
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonreciprocal Wave Propagation in a Continuum-Based
Metamaterial with Space-Time Modulated Resonators

Yangyang Chen, Xiaopeng Li, Hussein Nassar, Andrew N. Norris, Chiara Daraio, and
Guoliang Huang

Phys. Rev. Applied 11, 064052 — Published 21 June 2019
DOI: 10.1103/PhysRevApplied.11.064052

http://dx.doi.org/10.1103/PhysRevApplied.11.064052


 

1 
 

Demonstration of non-reciprocal wave propagation in a continuum-based 

metamaterial with space-time modulated resonators 

Yangyang Chen1, Xiaopeng Li1, Hussein Nassar1, Andrew N. Norris2, Chiara Daraio3 and 

Guoliang Huang1,* 

1Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 

65211, USA 

2Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA 

3Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, 

USA 

E-mail: huangg@missouri.edu 

 

Breaking reciprocity with spatiotemporal modulation provides an opportunity to design 

unprecedented optical, acoustic and mechanical waveguides. A main challenge is to physically 

realize continuum-based metamaterials whose properties can be rapidly tuned in both space and 

time at the length and time scales of the propagated waves. Here, we design a tunable elastic 

metamaterial by embedding in a beam a set of permanent magnets, and placing oscillating 

electrical coils coaxially adjacent to each magnet. By programming in space and time the AC 

input of the coils, the magnet-coil effective coupling stiffness is modulated along with the 

resonance frequency. Distinctly non-reciprocal flexural wave propagation is then experimentally 

observed. In addition, robust tunability of unidirectional bandgaps and wave energy bias are 

quantitatively analyzed by applying different modulation current amplitudes, material damping 

coefficients and modulation frequencies. Both simplified analytical and FEM-based numerical 

models of the modulated metamaterial are suggested and analyzed in support of the experimental 
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work. Specifically, unidirectional frequency conversions and band gaps due to the second-order 

mode interactions are discussed for the first time when the large modulation amplitude is 

implemented. The suggested prototype sheds light on non-reciprocal waveguiding, which could 

be applied in advanced wave diodes, phononic logic, energy localization, trapping and harvesting. 

I. INTRODUCTION 

The fundamental principle of reciprocity, requiring that wave propagation between two points be 

symmetric when source and receiver are interchanged, is a corner stone of several wave 

processing techniques [1,2]. Recently, breaking reciprocity has been recognized as a mean to 

design novel wave manipulation devices [3-7]. These include diodes, circulators and topological 

insulators that can be applied to advanced vibration isolation, signal processing, phononic logic, 

acoustic communication and energy localization, trapping and harvesting devices [3,4,8-12]. One 

way to achieve non-reciprocity is to leverage harmonic generation phenomena taking place in 

nonlinear materials, driven by a sufficiently large signal [6,10,13]. Another way is to introduce 

an angular momentum bias, disobeying time-reversal symmetry as in media comprising 

gyroscopes or circulating fluids [5,11]. A third solution to achieve non-reciprocity is the use of 

dynamic materials with properties that are inhomogeneous in space and changing in time [7,14-

24]. Theoretical studies showed that such space-time modulations of the materials’ constitutive 

properties could be induced in photosensitive [25,26], piezoelectric [27-33], magnetorheological 

[34] and in other soft [35] materials. The wave phenomena expected to occur in such dynamic 

materials were investigated theoretically and numerically and included one-way mode and 

frequency conversion, one-way reflection and one-way acceleration and deceleration of elastic 

and acoustic waves [17-23]. Nonetheless, fabrication has proved particularly challenging. An 

experimental work was reported when unidirectional wave propagation at isolated frequencies 
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was observed experimentally in a discrete lattice of permanent magnets coupled to grounded 

electromagnets [24]. In the study, non-reciprocity was achieved by programming the AC input of 

the electromagnets so that their interaction with adjacent permanent magnets produced space and 

time modulation of the effective grounding stiffness [24]. This testbed provided experimental 

evidence of non-reciprocal propagation of mechanical waves at velocities of the order of 3 m/s 

and over a frequency range of 20 Hz. However, (1) the proposed discrete system is only for 

concept demonstration at extremely  low frequency and difficult for practical one-way wave 

device application, in which continuum-based materials are highly desired; (2) asymmetric 

frequency responses were only experimentally demonstrated under harmonic excitations and 

therefore information of non-reciprocal wave transmission and reflection are not physically 

captured. 

In this paper, to tackle those challenges, we design and fabricate a dynamic material displaying 

non-reciprocal effects for genuine elastic waves, in the form of flexural waves in a metamaterial 

beam. The metamaterial beam includes magnetic electrical coil resonant elements with coupling 

stiffness modulated in space and in time (see Fig. 1). Spatiotemporal modulation of the coupling 

stiffness in a pump-wave fashion is realized by properly manipulating electric currents with 

different phases between electrical coils. Non-reciprocal propagation arises when waves at a 

certain frequency transmit unperturbed through the metamaterial if incident from one side; while 

they are scattered and partially frequency-converted if incident from the other side. The flexural 

waves in the metamaterial beam travel at velocities of around 50 m/s and over a frequency range 

of as high as 0.3 kHz. We experimentally demonstrate the transient non-reciprocal wave 

propagation and show tunability of the information transfer by varying the modulation current 

amplitudes, material damping coefficients and modulation frequencies. We support our 
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experimental findings by combining analytical and multi-physics numerical approaches. We 

expect that this strategy may open promising avenues for designing non-reciprocal mechanical 

devices. 

II. DESIGN AND MODELLING OF THE MODULATED CONTINUUM-BASED 

METAMATERIAL 

The modulated metamaterial comprises an array of magnets and coils periodically distributed 

over a host beam (see Fig. 2): magnets are rigidly bonded to the beam whereas coils are 

elastically attached to it through a pair of flexible cantilevers. The assembly allows each coil to 

oscillate coaxially with its corresponding magnet so that the pair form a resonating dipole (see 

Fig. 2). The electric current feeding the coils is programmed to tune, within each dipole, the 

magnetic coupling responsible for the magnet-coil effective coupling stiffness, or equivalently, 

the dipole resonance frequency. Note that this assembly does not change the effective bending 

stiffness of the host beam, but rather alters the dynamic response of the attached resonator which 

in turn results in a time- and space-modulated effective dynamic mass. In order to ensure that the 

modulation does not act as a source of elastic waves, the absence of net forces between coils and 

magnets must be guaranteed in the rest state. Accordingly, magnets should be precisely placed at 

the respective centers of the coils where the magnetic potentials are maximum or minimum. This 

is achieved using 3D printed cylinders sandwiched between the magnets and the host beam (see 

