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Abstract

The dynamics of a 90◦ domain wall in an antiferromagnetic nanostrip driven by the current-

induced spin-orbit torque are theoretically examined in the presence of thermal fluctuations. A

soliton-type equation of motion is developed on the basis of energy balance between the driving

forces and dissipative processes in terms of the domain wall velocity. Comparison with micromag-

netic simulations in the deterministic conditions shows good agreement in both the transient and

steady-state transport. When the effects of thermal fluctuations are included via a stochastic treat-

ment, the results clearly indicate that the dispersion in the domain wall position can be controlled

electrically by tailoring the strength and duration of the driving current mediating the spin orbital

torque in the antiferromagnet. More specifically, the standard deviation of the probability distri-

bution function for the domain wall movement can be tuned widely while maintaining the average

position unaffected. Potential applications of this unusual functionality include the probabilistic

computing such as Bayesian learning.
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I. INTRODUCTION

Effective control of the domain walls (DWs) in the antiferromagnetic (AFM) materials

remains a vital challenge for the prospective spintronic applications [1, 2]. Despite the chal-

lenge, they also offer key advantages over the ferromagnetic counterparts. For instance, there

are numerous antiferromagnets with very stiff DWs due to the strong internal exchange in-

teraction, leading to a low effective mass of the DW and no Walker-breakdown. Accordingly,

the AFM DW device is expected to provide a much faster speed of operation and the cor-

responding advantages in the driving current (requiring much less energy) [1, 2]. A number

of approaches explored thus far have demonstrated the desired control. For instance, the

effect of the spin-transfer torque was able to manipulate the AFM DWs [3–5]. Similarly,

the AFM DW transfer can be induced as a result of the spin-wave mediated forces [6, 7],

which are enhanced by the Dzyaloshinskii-Moriya interaction [8]. In fact, the Dzyaloshinskii-

Moriya interaction also assists the DW movement in the presence of a rotating magnetic

field [9]. Further, the normally ineffective magnetic field was shown to control the AFM DW

velocity when its spatial gradient is combined with a charge current or more precisely, the

spin transfer effect [10, 11]. However, the most accessible mechanism for the control of DW

dynamics in the AFM thin films appears to be the spin-orbit torque (SOT). The electric

current through a non-centrosymmetric antiferromagnet generates a SOT associated with

a staggered (or Néel-order) field [12–14]. More specifically, a relativistic field-like torque

can originate from the current-induced local spin polarization with alternating sign between

the two sublattices and can couple effectively to the Néel order. Nevertheless, the relevant

examples can be found only in a limited class of materials with strong spin-orbit coupling

and broken inversion symmetry (e.g., CnMnAs). An alternative, possibly more widely appli-

cable approach is to exploit the anti-damping SOT induced at the interface with a strongly

spin-orbit coupled material such as a heavy metal [15].

Specific physical details aside, all of the aforementioned studies have considered the de-

terministic dynamics essentially in the limit of zero temperature. Furthermore, most of them

have focused on the AFM textures in the form of 180◦ DWs, posing an additional challenge

in discriminating the domains with antiparallel Néel vectors. For instance, electrical detec-

tion of 180◦ DW switching or movement is outside the practical realm at the moment as the

correspondent magnetoresistance is extremely small (see Ref. [2] for additional details). A
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more promising alternative may be to utilize the 90◦ DWs in light of the recent experimental

advances in their manipulation and detection [13]. In fact, 90◦ rotation of the Néel-vector

orientation has already been identified in the electrical measurements with a large signal in

the anisotropic magnetoresistance [13, 14] or its tunneling variety [16]. Furthermore, the

induced rotation was shown to result in 90◦ DWs [14]. On the other hand, the theoreti-

cal understanding on the dynamics of 90◦ DWs in the antiferromagnets has received only

limited attention [12]. Since the operation is predominantly at the ambient conditions, the

effect of finite temperature and subsequent stochastic nature of the DW dynamics also add

interesting perspectives.

