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Matrix optimization on universal unitary photonic devices
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Universal unitary photonic devices can apply arbitrary unitary transformations to a vector of input
modes and provide a promising hardware platform for fast and energy-efficient machine learning
using light. We simulate the gradient-based optimization of random unitary matrices on universal
photonic devices composed of imperfect tunable interferometers. If device components are initialized
uniform-randomly, the locally-interacting nature of the mesh components biases the optimization
search space towards banded unitary matrices, limiting convergence to random unitary matrices.
We detail a procedure for initializing the device by sampling from the distribution of random unitary
matrices and show that this greatly improves convergence speed. We also explore mesh architecture
improvements such as adding extra tunable beamsplitters or permuting waveguide layers to further
improve the training speed and scalability of these devices.

I. INTRODUCTION

Universal multiport interferometers are optical net-
works that perform arbitrary unitary transformations on
input vectors of coherent light modes. Such devices can
be used in applications including quantum computing
(e.g. boson sampling, photon walks) [1–4], mode un-
scramblers [5], photonic neural networks [6–8], and find-
ing optimal channels through lossy scatterers [9]. While
universal photonic devices have been experimentally real-
ized at a relatively small scale [5, 6], commercial applica-
tions such as hardware for energy-efficient machine learn-
ing and signal processing can benefit from scaling the
devices to up to N = 1000 modes. At this scale, fabrica-
tion imperfections and components with scale-dependent
sensitivities can negatively affect performance.

One canonical universal photonic device is the rectan-
gular multiport interferometer mesh [10] shown in Figure
1 interfering N = 8 modes. In multiport interferome-
ters, an N -dimensional vector is represented by an ar-
ray of modes arranged in N single-mode waveguides. A
unitary operation is applied to the input vector by tun-
ing Mach-Zehnder interferometers (MZIs) represented by
the red dots of Figure 1. Each MZI is a two-port op-
tical component made of two 50:50 beamsplitters and
two tunable single-mode phase shifters. Other mesh ar-
chitectures have been proposed, such as the triangular
mesh [11] (shown in Appendix C), the universal cascaded
binary tree architecture [12], and lattice architectures
where light does not move in a forward-only direction
[13–15].

The scalability of optimizing mesh architectures, es-
pecially using gradient-based methods, is limited by the
ability of the locally interacting architecture to control
the output powers in the mesh. If phase shifts in the
mesh are initialized uniform-randomly, light propagates
through the device in a manner similar to a random walk.
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FIG. 1. Mesh diagram representing the locally interacting
rectangular mesh for N = 8. The inputs (and single-mode
phase shifts at the inputs) are represented by blue triangles.
Outputs are represented by purple squares. The MZI nodes
are represented by red dots labelled with sensitivity index
αn` (e.g., α44 = 7 is the most sensitive node). The nodes
represent the Givens rotation Un (in orange) at vertical layer
` (in green). Each photonic MZI node can be represented
with 50:50 beamsplitters B (red) and phase shifters Rθ, Rφ
(orange) with required ranges 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

The off-diagonal, nonlocal elements of the implemented
unitary matrix tend to be close to zero because transi-
tions between inputs and outputs that are far apart have
fewer paths (e.g., input 1 and output 8 in Figure 1 have
a single path). The resulting mesh therefore implements
a unitary matrix with a banded structure that is increas-
ingly pronounced as the matrix size increases.

In many applications such as machine learning [6] and
quantum computing [2, 16], we avoid this banded unitary
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matrix behavior in favor of random unitary matrices. A
random unitary matrix is achieved when the device phase
shifts follow a distribution derived from random matrix
theory [16–20]. In the random matrix theory model, we
assign a sensitivity index to each component that in-
creases towards the center of the mesh, as shown in Fig-
ure 1. The more sensitive components toward the center
of the mesh require higher transmissivities and tighter
optimization tolerances. If the required tolerances are
not met, the implemented unitary matrix begins to show
the undesired banded behavior.

In Section II, we introduce the photonic mesh architec-
ture and sources of error that can exacerbate the banded
unitary matrix problem. In Section III, we explicitly
model the component settings to implement a random
unitary matrix and ultimately avoid the banded unitary
matrix problem. We propose a “Haar initialization” pro-
cedure that allows light to propagate uniformly to all out-
puts from any input. We use this procedure to initialize
the gradient-based optimization of a photonic mesh to
learn unknown random unitary matrices given training
data. We show that this optimization converges even in
the presence of significant simulated fabrication errors.

In Sections IV and V, we propose and simulate two al-
terations to the mesh architecture that further improve
gradient-based optimization performance. First, we add
redundant MZIs in the mesh to reduce convergence er-
ror by up to five orders of magnitude. Second, we per-
mute the mesh interactions while maintaining the same
number of tunable components, which increases allow-
able tolerances of phase shifters, decreases off-diagonal
errors, and improves convergence time.

II. PHOTONIC MESH

We define the photonic mesh when operated perfectly
and then discuss how beam splitter or phase shift errors
can affect device performance.