Fig. 2). When the coil deviates from its rest position, it creates an asymmetry in the magnetic 

field of the magnet and experiences a magnetic force. The sign of the force, i.e restoring or 

repelling, depends on the sign of the electric current feeding the coil whereas its amplitude, 

within a linearized regime, is proportional to the magnitude of the current. To characterize the 

effective stiffness of the magnetic coupling, the induced force is measured by a force gauge at 
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controlled distances separating coil and magnet; observations are then compared to our 

electromagnetic numerical simulations (see Fig. 3a). The figure indicates that the force-

displacement relationship is almost linear for displacement amplitudes ranging from -0.5 to 0.5 

mm (shaded area). The vibrations subsequently studied shall be well within that range so that 

linearity can be comfortably assumed. As a result, the stiffness of the cantilever beam is 

effectively and linearly modulated by the current. The values of the coupling stiffness induced by 

different applied currents are also measured and compared to simulated ones (see Fig. 3b); a 

good agreement is observed. In addition, it can be clearly seen that the stiffness changes linearly 

with the current. Note that when the metamaterial is subject to an incident flexural wave, the 

moment will also be generated due to the rotational oscillation of the coil in x-y plane. However, 

the generated moment is very small and can be ignored. With this analysis in mind, the coil-

cantilever-magnet system can be understood as a mass-spring resonator with a constant mass m0 

and with a tunable spring constant, 0k k Iκ= + , (see Fig. 2), where 
3

0 6
b

b

lk
D

=  is the linear 

stiffness of the cantilever beam, Db and lb are its bending stiffness and length, respectively, and κ 

= 1760 N/m·A is the stiffness-to-current ratio obtained from Fig. 3b. The material damping from 

the cantilever beams is considered as 0 0 0c kβ= , where β0 = 8×10-5 s is the Rayleigh damping 

coefficient. The design therefore allows the stiffness of the cantilever beam to triple from 0.5k0 

to 1.5k0 by increasing the current from -0.5 to +0.5 A.  

The space and time modulation of the metamaterial is realized by applying sinusoidal AC 

currents ( )0cos m mI I k x tω= ±  in the electric coils to generate a pump wave traveling along the 

positive or negative x-directions. Here I0, km and ωm represent the modulation current amplitude, 

modulation wavelength and modulation frequency, respectively. We focus on experimental 
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observations of non-reciprocal and tunable wave propagation due to Bragg scattering, which 

requires a dynamic modulation frequency smaller than or comparable with the propagated wave 

frequency.  

We develop a numerical approach to calculate dispersion relations of the modulated 

metamaterial beam based on the finite element method. In the analysis, components in the 

metamaterial are modeled as isotropic elastic bodies governed by the Navier-Lamé equation 

( ) ( )
2

2
2t

λ μ μ ρ ∂− + ∇ ∇ − ∇ + =
∂

uu u F� , in Ω,                                       (1) 

where λ and μ denote Lamé’s constants, and u and F represent the displacement and body force 

tensors, respectively. The body forces induced by electromagnetic interactions are simulated 

separately based on Ampere’s law. In the current model, the induced body forces are assumed to 

be uniformly distributed in the magnet and electrical coil, which are, respectively, related to the 

displacements as 

( )F k u u
c m

= − , in Ωm                                                   (2) 

( )F k u u
m c

= − , in Ωc                                                   (3) 

where 
m

�  and 
c

�  denote averaging over the domains of the magnet and electrical coil, 

respectively, mΩ ⊂ Ω  and cΩ ⊂ Ω  are the magnet and electrical coil domains, respectively, and 

k is the effective stiffness tensors representing electromagnetic interactions. Specifically, 

0 0

0
k

m

I
A
κ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, in Ωm and 
0 0

0
k

c

I
A
κ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, in Ωc in a 2D plane stress model with Am and Ac being 

the areas occupied by the magnet and coil, respectively. Body forces vanish in domains other 

than the magnet and electrical coil ( oΩ ⊂ Ω ). We consider harmonic modulation 
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( )cosak k m mt k Xω= − ,                                                      (4) 

in which ka, ωm, and km represent modulation amplitude, modulation frequency and modulation 

wavelength, respectively. Due to harmonic modulations, the displacement can be expressed 

( ) ( ) ( )mp i p t t

p
e ω ω

+∞
− +

=−∞

= ∑u u x ,                                                  (5) 

Substituting Eqs. (2) – (5) into Eq. (1), the p-th order equations for the three domains read  

( ) ( )( ) ( ) ( ) ( )22 inu u u ,p p p
m opλ μ μ ρ ω ω+ ∇ ∇ + ∇ = − + Ω�                           (6) 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

1 12

21 1

2

in
2

a

a

ku u u u

k u u u ,

m

m

k X
p p p p

c m

k X
p p p

m mc m

e

e p

λ μ μ

ρ ω ω

−
− −

+ +

+ ∇ ∇ + ∇ + −

+ − = − + Ω

�
    (7) 
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m

m

k X
p p p p
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k X
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e

e p

λ μ μ

ρ ω ω

−
− −

+ +

+ ∇ ∇ + ∇ + −

+ − = − + Ω

�
    (8) 

The coupling between modes of different orders can be clearly seen in Eqs. (7) and (8). Based on 

the Bloch theorem, displacements on domain boundaries in one modulation wavelength should 

satisfy 

qx
l rU Uie= ,                                                            (9) 

where q is the propagating wave vector, and Ul and Ur are the displacements on the two 

boundaries. Combining Eqs. (6) – (9) and solving the eigenvalue problem for ω with given q, the 

dispersion relations can be obtained. In this study, 2D plane stress models are employed for 

simplicity. 

In the absence of the modulation (setting p = 0), the dispersion relations, (ω(0), kx
(0)), of free 

waves propagating in the metamaterial are numerically obtained by the commercial software 
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COMSOL and plotted in Fig. 4a (red solid curves), where a denotes the lattice constant (see 

Appendix A for geometric and material parameters of the design). Scattered waves are expected 

due to the presence of the spatiotemporal modulation based on the phase matching condition19. 

In Fig. 4a, only first-order wave modes due to the modulation (ω(0) + ωm, kx
(0) + km) and (ω(0) - 

ωm, kx
(0) - km) are plotted in green and purple dotted curves, respectively, to graphically examine 

the phase matching condition. Phase matching conditions are satisfied at the intersections of 

those curves, and wave modes are coupled: when one is incident, the others are scattered, 

modifying wavenumbers and frequencies on dispersion relations. As shown in Fig. 4a, we 

identify four simple pairs (P1 – P4) of the coupled modes, which are non-symmetrically 

distributed to break time-reversal symmetry. For pairs P1 and P4, the two coupled modes 

propagated along the same direction will interchange their energies19, whereas, pairs P2 and P3 

represent two coupled modes propagating along opposite directions, in which one mode will be 

transformed to the other mode19. Figure 4b shows the resulted dispersion relations of the 

undamped modulated metamaterial according to a developed numerical model, where the pump 

wave is propagated along the positive x-direction with I0 = 0.25 A. The modulation wavenumber 

and modulation frequency are selected as π/2a and 80 Hz, respectively. As illustrated in Fig. 4b, 

unidirectional band gaps are clearly seen near those intersections. Attention will be specifically 

given to frequencies around 170 and 200 Hz, where quad-mode coupling appears. That will 

generate new non-reciprocities among multiple wave mode conversions, such that simple pairs 

are unable to remain independent of each other: P1 and P2 are coupled; P3 and P4 are also 

coupled. As a result, when the incident wave is around 285 Hz (shaded grey area), scattered 

waves can be translated in both transmitted and reflected domains with frequencies being around 

205 and 125 Hz, respectively (dashed circles). However, when the incident wave is around 250 
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Hz (shaded yellow area), scattered waves can only be found in the reflected domain but with two 

different frequencies being around 170 and 90 Hz (dashed squares). Changing the incident 

direction in both of the two frequency regions will cause the scattered waves to disappear, 

producing non-reciprocal wave propagation. 