The uncertainty in the final DW position is evidently undesirable for memory or Boolean

logic applications. On the other hand, controllable stochasticity of the output signals with a

desired distribution function has begun to draw much attention since its prospective utiliza-

tion in machine learning or Bayesian computing. Physical implementation of the concept of

probabilistic computing has so far relied predominantly on the external generators of random

numbers. While the alternative approaches have also been explored, they tend to involve

complex hardware arrangements (see, for instance, Ref. [17] and the references therein). It

is clearly desirable if a single device or structure can meet the needs with simple electrical

control. The probabilistic effect of the AFM DW motion may offer this unique functionality.

In the present work, we theoretically analyze the 90◦ DW motion in an AFM thin film

driven by the SOT pulse at finite temperatures. A soliton-type treatment is developed from

the Lagrangian representation to examine the DW dynamics including the effect of thermal

fluctuations. The results clearly illustrate the characteristics of the AFM DWmotion. When

subjected to a SOT pulse, the DW undergoes acceleration and then velocity saturation as

the dissipation compensates the anti-damping torque. Once the driving force is turn off,

the inertial phase follows much like an actual particle with non-zero mass. The thermal

fields introduce substantial deviations in the DW trajectories depending on the strength

and the duration of the driving SOT pulse. The corresponding variation in the probability

distribution of the DW position indicates a broad range that can be tuned electrically.
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II. THEORETICAL FORMULATION

The structure under consideration is shown in Fig. 1(a). It is essentially a bilayer struc-

ture of an AFM nanostrip and a strongly spin-orbit coupled material that can benefit from

the current induced SOT mentioned earlier [15]. A vertical tunnel junction can be added

on top for electrical measurement of the DW position via the tunneling anisotropic magne-

toresistance. As the x-directional current flow induces the effective field along the z axis

in the present set-up, the magnetic domains need to be oriented normal to this axis (z) for

efficiency. Accordingly, an antiferromagnet with biaxial anisotropy in the x-y easy plane

(such as those with tetragonal D4h symmetry) is assumed for the desired 90◦ DW. The

metallic materials are expected to offer a convenient choice for experimental realization and

detection, while the similar physical principles can be applied to the dielectric systems as

well.

In the analysis, the relatively small cross-section of the AFM strip makes it possible to

ignore the Néel-vector variation in the y-z plane, reducing the problem to the dynamics in

the 1+1 space-time (x,t) coordinates with no additional variables. Thus, the sigma-model

equations developed earlier in the literature can be applied to describe the Néel-vector

dynamics [18, 19]. Since this approach predicts the Néel-vector reorientation only in the

x-y plane (provided that the SOT is applied along the hard z-axis), the calculation can

take advantage of the Lagrangian representation L in terms of the azimuthal angle ϕ(x, t)

between the two easy axes (using the x as the reference). A similar formalism developed

earlier for an easy-plane antiferromagnet [20] can be directly generalized to the case of biaxial

anisotropy with the following term for the anisotropy energy,

Win =
K⊥

4
(n4

x + n4
y) =

K⊥

4
(1− 1

2
sin2 2ϕ) → −K⊥

8
sin2 2ϕ. (1)

Here, K⊥ (< 0) is the biaxial anisotropy constant in the easy x-y plane and nx(y) =

Lx(y)/ |L| = cosϕ (sinϕ) is the normalized representation n of the Néel vector L. The

constant term can be neglected without the loss of generality. Similarly, the contribution

of the z directional anisotropy K‖ (> 0) is not considered since nz does not appear in the

dynamical equations. Then, the dimensionless Lagrangian L = L/ |K⊥| can be reduced to

the canonical form in terms of dimensionless time t (= ωrt) and space x (= ωrx/vm); i.e.,

L =
1

2
ϕ̇2
t −

1

2
ϕ̇2
x −

1

8
sin2 2ϕ, (2)
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where ϕ̇i ≡ ∂
∂i
ϕ (i = x, t), ωr = γ

√
2HexHan denotes the zero-field AFM resonance frequency,

γ the gyromagnetic ratio, Han = |K⊥| /1
2
L the anisotropy field, Hex the exchange field

between the magnetic sublattices, and vm the magnon velocity.

