework is compared with the experimental results of
LSMO/LCMO/BTO/LSMO [11]. The quantum trans-
port and magnetization dynamics could show the depen-
dence of the device resistance on the external applied
magnetic field. The dependence of the MFTJ resistance
on the external magnetic field is in agreement with the
experimental results in [11] that confirms the transition
from the FM to the AFM phase in the LCMO electrode.

Our analysis illustrates that not only the TMR but
also the TER of the MFTJ depends on splitting en-
ergy because of the magnetoelectric effect at the interface
that originates from the LCMO electrode phase transi-
tion from the FM to the AFM phase. On the other hand,
the contrast between the weak and strong exponential de-
pendence of the TER on the barrier height and electrodes

screening length ratio, respectively is analyzed. The bar-
rier height that is dependent on the electrodes and in-
sulator work functions, could increase the MFTJ high
and low resistance. Consequently, the power and speed
of the MFTJ sensing could be enhanced by choosing the
insulator and electrodes that have the appropriate work
functions. However, the ratio of the electrodes screening
length δ1/δ2 could exponentially enhance the TER ra-
tio. Finally, our analysis reveals that the TER effect is
improved by the asymmetry exhibited by the built-in po-
tential that results in average barrier height modulation
by electric polarization.

Based on the time-dependent perturbation theory, we
could derive a mathematical formulation that relates the
magnetic exchange interaction coefficient to the time evo-
lution of electric polarization (24)-(25). This formula-
tion is an important step toward a consistent model of
MFTJs. The formulation emphasizes that the magneti-
zation switching from FM to AFM alignment induced
by polarization reversal follows a precessional motion.
The transient response of the MFTJ exhibits a transi-
tion from Nordheim tunneling to direct tunneling and
back to Nordheim tunneling current during the polar-
ization switching. The transient response of the MFTJ
demonstrates a set of oscillations due to the magnetic
precessional motion. Although the switching from the
FM to AFM alignment is induced by the electric polar-
ization switching, the thermal magnetic fluctuations still
assist the magnetization motion especially at the start of
the switching.
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