 

III. EXPERIMENTAL RESULTS 

Experimental tests were conducted to demonstrate the non-reciprocal wave propagation in a 

finite modulated metamaterial beam with 15 unit cells (see Fig. 5). Flexural waves are excited by 

a shaker fixed on the host beam near the sample. Concentrated 20-peak tone-burst signals with 

different central frequencies are used to demonstrate non-reciprocal wave propagation at desired 

frequencies in the modulated metamaterial. By programming in space and time the AC input of 

the coils, modulated electrical signals are generated with the digital controller, amplified by 

power amplifiers and finally applied on electrical coils to generate the pump wave. Two 

piezoelectric sensors (APC International, Ltd. Material: 850, disk thickness and diameter: 0.25 

and 6.5 mm) are bonded on both ends of the metamaterial to measure transmitted and reflected 

wave signals with a digital oscilloscope. Figures 6a and 6b show frequency spectra of 

transmitted and reflected transient waves in the modulated metamaterial for central frequencies 

at 250 Hz and 285 Hz, respectively. For the purpose of clear comparisons, experimental 

measurements are plotted in the left column and corresponding numerical simulations are plotted 

in the right column. The amplitude of the modulation current, I0, is first selected as 0.25 A. 

Numerical simulations are based on a Rayleigh damping coefficient β0 = 8×10-5 s in the 

cantilever beams36. In the figure, “forward/backward” modulation denotes the modulation 

current travelling in the same/opposite direction as the incident flexural wave, which is 
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analogous to positive/negative wavenumber in Fig. 4b, respectively. When the tone-burst 

incident wave is centered at 250 Hz (see Fig. 6a), amplitudes of the transmitted wave with the 

forward modulation are almost the same as those without the modulation, indicating that 

scattering due to the modulation is negligible; whereas, for the backward modulation, amplitudes 

of the transmitted wave decay around 250 Hz, demonstrating the unidirectional band gap 

behavior (shaded yellow area in Fig. 4b). It is understood that the wave component in the band 

gap region is not totally attenuated because the metamaterial is of finite length and the 

modulation-induced band gap is due to Bragg scattering. In the reflection spectra, two peaks near 

170 and 90 Hz are clearly seen when the backward modulation is applied, in agreement with 

dispersion predictions for unidirectional wave mode conversions in Fig. 4b. Note that small 

bumps in transmission as well as reflection spectra with frequency intervals of 80 Hz from 250 

Hz are caused by the scattering at interfaces between the host beam and the modulated 

metamaterial. In the experimental results noise artifacts are evident at 80 Hz and at its higher 

harmonics, attributable to tiny misalignments between coils and magnet cylinders. Overall, good 

agreement between experimental and numerical results is observed.  

The non-reciprocal wave propagation is also tested when the central frequency of the incident 

wave is changed to 285 Hz (see Fig. 6b). It is evident that the transmitted wave amplitudes are 

unaltered for the metamaterial with the backward modulation. In contrast, amplitudes of the 

transmitted wave in the metamaterial with the forward modulation are significantly decreased 

from both numerical and experimental results, demonstrating again the unidirectional band gap 

behavior in another frequency region (shaded gray area in Fig. 4d). However, compared with the 

case in Fig. 6a, converted wave components in both transmitted and reflected domains are small. 

To further analyze this behavior, we develop an semi-analytical model to calculate transmission 
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and reflection coefficients of the finite modulated metamaterial beam, t(p) = wt
(p)/w0 and r(p) = 

wr
(p)/w0 for the mode with the order p, where w0, wt

(p) and wr
(p) denote amplitudes of the incident, 

p-th order transmitted and p-th order reflected waves, respectively (see Appendix B for detailed 

methods and model validations). It illustrates that, in the presence of the material damping in 

cantilever beams, converted waves for incidence near 285 Hz are almost completely absorbed 

and the absorption effects due to the material damping are stronger than those for incidence near 

250 Hz (see Appendix C for details). To better evaluate damping effects, the non-reciprocal 

energy transport of the modulated metamaterial is quantitatively characterized by the energy bias, 

log(Tf/Tb), where the total transmittances with forward (f) and backward (b) modulations, Tf  and 

Tb, are defined as the summation of each wave mode 

( ) ( )

5 5
2 22 2

0 0

0 0

,
P P

p pm m
f f b b

p P p P

p pT t T tω ω ω ω
ω ω

+ +

=− =−

⎛ ⎞ ⎛ ⎞+ += =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ .                      (10) 

Surprisingly, it is found that the largest energy biases occur when small material damping is 

applied, although the phase matching condition cannot be exactly satisfied. On the other hand, 

sufficiently large damping coefficients can turn off non-reciprocal wave effects in space-time 

modulated metamaterials (see Appendix C for details).  

To study the effects of the modulation amplitude, Figures 7a and 7b illustrate frequency spectra 

of transmitted and reflected transient waves in the modulated metamaterial with modulation 

amplitude I0 = 0.42 A for the central frequencies 250 Hz and 285 Hz, respectively. Compared 

with the results in Fig. 6, (I0 = 0.25 A), it is evident that increasing the amplitude of the 

modulation current leads to stronger non-reciprocity.  In particular, the non-reciprocal 

transmission amplitude bias with forward and backward modulations becomes larger, and the 
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reflected waves caused by the modulation induced scattering have higher amplitudes, indicating 

stronger wave mode conversions. This is understandable, as increasing the modulation amplitude 

is analogous to increasing the scattering mismatch. The observed wave phenomena are also 

supported by the dispersion relations of the modulated metamaterial with amplitude I0 = 0.42 A 

(See Fig. 4c).  

 

 

IV. NON-RECIPROCAL TUNABILITY OF THE CONTINUUM-BASED SYSTEM 

To fully characterize the non-reciprocal tunability of the system, the defined energy biases are 

estimated analytically as a function of the modulation amplitude I0 (see Fig. 8a), modulation 

frequency (see Fig. 8b) and modulation wavenumber (see Fig. 8c). In the calculation, β0 is kept 

as 8×10-5 s, and other parameters are also the same as the previous examples. As illustrated in 

Fig. 8a, two non-reciprocal frequency regions near 250 (log(Tf/Tb) > 0) and 285 Hz (log(Tf/Tb) < 

0) are clearly seen, where transmittances are obviously different for forward and backward 

modulations. Overall, the analytical prediction agrees well with experimental and numerical 

results from Figs. 6 and 7. As also shown in Fig. 8a, bandwidths of the two non-reciprocal 

frequency regions are almost linearly broadened by gradually increasing the amplitude of the 

modulation current from 0.1 to 0.5 A. To further qualify this linear behavior, the unidirectional 

band gap edge frequencies around the intersection are analytically derived based on the 

perturbation method as (see Appendix D for details) 
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( )
( ) ( )( )( )

( )

2
0 0

00

2
0 1 1 0

0 1
0 1

2
4

mIκ ω ω ω ρ
ω ω±

− −
−

−

′−
= ±

Γ Λ + Γ Λ
Λ Λ −

Γ Γ

, for 250 Hz                            (11) 

and strong wave conversion frequency boundaries are expressed 

( )
( ) ( )( )( )2
0 0

00

0 12

mIακ ω ω ω ρ
ω ω±

−

′−
= ±

Λ Λ
, for 285 Hz                              (12) 

where 0m
a

ρ′ = , ( )0ω  is the frequency at the intersection of dispersion curves (see Fig. 4a), and 

other parameters are detailed in Appendix D. The frequency prediction based on Equations (11) 

and (12) is also plotted in Fig. 8a for comparison especially with stronger modulations. It is 

clearly illustrated that the non-reciprocal frequency boundaries are indeed proportional to I0.  