The corresponding Euler-Lagrange equation for an open system subjected to the external

forces (i.e., torques) ρ = ρ(x, t) reads

ϕ̈tt − ϕ̈xx +
1

4
sin 4ϕ = ρ. (3)

The expression reproduces the sine-Gordon equation in terms of variable 4ϕ for a conserving

system (i.e., when ρ = 0) [18]. In this case, the basic solution of Eq. (3) can be written in

the form of a soliton moving with velocity v,

ϕ = ± arctan

[

exp

(

x− vt√
1− v2

)]

. (4)

The effective width δdw of the soliton (or the DW) can be estimated as π
√
1− v2. The ±

signs correspond to the ±y alignment of the Néel vector, respectively, at x → ∞ (i.e., far

away from the soliton). As these two directions are equivalent in the present analysis, the +

case is chosen for convenience. The corresponding Néel-vector texture n = (cosϕ, sinϕ, 0) is

shown in Fig. 1(b). Note that the velocity v is also normalized to vm following the definitions

of x and t (thus, |v| < 1).

Similarly to Ref. [15], the soliton representation [Eq. (4)] of the DW texture is treated as

an ansatz for the analysis of a non-conserving system with energy dissipation and external

forces. In such an approximation, only the DW velocity v = v(x, t) remains the actual

parameter describing the DW dynamics. To proceed further, the specific form for ρ is needed

in Eq. (3). The relevant contributions in the present analysis come from three terms−the

energy dissipation via damping, the anti-damping SOT from the driving current, and the

field-like torque from the thermal fluctuations. The resulting expression for ρ(x, t) is given

in dimensionless units as [20]

ρ = −2λϕ̇t + Φ(x, t)− ∂hth

∂t
, (5)

where λ (= δr/ωr) is the damping parameter related to the width δr of the AFM resonance

and hth (= γHth/ωr) is the normalized thermal field Hth. In addition, the second term

representing the anti-damping SOT of η(n×ẑ) · ṅt can be written more explicitly as

Φ(x, t) =
η

M2
L

Hex

2Han
, (6)
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where ML denotes the sublattice magnetization (≃ 1
2
L). The parameter η reflects the

strength of the spin-Hall current flowing into the AFM layer [15], through which a potential

dependence on position x and time t can be introduced. The reversal of the driving current

direction [J in Fig. 1(a)] flips the polarization of the spin-Hall current and thus the sign

(±) of the resulting torque Φ (accounting for the back and forth movement). As stated

earlier, Hth is a natural source of randomness in the DW trajectories and the dispersion

in its final location. With corresponding modifications to Eq. (5), the formalism discussed

above can also be applied to the DW transfer driven by the Néel SOT in the asymmetric

antiferromagnets [12].

The dynamics of the Néel-vector textures are first examined in the absence of thermal

fluctuations, where the current induced SOT unambiguously determines the DW motion.

Applying the ansatz of Eq. (4) sufficiently simplifies the problem to the balance of energy

flows to and from the DW, avoiding the need to solve Eqs. (3) and (5) directly. In this

context, the net mechanical energy of the DW with the Lagrangian given in Eq. (2) becomes

E(v) =

∫
(

1

2
ϕ̇2
t +

1

2
ϕ̇2
x +

1

8
sin2 2ϕ

)

dx. (7)

The range of integration can be safely set for the entire x-axis provided that the structure

is much longer than the DW width. Then, for a single 90◦ wall of Eq. (4), the calculation

yields

E(v) =
1

2
√
1− v2

, (8)

which corresponds to the 1/16 of the energy for the 360◦ kink described by the sine-Gordon

equation. The description in conventional energy units can be restored by multiplying Eq. (8)

by the factor AKvm/ωr and replacing v with v/vm. Here, A denotes the cross section of

the AFM thin film. Along with Eq. (8), the rate of net energy change (dE/dt) can also be

obtained from Eq. (5) as
∫

[Φ−2λϕ̇t]ϕ̇tdx. After some algebra, the balance of energy flow to

and from the AFM layer can be written finally in terms of an equation for the DW velocity

1

2λ

dv

dt
=
(

−v +Q
√
1− v2

)

(1− v2), (9)

where Q = π
2λ
Φ. The solution of this expression provides the trajectory of the DW in the

deterministic transport (i.e., no thermal fluctuations).

The equation of motion for the DW can be solved analytically under simple conditions.

Assuming the initial stationary state x = 0 at t = 0 and a constant SOT Q applied for a
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duration tp, Eq. (9) yields

vQ(t) =
Q(1− e−2λt)

√

Q2(1− e−2λt)2 + 1
, 0 < t ≤ tp. (10)

The DW velocity increases linearly as vQ(t) = 2λQt = πΦt in the beginning stage and

then shows a saturation pattern once the dissipation compensates the anti-damping SOT as

t ≫ 1/2λ (see also Ref. [18]),

vs =
Q

√

Q2 + 1
. (11)

This steady-state velocity vs reaches the maximal magnon velocity vm (=1) in the limit of

λ → 0 or Q → ∞. Another interesting observation from Eq. (9) is that the velocity does

not drop to zero even after the driving force is turned off. With the initial velocity of vp at

t = tp [i.e., vp = vQ(tp)], the solution illustrates the characteristic inertial motion with

v0(t) =
vp

√

e4λ(t−tp)(1− v2p) + v2p

, t > tp. (12)

The dynamics overall appear much like those of actual particles with non-zero mass. In

contrast, the DWs in a ferromagnet would stop moving as soon as the external torque ceases.

Note that the velocity can take the negative sign following the parameter Q (thus, the anti-

damping SOT Φ). This simply indicates that the DW is moving in the −x direction as

briefly discussed earlier. In the current analysis, we implicitly assume the driving conditions

that result in the transport along the +x direction using x = 0 as the reference (i.e., positive

Q).

The AFM DW trajectory in the real space can be subsequently calculated by integrating

the velocity over time. When the time of interest is longer than the pulse duration, the

distance of travel includes the contribution by the inertia given by

xp(t) =
1

4λ
ln

(

1 + vp
1− vp

× 1− v0(t)

1 + v0(t)

)

, t > tp. (13)

Interestingly, this expression also characterizes the length that a DW moving with the ve-

locity vp would travel unpropelled before losing all of the energy and coming to a stop (i.e.,

via inertia):

xp(t → ∞) ⇒ xin(vp) =
1

4λ
ln

1 + vp
1− vp

. (14)

Another factor that must be considered in the DWmovement is the effect of the coercivity.

In the real structures, the defects like the grain boundaries and impurities may pin the
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DW. They keep the DW from slipping via the Brownian thermal motion. Otherwise, the

diffusive dispersion in the DW position would diverge as time t goes to infinity [27]. The

present formalism can readily account for the non-zero coercivity by introducing a lower

bound to the kinetic energy for displacement. In this picture, the DW gets pinned as soon

as the kinetic energy [E(v) − E(0); see Eq. (8)] becomes smaller than the trapping energy

HcMLAδdw, where Hc denotes the effective field for coercivity. The impact of finite coercivity

is particularly relevant during the inertial phase of the DW transport where the unpropelled

movement is susceptible to the external factors. While the DW is being driven (t ≤ tp) on

the other hand, we may not need an additional consideration so long as the applied SOT

is sufficiently strong. A corresponding criterion can be expressed in terms of the critical

velocity vc =
√

4πHcML/ |K⊥| provided vc ≪ 1. Since Hc cannot be determined a priori in

terms of the material parameters, vc is treated as an independent phenomenological constant

for the coercivity of a particular structure.

The expressions given above provide a complete solution to the problem of the DW

dynamics driven by an electric current pulse. Under the pulse duration tp with amplitude

Q, the net displacement becomes

x0 = xQ(tp) + xin(vp)− xin(vc), (15)

where xQ(tp) [=
∫ tp
0

vQ(t)dt] denotes the distance traveled while being driven and xin(vc)

accounts for the reduction in the free flight (i.e., the inertial transport) due to the coercivity.