It is worth mention that increasing the modulation amplitude to I0 = 0.5 A will trigger second-

order mode coupling ((ω(0) + 2ωm, kx
(0) + 2km) and (ω(0) - 2ωm, kx

(0) - 2km), and scattered waves 

are then composed of not only the first-order coupling modes but also the second-order coupling 

modes. This phenomenon is illustrated in Fig. 9a: wave dispersion relations are numerically 

calculated for an undamped metamaterial with modulation current I0 = 0.5 A.  Second-order 

modes, (ω(0) + 2ωm, kx
(0) + 2km) and (ω(0) - 2ωm, kx

(0) - 2km), are plotted in the figure. The pair, P5, 

which couples the fundamental and the second-order modes, generate a unidirectional gap near 

255 Hz (shaded area), due to the stronger modulation. Wave transmission tests were conducted 

in an undamped modulated metamaterial beam with 25 unit cells to examine the second-order 

gap. Figure 9b shows the transmission frequency spectra with different forward modulations, 

where a broader band incident signal is used. Only the first-order gap appears for the modulation 
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current I0 = 0.25 A. Increasing I0 to 0.5A, the second-order gap is clearly seen (shaded area), 

which agrees well with the dispersion predictions in Fig. 9a.  Experimental validation of the 

second-order gap with the current design presents challenges, as the material damping makes the 

second-order non-reciprocity negligible, unless extremely large currents are used.  

Besides the modulation amplitude, the modulation frequency is also an important parameter in 

tuning the non-reciprocity, especially for desired non-reciprocal frequency bands. Figure 8b 

shows non-reciprocal energy biases of the modulated metamaterial beam with different 

modulation frequencies, where the Rayleigh damping coefficient in resonant beams is kept at 

8×10-5 s and I0 = 0.25 A. Note that the two non-reciprocal bandgap frequency regions are almost 

linearly shifted with the increase of the modulation frequency and energy biases become smaller 

at higher frequencies than those at lower frequencies, indicating wave conversion amplitude 

varies at different frequencies. In Fig. 8c, the energy biases are calculated analytically with 

different modulation wavenumbers, km. In the calculation, the modulation frequency, I0 and β0 

are kept as 80 Hz, 0.25A and 8×10-5 s, respectively, and other parameters are the same as 

previous examples. It can be evidenced from the figure that the non-reciprocal frequency region 

near 285 Hz is slightly shifted to higher frequencies with smaller energy biases when the 

wavenumber is decreased, and the non-reciprocal behavior is almost disappeared when 2π/(kma) > 

12. On the other hand, the non-reciprocal frequency region near 250 Hz firstly occupies higher 

frequencies and then gradually shifted to lower frequencies when the wavenumber is decreased, 

and the largest energy biases are found around 2π/(kma) = 10. Finally, it can be concluded that 

both the non-reciprocal frequency and energy bias can be easily tailored electrically through 

proper selections of the modulation parameters. 

V. DISCUSSION 
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In summary, we introduce a new strategy to design electrically modulated elastic metamaterials 

with coupling stiffness modulated in space and in time by programmably pumping AC currents 

into coils and demonstrate, experimentally and theoretically, tunable non-reciprocal flexural 

wave propagation. The tunability on the wave non-reciprocity are characterized quantitatively in 

terms of the modulation current amplitude, the material damping coefficient and the modulation 

frequency. The design is compact, robust, and highly flexible in tailoring non-reciprocal 

frequency regions and wave energy bias ratios. The current method provides a unique 

configuration that realizes dynamic wave transportation through multi-physical structural 

response. Our device may open new opportunities in structural dynamics and in the design of 

advanced mechanical insulators, diodes, circulators and topological insulators. 
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FIGURES 

 

Fig. 1 Physical realization of an elastic metamaterial with inner stiffness electrically modulated 

in space and in time. The modulation is realized with spatiotemporally programmed electric 

currents passing through electrical coil-based resonators in the metamaterial. An example of non-

reciprocal wave propagation is illustrated in the figure: When a wave with the frequency of ω0 

incident from the right to the left will transmit through the modulated metamaterial without 

frequency conversions, whereas when the wave with the frequency of ω0 incident from the left to 

the right will be scattered, and multiple frequency conversions will be found in reflected waves.  
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Fig. 2 Design of the modulated metamaterial. The photo shows the fabricated metamaterial 

samples. The modulated metamaterial comprises an array of magnets and coils periodically 

distributed over a host beam: magnets are rigidly bonded to the beam whereas coils are 

elastically attached to it through a pair of flexible cantilevers. The coil-cantilever-magnet system 

can be understood as a mass-spring resonator with a constant mass m0 and with a tunable spring 

constant, k(I). The material damping of the cantilever is represented by c0. 
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Fig. 3 Characterizations of the modulated coupling stiffness. a Experimentally measured and 

numerically simulated net force induced by the current with different magnet-coil separation 

displacements, where I = 0.2 A. b Experimentally measured and numerically simulated coupling 

stiffness induced with different currents. 
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Fig. 4 Dipersion relations of the modulated metamaterial. a Dispersion relations of the 

unmodulated metamaterial (red solid curve) beam and its first order modes (green and purple 

dotted curves). b,c Dispersion relations of the modulated metamaterial beam calculated with the 

developed numerical model, where the current amplitude is selected as: b 0.25A; c 0.42 A. 
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Fig. 5 Experimental setup of the wave transmission test. Flexural waves are generated by a 

shaker fixed on the host beam near the sample. 20-peak tone-burst signals centered at 250 and 

285 Hz are excited in experiments. Two piezoelectric sensors are attached on the host beam to 

both ends of the metamaterial to measure transmitted and reflected waves, respectively. 