Conversely, they can also be solved to deduce the relationship between tp and Q for the

desired x0. It is evident that a shorter pulse duration is sufficient when the SOT amplitude

is stronger and vice versa.

III. RESULTS AND DISCUSSION

A. Model validation

Before proceeding further, it is necessary to examined the validity of the adopted treat-

ment based on the soliton description [Eq. (4)]. For this, a direct comparison is made with

the micromagnetic simulation of the AFM DW dynamics [21]. The calculations are carried

out for the AFM slab with the dimensions of 3000×50×20 nm3. The numerical parameters

adopted from typical AFM materials (e.g., Mn2Au [22–24]) are the sublattice magnetization
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ML = 780 G, the anisotropy energies K⊥ = −2.1× 105 erg·cm−3, K‖ = 6.6× 107 erg·cm−3,

and the exchange stiffness Aex = 1.7× 10−6 erg/cm. These correspond to the exchange field

Hex = 1.3× 107 G, the anisotropy field Han = 300 G, the resonant frequency ωr = 2π× 160

GHz, and the magnon velocity vm = 3 × 106 cm/s. In addition, the Gilbert damping con-

stant αG is taken to be 0.001 that yields the damping parameter λ = 0.104. The relation

between the SOT Q and the current density J (i.e., Q/J) is estimated to be 0.114 nm2/nA

with the effective spin-Hall angle of 0.1 [15]. The effect of coercivity is not considered for

the comparison due to the limitation of the micromagnetic simulation.

The calculations reveal the non-linear dependence of the DW velocity on the pulse in-

tensity. As shown in Fig. 2(a), the AFM DW when subjected to an SOT pulse undergoes

acceleration initially and then velocity saturation with the dissipation compensating the

anti-damping SOT. Once the driving force is turn off, the inertial phase follows. Using

the dimensional units, both the analytical solution and the results of the micromagnetic

simulations are plotted in Fig. 2(b,c). A good agreement is observed between the two ap-

proaches in both the steady-state transport and the transient conditions with the inertial

motion [Figs. 2(b) and 2(b), respectively], providing credence to the validity of the devel-

oped model. With the soliton ansatz verified, Eq. (9) can be expanded to account for the

stochastic thermal motions in the DW dynamics at finite temperatures.

B. Effects of thermal fluctuations

The analysis of the thermal field influence on the DW transport supposes evaluation of

thermal fluctuations hth along the entire DW path. On the other hand, the perturbations

away from the location of the wall texture are unlikely to affect the DW dynamics. The actual

range of the AFM channel where the influence of random motions needs to be considered

is the relatively narrow stretch corresponding to the wall texture (i.e., the DW width δdw).

Thus the problem can be approximated to the analysis of the fluctuation effect in the finite

volume of V = A×δdw associated with the soliton representation. Accordingly, the influence

of the thermal field can be accounted for by conveniently adding of a randomly fluctuating

field-like torque [i.e., − π
2λ

d
dt
hth(t)] to the current induced SOT Q in the dynamical equation

governing the soliton motion [see also Eq. (5)].

In describing the thermal field hth(t), the approximation based on a series of random step
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functions used commonly in the ferromagnetic systems cannot be applied here due to the

explicit dependence on the time derivative [25]. As an alternative, a spectral representation

is adopted in the form of a Fourier series expansion with random amplitudes [26]. This rep-

resentation allows straightforward introduction of the upper and lower bounds in the noise

spectrum by considering the auto-correlation time τc and the characteristic Néel-vector re-

laxation time τm (more precisely, the inverses 2π/τc and 2π/τm, respectively). Furthermore,

the fact that the lower truncation frequency 2π/τm corresponds to the broadening of the

AFM resonant frequency δr (= λωr) offers a physical ground for the discretization of the

spectral domain in the comparable intervals. As the response of a damped Néel-vector mo-

tion becomes practically invariant to the perturbation frequency swing in the range of δr

due to the broadening, the actual noise spectrum can be discretized likewise.