Modulated currents are generated by a digital controller and amplified with a power amplifier. 
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Fig. 6 Non-reciprocal transmission and reflection spectra with I0 = 0.25 A. a,b Experimentally 

measured and corresponding numerically simulated transmitted and reflected wave signals in the 

frequency domain: a the incident wave is centered at 250 Hz; b the incident wave is centered at 

285 Hz. 
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Fig. 7 Non-reciprocal transmission and reflection spectra with I0 = 0.42 A. a,b Experimentally 

measured and corresponding numerically simulated transmitted and reflected wave signals in the 

frequency domain: a the incident wave is centered at 250 Hz; b the incident wave is centered at 

285 Hz.  
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Fig. 8 Non-reciprocal tunability of the modulated metamaterial. a Analytically calculated non-

reciprocal energy bias of the modulated metamaterial beam with different modulation current 

amplitudes, where the Rayleigh damping coefficient in cantilevers and the modulation frequency 

are selected as 8×10-5 s and 80 Hz, respectively. Dotted lines denote frequency boundaries of 

non-reciprocal frequency regions calculated based on the perturbation method. b Analytically 

calculated non-reciprocal energy bias of the modulated metamaterial beam with different 

modulation frequencies, where the Rayleigh damping coefficient in cantilevers remains 8×10-5 s 

and I0 = 0.25 A. c Analytically calculated non-reciprocal energy bias of the modulated 

metamaterial beam with different modulation wavenumbers, where the Rayleigh damping 

coefficient in cantilevers and the modulation frequency are selected as 8×10-5 s and 80 Hz, 

respectively, and I0 = 0.25 A. 
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Fig. 9 Unidirectional band gaps induced by higher-order mode interactions. a Numerically 

simulated dispersion relations of an undamped metamaterial beam, for modulation current I0 = 

0.5 A. Scattering of the second-order mode is observed. b Numerically simulated transmission 

spectra of undamped metamaterial beams with forward modulations, for I0 = 0, 0.25 and 0.5 A. 
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APPENDIX A: GEOMETRIC AND MATERIAL PARAMETERS  

 

Fig. 10 Schematic of the geometric setup of the metamaterial. 

 

Table 1. Geometric and material parameters of the metamaterial 

Host beam (Polycarbonate) Resonant beam (RGD 720) 

Young’s modulus 2.6 GPa Young’s modulus 1.05 GPa 

Mass density 1190 kg/m3 Mass density 1180 kg/m
3
 

Thickness (h) 2.6 mm Thickness 0.6 mm 

a 50 mm l
b
 14 mm 

b 14 mm wb 3.5 mm 

lg 1.0 mm lh 3.0 mm 

Magnet (Neodymium) Electromagnet (Coil) 

Young’s modulus 160 GPa Weight 1.5 g 

Mass density 7500 kg/m3 Height 4.8 mm 

Height 3.2 mm D
e
 16 mm 

dm 7.9 mm D
i
 8.2 mm 
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APPENDIX B: SEMI-ANALYTICAL MODELING OF THE MODULATED 

METAMATERIAL BEAM 

We consider a slender beam with periodically attached mass-spring resonators (Fig. 11). The 

thickness of the beam is denoted by h, and the springs in the resonators are modulated in space 

and in time. The lattice constant and modulation wavelength are represented by a and L, 

respectively. In this study, N mass-spring resonators are contained within one modulation 

wavelength. Each mass is m0, and the spring constants are represented by k1, k2, … kN within a 

modulation wavelength. Material dissipation is defined by the damping constant c0.  

 

Fig. 11 Schematic of the analytical model of the modulated beam. 

According to Euler’s beam assumptions, the governing equation of the slender beam can be 

written as 

( ) ( ) ( ) ( )
4 2

0 04 2
1

, , N

n n
n

w x t w x t
D h F t x X

x t
ρ δ

=

∂ ∂
− = −

∂ ∂ ∑ ,                              (B1) 

where w, D0 and ρ0 are the displacement in the vertical direction, bending stiffness and mass 

density of the beam, respectively, and the point force Fn due to the attached resonator is 

( ) ( ) ( )( ) ( ) ( ) ( )2

0 0 2

,
, n n n

n n n n

Y t w X t Y t
F t k Y t w X t c m

t t t
⎛ ⎞∂ ∂ ∂

= − + − = −⎜ ⎟∂ ∂ ∂⎝ ⎠
,              (B2) 
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in which Xn and Yn denote the coordinate and the vertical displacement of the n-th resonator, 

respectively. The modulated spring constants are assumed as 

( )0 cosn a m m nk k k t k Xω= + − ,                                               (B3) 

with ωm, km, k0 and ka the modulation frequency, modulation wavenumber, unmodulated stiffness 

and amplitude of the modulated stiffness, respectively. It should be noticed that the modulated 

pumping wave propagates in the positive x-direction. Considering the periodicity of the spring 

constants in time (Eq. (B3)), the local displacement field in the n-th unit cell can be assumed as 

( ) ( ) ( ) ( )mp i p t t
n n

p
w x w x e ω ω

+∞
+

=−∞

= ∑ , ( )1n a x na− ≤ < ,                               (B4) 

where wn
(p) is the p-th order displacement. Similarly, the displacement of the masses and point 

forces applied on the beam can be expressed 

( ) ( ) ( )mp i p t t
n n

p
Y t Y e ω ω

+∞
+

=−∞

= ∑ ,                                               (B5) 

( ) ( ) ( )mp i p t t
n n

p
F t F e ω ω

+∞
+

=−∞

= ∑ .                                               (B6) 

Substituting Eq. (B4) into the homogeneous governing beam equation, the general solution of the 

p-th order displacement can be found as 

( ) ( ) ( ) ( ) ( )p p p pik x ik x k x k xp p p p p
n n n n nw A e B e C e D e− −= + + + .                                   (B7) 

where ( )
1

2 4
0

0

m
p

h p
k

D
ρ ω ω⎛ ⎞+

⎜ ⎟=
⎜ ⎟
⎝ ⎠

. 

Equation (B3) can be rewritten in exponential form as  

( )
0 2

m n m ni t i i t i
m

n

k e e e e
k k

ω φ ω φ− −+
= + ,                                                 (B8) 
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in which n m nk Xφ = . 

Combining Eqs. (B4), (B5) and (B8) with Eq. (B2), the p-th order equation of motion for the n-th 

mass-spring resonator is obtained as 

( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1 1
0 0 0

1 1
0 0

2 2

0 0 0
2 2

.

n n

n n

i i
p p pm m

m m n n n

i i
p p pm m

m n n n

k e k ek ic p m p Y Y Y

k e k ek ic p w w w

φ φ

φ φ

ω ω ω ω

ω ω

−
− +

−
− +

+ + − + + + =

+ + + +
            (B9) 

It can be found from Eq. (B9) that the displacements of orders p – 1, p and p + 1, are coupled 

with each other due to the modulation. Equation (B9) can also be written in matrix form by 

truncating the orders of the displacements from –P to P, as 

n n n nH Y = G W ,                                                          (B10) 

where 

( ) ( ) ( ) ( ) ( )1 0 1
nY = ... ...

TP P P P
n n n n nY Y Y Y Y− − + −⎡ ⎤

⎣ ⎦ ,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 10 0 0 0 0nW = ... ...
TP P P P

n n n n nw w w w w− − + −⎡ ⎤
⎣ ⎦ . 

Applying Eq. (B2), the point force vector can then be written as  

-1
n n n nF = JH G W ,                                                         (B11) 

where 

( ) ( ) ( ) ( ) ( )1 0 1
nF = ... ...

TP P P P
n n n n nF F F F F− − + −⎡ ⎤

⎣ ⎦  ,

( ) ( )( ) ( )( ) ( )2 22 22
0 0 0 0 01 1J ... ... .

T

m m m mdiag m p m p m m p m pω ω ω ω ω ω ω ω ω⎛ ⎞⎡ ⎤= − − − + − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 

Using Eq. (B7), Equation (B11) can be rewritten again as 

-1
n n n nF = JH G RA ,                                                      (B12) 
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where 

( ) ( ) ( ) ( ) ( ) ( )0 0
nA ... ... ... ... ...