In other words, the AFM response to the thermal noise is virtually equivalent to a series

of sinusoidal perturbations with random amplitudes and the frequencies nδr (n = 1, 2, ..., N ,

where N is given by τm/τc). The fluctuation dissipation theorem defines the amplitude of

fluctuating field in the form [26],

hth(t) =
δr
ωr

(

2kBT

NV |K⊥|

)1/2
(

N
∑

n=1

αn sinn
δr
ωr

t+

N
∑

n=1

βn cosn
δr
ωr

t

)

, (16)

where kBT denotes the thermal energy, n δr
ωr

t is actually nδrt in physical units, and

1
2N

∑N
n=1 〈α2

n + β2
n〉 = 1. Note that the noise expression applies only for a duration up

to τm in the time domain due to the relaxation. A time period longer than this interval

requires repeated random selections. Equation (16) is clearly differentiable that can be di-

rectly incorporated into Eq. (9). The exact details of the noise model including a particular

choice of the material parameters are not highly crucial in examining the possible electrical

control in the thermally induced dispersion of the DW position.

Before accounting for the thermal component, Fig. 3 first examines the deterministic

relation between the necessary SOT pulse strength and the duration for a desired travel

distance x0. The results are plotted in a normalized form in terms of 2λtp and 2λx0 since

it conveniently circumvents the explicit dependence on other physical parameters [see, for

instance, Eqs. (10) and (14)]. The coercivity of vc = 0.01 is considered as well to reflect the

conditions in the realistic structures [Eq. (15)]. As shown, both short and strong (red) as

well as long and weak (blue) pulses can shift the DW by the same distance. The obtained

relation serves as the guideline for the desired mean or average motion of the AFM DWs.

10



Once the influence of thermal fluctuations is accounted for, the DW dynamics deviates

from the prescribed path [see the inset to Fig. 4(a)]. The resulting dispersion in the final

position xdw around x0 can be calculated by numerically solving Eq. (9) in the presence of the

random field-like torque − π
2λ

d
dt
hth(t). A sufficiently large number of iterations Ni are needed

to ensure a statistically reliable outcome due to the stochastic nature of the calculation.

Likewise the magnitude of the auto-correlation time τc is treated empirically. Since our

analysis is not significantly affected by the exact value of τc so long as it is sufficiently

shorter than τm, a small constant fraction (τc = 0.01τm; N = 100) is assumed for simplicity

in Eq. (16). For a set of given conditions, the calculations are repeated 250 times (= Ni),

each with an independently selected hth(t) pattern randomly varying in time.

Figure 4(a) shows the typical probability distribution of the DW position for two SOT

pulses at 300 K. While both pulses are designed to shift the DW by the same distance

on average (see also two points marked in Fig. 3), the dispersion as the result of thermal

motion shows a significant difference. The short and strong pulse (red; Q = 0.21) produces

a much narrower distribution than the long and weak counterpart (blue; Q = 0.1). It

can be intuitively understood that the DW driven by a strong pulse is less likely to be

influenced by the comparatively minor thermal fluctuations. At the same time, the DW is

exposed to the random motions for a shorter duration in this case for it reaches the final

destination quicker and then pinned by the coercivity. It is also interesting to note that the

mean position 〈xdw〉 averaged over Ni iterations is indeed given by x0 as designed (from the

deterministic analysis), with high accuracy. Since the pulse strength and duration can be

controlled electrically, the probability distribution function in the DW position can be tuned

likewise (i.e., narrower ⇄ broader). Combined with the structure utilizing the anisotropic

magnetoresistance as shown in Fig. 1(a) [13, 16, 28], it can be translated into a corresponding

probabilistic distribution in the electrical output signal − an essential component in the

probabilistic computing or Bayesian learning.

Finally, Fig. 4(b) plots the normalized standard deviation in the DW position ∆ =

〈(xdw/ 〈xdw〉 − 1)2〉1/2 as a function of Q for three average displacements at T = 300 K.