TP P P P
n n n n n nA D A D A D− −⎡ ⎤= ⎣ ⎦ . 

Continuity conditions on the displacement, rotational angle, bending moment and shear force are 

required at x = Xn, implying, respectively, for the p-th displacement 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

2 2 2 2
1 1 1 1

,

,

p p p p

p p p p

p p p p

ik a ik a k a k ap p p p p p p p
n n n n n n n n

ik a ik a k a k ap p p p p p p p
p n p n p n p n p n p n p n p n

ik a ik a k a k ap p p p
p n p n p n p n p

A e B e C e D e A B C D

ik A e ik B e k C e k D e ik A ik B k C k D

k A e k B e k C e k D e k

− −
− − − −

− −
− − − −

− −
− − − −

+ + + = + + +

− + − = − + −

− − + + = − ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2 2 2 2

3 3 3 3 3 3 3 3
1 1 1 1

0

,

,p p p p

p p p p
n p n p n p n

p
ik a ik a k a k ap p p p p p p p n

p n p n p n p n p n p n p n p n

A k B k C k D

Fk A e k B e k C e k D e k A k B k C k D
D

− −
− − − −

− + +

− + + − = − + + − +

(B13) 

Equation (B13) can also be written in matrix form for the vector of displacement from orders –P 

to P, as  

-1
n-1 n-1 n n n n nP A = Q A + VJH G RA .                                           (B14) 

A local transfer matrix related An-1 to An is defined as  

-1
n n-1 nT = P E ,                                                            (B15) 

where -1
n n n nE = Q + VJH G R . The global transfer matrix covering unit cells within a modulation 

wavelength can then be expressed 

2 3 NT T T T= ⋅⋅⋅ ,                                                        (B16) 

which satisfies 1 NA = TA . It can be found from Eq. (B3) that the modulation is also periodic in 

space. By applying the Bloch theorem, we can write  

1 1 N NE A = P Axik Le ,                                                     (B17) 

where kx is the wave wavenumber of the propagating flexural wave. Combining Eqs. (B16) with 

(B17), gives an eigenvalue system 
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-1
1 N N NE P A = TAxik Le ,                                                      (B18) 

from which wavenumbers can be determined for given frequencies. The analytical model is 

validated by comparing its dispersion relation with the one calculated numerically (Fig. 12). 

Good agreement can be clearly seen from the figure. Note that moments in small cantilever 

beams are ignored in this analytical study, which is a valid approximation for frequencies below 

400 Hz. 

 

Fig. 12 Comparisons of dispersion relations of the modulated metamaterial beam calculated with 

the developed numerical and analytical models, for current amplitude of 0.25 A. 

Beside the dispersion calculations, the transfer matrix can also be used to calculate transmission 

and reflection coefficients, as well as transmittance and reflectance [34], by applying proper 

boundary conditions. 
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APPENDIX C: EFFECTS OF THE MATERIAL DAMPING 

Absolute values of transmission and reflection coefficients of different modes are estimated 

analytically with I0 = 0.25 A (Fig. 13), where tn = wt
(n)/w0 and rn = wr

(n)/w0 where w0, wt
(n) and 

wr
(n) are the amplitudes of the incident, n-th order transmitted and n-th order reflected waves, 

respectively. The calculations consider a modulated metamaterial beam with 15 unit cells 

sandwiched between two infinite host beams. A propagating flexural wave is incident from one 

infinite host beam to the metamaterial, and transmitted and reflected waves are measured from 

the other and incident host beams, respectively. We focus on two non-reciprocal regions with 

incident frequencies at around 250 and 285 Hz. In Fig. 13a, only strongly coupled modes are 

illustrated, other weakly coupled modes are ignored. As shown in Fig. 13a, t0 has a dip at around 

285 Hz when the modulation is forward (shaded area). Due to the mode coupling of the pair P1, 

energy lost at around 285 Hz is partially scattered to the transmitted wave at around 205 Hz, as a 

peak appears in t-1 at these frequencies (shaded area). This scattered transmitted wave is reflected 

at boundaries between the metamaterial and the host beam, producing the peak in r-1 at around 

205 Hz (shaded area). Most importantly, we observe another peak in r-2 at around 125 Hz with a 

much higher amplitude (shaded area), which is caused by the energy exchange between pairs P1 

and P2 through the quad-mode coupling at around 205 Hz. This contrasts with previous studies 

where no energy exchanges between different pairs; P1 and P2 now “communicate”. The 

reflected waves produced by the coupling between pairs as well as reflections at metamaterial 

boundaries cause the non-reciprocal transmittance for incidence at around 285 Hz. Conversely, 

for the backward modulation, the incident wave lost at around 250 Hz (a dip in t0, shaded area) is 

partially scattered to the reflected wave at around 170 Hz (a peak in r-1, shaded area), due to the 
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mode coupling of the pair P3. The scattered wave is multiply reflected at metamaterial 

boundaries and contributes to the peak in t-1 at around 170 Hz (shaded area). Due to the coupling 

between pairs P3 and P4 at around 160 Hz, another peak in r-2 appears at around 90 Hz (shaded 

area). The non-reciprocal transmittance for incidence at around 250 Hz is caused by these 

reflections. 

We now introduce a Rayleigh damping coefficient (β0 = 8×10-5 s) in the resonant cantilever 

beams.   The resulting absolute values of transmission and reflection coefficients of different 

modes are shown in Fig. 13b.  Distinct changes are observed for the transmission and reflection 

coefficients as compared with the undamped modulated metamaterial. Specifically, the 

differences in transmission coefficients for forward and backward modulations decrease 

significantly and the frequency ranges become much broader. The scattered waves in both the 

transmitted and reflected domains are markedly suppressed, due to the material damping. Two 

small amplitude scattered waves in the reflected domain are found for the backward modulation 

with 250 Hz incidence (Shaded areas), whereas transmissions and reflections are nearly flat for 

the forward modulation for 285 Hz incidence (Shaded areas), indicating the absorption effects 

from material damping are stronger than those for incidence near 250 Hz. 
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Fig. 13 Analytically calculated absolute values of transmission and reflection coefficients of 

different modes, for I0 = 0.25 A:   a Undamped modulated metamaterial beam; b damped 

modulated metamaterial beam, with Rayleigh damping coefficient in resonant beams of 8×10-5
 s. 

 

Finally, in Fig. 14, we consider the effects of material damping on non-reciprocal energy 

transport in terms of the energy bias, for I0 = 0.25 A with other parameters unchanged. 

Surprisingly, it shows that the largest energy biases occur for small material damping, although 

the phase matching condition cannot be fully satisfied, and that sufficiently large damping 

coefficients can nullify non-reciprocal wave propagation behavior in space-time modulated 

metamaterials.  
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Fig. 14 Analytically calculated non-reciprocal energy bias of a modulated metamaterial beam 

with different Rayleigh damping coefficients, where I0 = 0.25 A. 