The calculations of ∆ at different temperatures reproduce a similar dependence on Q with

a prefactor that is proportional to
√
T . In fact, this

√
T scaling is consistent with that

anticipated from the fluctuation dissipation theorem [i.e., the temperature dependence of

the fluctuating field amplitude; see Eq. (16)]. The observed large differences in ∆ indicate
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that a broad range of probability distributions can be realized with a single AFM device.

Moreover, the normalized deviation appears to be only weakly dependent on x0 or 〈xdw〉
(thus, on the pulse duration tp for a given Q). Clearly, the determining factor is the pulse

strength Q, to which ∆ exhibits an inverse proportionality.

IV. SUMMARY

The fluctuating thermal fields in the antiferromagnets are identified as a potential mecha-

nism to realize a probabilistic distribution in the electrical output signal, whose characteris-

tic properties such as the standard deviation may also be tailored conveniently by electrical

control. To this end, the dynamics of a 90◦ DW driven by the current-induced SOT is

theoretically examined at finite temperatures in a thin-film AFM structure. A soliton-type

representation based on an energy balance equation is developed to describe the DW motion

in combination with a stochastic thermal field model for AFM nano-particles. The calcu-

lation results clearly illustrate that both the average displacement of the DW position and

its thermally induced dispersion can be modulated electrically by simply tuning the driving

SOT strength and the duration. The corresponding probabilistic response in the electrical

output signal via the magnetoresistance offers an effective means to realize the probability

distribution functions that can be ”trained”. This unusual functionality may provide a key

component in the emerging probabilistic computing and machine learning architectures.
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FIG. 1: (a) Schematic illustration of the antiferromagnet-based DW device under consideration.

The electric current J through the heavy metal (HM) layer generates the spin current, providing

the SOT to the AFM strip necessary for the DW motion. The 90◦ DW can travel in either direction

(±x) that is determined by the current flow in the HM layer. The shift in the DW position can

be detected through the top contact either via the anisotropic magnetoresistance or its tunneling

variety (TAMR) as shown. (b) Spin textures of the 90◦ Néel DW with the heavy z-axis and the

easy x- and y-axes.
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FIG. 2: Comparison of the calculation results with the micromagnetic simulations in the deter-

ministic transport (i.e., without thermal motions). (a) Characteristic evolution of the 90◦ DW

velocity in the thin-film AFM strip under a SOT pulse with duration tp. (b) Steady-state DW

velocity vs. the driving current density in the HM layer. (c) DW position as a function of time for

different SOT pulse durations. The vertical arrows indicates the instants when the SOT is turned

off. The driving current density J is fixed at 300 nA/nm2. In (b,c), the data points are from

micromagnetic simulations while the solid curves show the results from the model calculations. An

excellent agreement is observed between them in both the steady-state and transient transport.

The effect of coercivity is not considered here.
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FIG. 3: Calculated SOT pulse strength vs. the duration for three travel distances x0 in the de-

terministic transport. The results are plotted in normalized units in terms of 2λtp and 2λx0 to

circumvent the explicit dependence on other physical parameters. The coercivity of vc = 0.01 is

also included in the analysis. The blue and red points highlight two different conditions (Q = 0.1

and 0.21, respectively) that shift the DW by the same distance.
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FIG. 4: (a) Probability distribution of the DW position xdw at 300 K calculated for two SOT pulses

(Q = 0.21 and Q = 0.1 corresponding to the red and blue marks in Fig. 3, respectively). The hor-

izontal axis shows the normalized deviation from the average position 〈xdw〉 which matches with

x0 from the deterministic analysis. The inset schematically illustrates the effect of thermal fluctu-

ations on the DW velocity. (b) Normalized standard deviation in the DW position as a function

of the SOT strength for three average displacements x0. The pulse duration corresponding to each

Q and x0 can be found in Fig. 3. The solid curve represents a fit with an inverse proportionality

aQ−1 (a = 0.012). The coercivity (vc = 0.01) is accounted for in both (a) and (b).
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