 

APPENDIX D: NON-RECIPROCAL FREQUENCY BOUNDS 

The frequency boundaries in the two non-reciprocal frequency regions are estimated based on a 

perturbation approach, which is demonstrated in this section. Here, we assume the discrete forces 

from the resonators are continuously distributed along the beam, and the governing equations for 

the beam and its continuous attachments are 

( ) ( )
2 4

0 02 4

k tw wh w w D
t a x

ρ ∂ ∂= − −
∂ ∂

% ,                                            (D1) 

( ) ( )
2

0
2

k tm w w w
a t a

∂ = −
∂
%

% ,                                                   (D2) 

where w%  represents the vertical displacement of the continuous attachments and 

( ) ( )0 cosm m mk t k k q x tω= + −  with qm the modulation wavenumber. Equations (D1) and (D2) can 

be written in matrix form as 



 

36 
 

2 4

2 4t x
∂ ∂+ + =
∂ ∂

M ψ Kψ D ψ 0 ,                                               (D3)  

in which 

[ ]Tw w=ψ % , 

0

0

0

0

h
m
a

ρ⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

M , 

( ) ( )

( ) ( )

k t k t
a a
k t k t

a a

⎡ ⎤
−⎢ ⎥

⎢ ⎥=
⎢ ⎥
−⎢ ⎥⎣ ⎦

K , 

0 0
0 0

D⎡ ⎤
= ⎢ ⎥
⎣ ⎦

D . 

Without the modulation (km = 0), the solution to Eq. (D3) can be assumed as 

( )i qx te ω−=ψ Ψ ,                                                           (D4) 

where q is  the wavenumber. The unmodulated dispersion relation is then  

4 20
0 0 2 2

0

1
1

mD q h
a

ρ ω
ω

⎛ ⎞
= +⎜ ⎟− Ω⎝ ⎠

                                            (D5) 

with 2 0
0

0

k
m

Ω = . 

In the presence of the modulation, we rewrite Eq. (D3) as  

2 4

2 4t x
∂ ∂+ + =
∂ ∂

M ψ Kψ D ψ 0% % % .                                                (D6) 

According to the Bloch theorem, the solution to Eq. (D6), ψ% , can be written as 

( ) ( )i qx t
m mq x t e ωω −= −ψ Ψ %%%% ,                                                 (D7) 
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where Ψ%  is a periodic function, and 

δ= +Ψ Ψ Ψ% , 

q q qδ= +% , 

ω ω δω= +% . 

Note that Ψδ , qδ  and δω  are on the same order of km. Substituting Eq. (D7) into Eq. (D6), the 

leading order equation reads 

2 4

m mi iq qω ω
ξ ξ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟+ + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

M K D Ψ 0 ,                           (D8) 

where m mq x tξ ω= − . With the Fourier expansion, we have  

ij
j

j
e ξ

+∞

=−∞

= ∑Ψ Ψ .                                                      (D9) 

Combining Eqs. (D8) and (D9), the j-th order Fourier component is governed by 

( ) ( )( )2 4
m m jj q jqω ω− + + + + =M K D Ψ 0 ,                                  (D10) 

with ( )20 0
0Ψ

T

j m
k kj
a a

ω ω⎡ ⎤= − +⎢ ⎥⎣ ⎦
. 

On the other hand, the first-order equation can be expressed 

( )

2 4

3

2 4

M K D Ψ

M D K Ψ.

m m

m m

i iq q

i i i q iq q

ω ω δ
ξ ξ

δω ω ω δ δ ξ
ξ ξ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟+ + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟− + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

              (D11) 
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Now considering modes 0Ψ  and Ψ j  are coupled ( 4 20
0 0 0 02 2

0 0

1
1

mD q h
a

ρ ω
ω

⎛ ⎞
= +⎜ ⎟− Ω⎝ ⎠

 and 

( )
( )

( )20
0 0 0 02 2

0 0

1
1

m m
m

mD q jq h j
a j

ρ ω ω
ω ω

⎛ ⎞
⎜ ⎟+ = + +
⎜ ⎟− + Ω⎝ ⎠

), and the leading order solution then 

become 

0 0 1 jV V= +Ψ Ψ Ψ ,                                                       (D12) 

where V0 and Vj are the amplitudes of the two modes. Similarly, the Fourier expansion can be 

applied again 

ij
j

j
e ξδ δ

+∞

=−∞

= ∑Ψ Ψ .                                                      (D13) 

Combining Eqs. (D9) and (D11) – (D13), we can derive 

( ) ( )2 2 3
0 0 0 0 0 0 0 12 4M K D Ψ M D Ψ K Ψj jq qq V Vω δ δωω δ δ− + + = − − ,              (D14) 

( ) ( )2 2 3
1 0 02 4M K D Ψ M D Ψ K Ψj j j j j j jq qq V Vω δ δωω δ δ− + + = − − .             (D15) 

In order to ensure the solutions 0Ψδ  and Ψ jδ  to be bounded, Equations (D14) and (D15) 

should satisfy 

( )3
0 0 0 0 0 0 12 4 0Ψ M D Ψ Ψ K Ψj jqq V Vδωω δ δ− − = ,                           (D16) 

( )3
1 0 02 4 0Ψ M D Ψ Ψ K Ψj j j j j jqq V Vδωω δ δ− − = .                           (D17) 

From Eqs. (D16) and (D17), one can obtain 

( )

( )

2

0
0 0

2

0

2 0

2

m j

m j
j j

k
q

k
q

ω ω ρ
δω δ

ω ω ρ
δω δ

′
Λ − Γ −

=
′

− Λ − Γ

,                                   (D18) 

where  
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22 2
0 0 0 0

0 0 0 22 j
j j

k m kh
a a
ω

ω ρ ρ
⎛ ⎞⎛ ⎞−⎜ ⎟′Λ = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,
, , , 

22
0 0 03

0 0 04 j
j j

k m
q D

a
ω⎛ ⎞−

Γ = ⎜ ⎟⎜ ⎟
⎝ ⎠

,
, , , 

with 0j mjω ω ω= +  and 0j mq q jq= + . For the pair coupled with the two modes propagating in 

opposite directions, a unidirectional frequency band gap would open [18]. The unidirectional 

band gap edge frequencies (i.e. near 250 Hz) can be found by imposing [18] 

0
q

δω
δ

∂ =
∂

.                                                            (D19) 

As a result, 

( )
( ) ( )( )( )

( )

2
0 0

00

2
0 1 1 0

0 1
0 1

2
4

mIκ ω ω ω ρ
ω ω±

− −
−

−

′−
= ±

Γ Λ + Γ Λ
Λ Λ −

Γ Γ

.                                    (D20) 

On the other hand, for the pair coupled with the two modes propagating in the same direction, a 

unidirectional gap in the wavenumber domain would open [18]. As a result, explicit frequency 

boundary expressions cannot be easily found. To characterize the strong wave conversion 

frequency regions for this case (i.e. near 285 Hz), we first find δω  at 0qδ =  and then 

implement a factor α to estimate those frequency boundaries as 

( )
( ) ( )( )( )2
0 0

00

0 12

mIακ ω ω ω ρ
ω ω±

−

′−
= ±

Λ Λ
.                                        (D21) 

For the case demonstrated in the main text, α is selected as 0.5. 
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APPENDIX E: SAMPLE FABRICATION 

The fabrication processes of the sample are shown in Fig. 2. The modulated metamaterial is 

fabricated by first gluing magnetic cylinders onto 3D printed cylinders (Step 1). The glued 

samples are then bonded on a surface of a host (Polycarbonate) beam with intervals of the lattice 

constant (Step 2). Subsequently, electrical coils are mounted into the 3D printed holders (Step 3), 

with each holder containing two cantilever beams. Finally, the ends of cantilever beams are 

bonded onto the host beam with proper alignments between magnets and coils (Step 4). 

  



 

41 
 

References 

[1] J. D. Achenbach, Reciprocity in elastodynamics, (Cambridge University Press, Cambridge, 

UK, 2003). 

[2] H. Lamb, On reciprocal theorems in dynamics, Proc. London Math. Soc. 19, 144 (1888). 

[3] R. Fleury, D. L. Sounas, M. R. Haberman, and A. Alù, Nonreciprocal acoustics, Acoust. 

Today 11, 14 (2015). 

[4] S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, 

Nat. Rev. Mater. 1, 16001 (2016). 

[5] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Sound isolation and giant 

linear nonreciprocity in a compact acoustic circulator, Science 343, 516 (2014). 

[6] B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nat. Mater. 9, 

989 (2010). 

[7] G. Trainiti, and M. Ruzzene, M. Non-reciprocal elastic wave propagation in spatiotemporal 

periodic structures, New J. Phys. 18, 083047 (2016). 

[8] K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. 

Vakakis, and R. W. Boyd, Breaking Lorentz reciprocity to overcome the time-bandwidth limit in 

physics and engineering, Science 356, 1260 (2017). 

[9] X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound 

propagation through a sonic-crystal-based acoustic diode, Phys. Rev. Lett. 106, 084301 (2011). 

[10] N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-based acoustic switching and 

rectification, Nat. Mater. 10, 665 (2011). 



 

42 
 

[11] P. Wang, L. Lu, and K. Bertoldi, Topological phononic crystals with one-way elastic edge 

waves, Phys. Rev. Lett. 115, 104302 (2015). 

[12] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and W. T. M. Irvine, 

Topological mechanics of gyroscopic metamaterials, Proc. Natl. Acad. Sci. 112, 14495 (2015). 

[13] Z. Zhang, I. Koroleva, L. I. Manevitch, L. A. Bergman, and A. F. Vakakis, Nonreciprocal 

acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice, Phys. 

Rev. E 94, 032214 (2016). 

[14] D. L. Sounas, and A. Alù, Non-reciprocal photonics based on time modulation, Nat. 

Photonics 11, 774 (2017). 

[15] E. Cassedy, and A. Oliner, Dispersion relations in time-space periodic media: Part I-stable 

interactions, Proc. IEEE 51, 1342 (1963). 

[16] E. Cassedy, Dispersion relations in time-space periodic media: Part II-Unstable interactions, 

Proc. IEEE 55, 1154 (1967). 

[17] N. Swinteck, S. Matsuo, K. Runge, J.O. Vasseur, P. Lucas, and P.A. Deymier, Bulk elastic 

waves with unidirectional backscattering-immune topological states in a time-dependent 

superlattice, J. Appl. Phys. 118, 063103 (2015). 

[18] H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, and G. L. Huang, Non-reciprocal wave 

propagation in modulated elastic metamaterials, Proc. Royal Soc. A 473, 20170188 (2017). 

[19] H. Nassar, H. Chen, A. Norris, and G. Huang, Non-reciprocal flexural wave propagation in 

a modulated metabeam, Extreme Mech. Lett. 15, 97 (2017). 



 

43 
 

[20] M. H. Ansari, M. A. Attarzadeh, M. Nouh, and M. A. Karami, Application of 

magnetoelastic materials in spatiotemporally modulated phononic crystals for nonreciprocal 

wave propagation, Smart Mater. Struct. 27, 015030 (2017). 

[21] K. Yi, M. Collet, and S. Karkar, Frequency conversion induced by time-space modulated 

media, Phys. Rev. B 96, 104110 (2017). 

[22] H. Nassar, X. Xu, A. Norris, and G. Huang, Modulated phononic crystals: Non-reciprocal 

wave propagation and Willis materials, J. Mech. Phys. Solids 101, 10 (2017). 

[23] S. P. Wallen, and M. R. Haberman, Non-reciprocal wave phenomena in spring-mass chains 

with effective stiffness modulation induced by geometric nonlinearity, Phys. Rev. E 99, 013001 

(2019). 

[24] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, and C. Daraio, Observation of 

nonreciprocal wave propagation in a dynamic phononic lattice, Phys. Rev. Lett. 121, 194301 

(2018). 

[25] J. Gump, I. Finkler, H. Xia, R. Sooryakumar, W. J. Bresser, and P. Boolchand, Light-

induced giant softening of network glasses observed near the mean-field rigidity transition, Phys. 

Rev. Lett. 92, 245501 (2004). 

[26] N. Swinteck, S. Matsuo, K. Runge, J. O. Vasseur, P. Lucas, and P. A. Deymier, Photoplastic 

effects in chalcogenide glasses: a review, Phys. Status Solids (b) 246, 1773 (2009). 

[27] F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and M. Ruzzene, Piezoelectric resonator 

arrays for tunable acoustic waveguides and metamaterials, J. Appl. Phys. 112, 064902 (2012). 



 

44 
 

[28] Y. Y. Chen, G. L. Huang, and C. T. Sun, Band gap control in an active elastic metamaterial 

with negative capacitance piezoelectric shunting, J. Vib. Acoust. 136, 061008 (2014). 

[29] Y. Y. Chen, R. Zhu, M. V. Barnhart, and G. L. Huang, Enhanced flexural wave sensing by 

adaptive gradient-index metamaterials, Sci. Rep. 6, 35048 (2016). 

[30] G. Wang, J. Cheng, J. Chen, and Y. He, Multi-resonant piezoelectric shunting induced by 

digital controllers for subwavelength elastic wave attenuation in smart metamaterial, Smart 

Mater. Struct. 26, 025031 (2017). 

[31] Y. Y. Chen, G. K. Hu, and G. L. Huang, An adaptive metamaterial beam with hybrid 

shunting circuits for extremely broadband control of flexural waves, Smart Mater. Struct. 25, 

105036 (2016). 

[32] Y. Y. Chen, G. K. Hu, and G. L. Huang, A hybrid elastic metamaterial with negative mass 

density and tunable bending stiffness, J. Mech. Phys. Solids. 105, 179 (2017). 

[33] X. P. Li, Y. Y. Chen, G. K. Hu, and G. L. Huang, A self-adaptive metamaterial beam with 

digitally controlled resonators for subwavelength broadband flexural wave attenuation, Smart 

Mater. Struct. 27, 045015 (2018). 

[34] K. Danas, S. V. Kankanala, and N. Triantafyllidis, Experiments and modeling of iron-

particle-filled magnetorheological elastomers, J. Mech. Phys. Solids 60, 120 (2012). 

[35] E. J. Reed, M. Soljačić, and J. D. Joannopoulos, Reversed Doppler effect in photonic 

crystals, Phys. Rev. Lett. 91, 133901 (2003). 

[36] M. Vachon, Dynamic response of 3D printed beams with damping layers, (Massachusetts 

Institute of Technology, Thesis, 2015). 



 

45 
 

 