A. Photonic unitary implementation

A single-mode phase shifter can perform an arbitrary
U(1) transformation eiφ on its input. A phase-modulated
Mach-Zehnder interferometer (MZI) with perfect (50 :
50) beamsplitters can apply to its inputs a unitary trans-
formation U of the form:

U(θ, φ) := RφBRθB

=

[
eiφ 0
0 1

]
1√
2

[
1 i
i 1

] [
eiθ 0
0 1

]
1√
2

[
1 i
i 1

]

= ie
iθ
2

[
eiφ sin θ

2 eiφ cos θ2
cos θ2 − sin θ

2

]
,

(1)

where B is the beamsplitter operator, Rθ, Rφ are upper
phase shift operators. Equation 1 is represented diagram-

matically by the configuration in Figure 1.1 If one or two
single-mode phase shifters are added at the inputs, we
can apply an arbitrary SU(2) or U(2) transformation to
the inputs, respectively.

We define the transmissivity and reflectivity of the MZI
as:

t := cos2
(
θ

2

)
= |U12|2 = |U21|2

r := sin2

(
θ

2

)
= 1− t = |U11|2 = |U22|2.

(2)

In this convention, when θ = π, we have r = 1, t = 0 (the
MZI “bar state”), and when θ = 0, we have r = 0, t = 1
(the MZI “cross state”).

If there are N input modes and the interferometer is
connected to waveguides n and n+ 1 then we can embed
the 2 × 2 unitary U from Equation 1 in N -dimensional
space with a locally-interacting unitary “Givens rota-
tion” Un defined as:

Un :=

n n+ 1





1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · U11 U12 · · · 0 n
0 · · · U21 U22 · · · 0 n+ 1
...

...
...

. . .
...

0 · · · 0 0 · · · 1

. (3)

All diagonal elements are 1 except those labeled U11 and
U22, which have magnitudes of

√
r =
√

1− t, and all off-
diagonal elements are 0 except those labeled U12 and U21,
which have magnitudes of

√
t.

Arbitrary unitary transformations can be implemented
on a photonic chip using only locally interacting MZIs
[11]. In this paper, we focus on optimizing a rectangular
mesh [10] of MZIs; however, our ideas can be extended
to other universal schemes, such as the triangular mesh
[22], as well.

In the rectangular mesh scheme [10] of Figure 1, we

represent ÛR ∈ U(N) in terms of N(N − 1)/2 lo-
cally interacting Givens rotations Un and N single-mode
phase shifts at the inputs represented by diagonal unitary
D(γ1, γ2, . . . γN ):

ÛR :=

N∏

`=1

∏

n∈S`,N
Un(θn`, φn`) ·D(γ1, γ2, . . . γN ), (4)

where our layer-wise product left-multiplies from ` = N
to 1,2 the single-mode phase shifts are γn ∈ [0, 2π), and

1 Other configurations with two independent phase shifters be-
tween the beamsplitters B are ultimately equivalent for photonic
meshes [21].

2 In general, for matrix products for a sequence {M`}, we define

the multiplication order
∏N
`=1M` = MNMN−1 · · ·M1.
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where the Givens rotations are parameterized by θn` ∈
[0, π], φn` ∈ [0, 2π).3 We define the top indices of each
interacting mode for each vertical layer as the set S`,N =
{n ∈ [1, 2, . . . N − 1] | n (mod 2) ≡ ` (mod 2)}. This
vertical layer definition follows the convention of Refs.
[7, 23] and is depicted in Figure 1, where ` represents the
index of the vertical layer.

B. Beamsplitter error tolerances

The expressions in Equations 1 and 4 assume perfect
fabrication. In practice, however, we would like to sim-
ulate how practical devices with errors in each transfer
matrix B,Rφ, Rθ in Equation 1 impact optimization per-
formance.

In fabricated chip technologies, imperfect beamsplit-
ters B can have a split ratio error ε that change the be-
havior of the red 50:50 coupling regions in Figure 1 or B
in Equation 1. The resultant scattering matrix Uε with
imperfect beamsplitters Bε can be written as:

Bε :=
1√
2

[√
1 + ε i

√
1− ε

i
√

1− ε
√

1 + ε

]

Uε := RφBεRθBε.

(5)

As shown in Appendix B, if we assume both beamsplit-
ters have identical ε, we find tε := t(1− ε2) ∈ [0, 1− ε2] is
the realistic transmissivity, rε := r + t · ε2 ∈ [ε2, 1] is the
realistic reflectivity, and t, r are the ideal transmissivity
and reflectivity defined in Equation 2.

The unitary matrices in Equation 5 cannot express the
full transmissivity range of the MZI, with errors of up to
ε2 in the transmissivity, potentially limiting the perfor-
mance of greedy progressive photonic algorithms [24–26].
Our Haar phase theory, which we develop in the following
section, determines acceptable interferometer tolerances
for calibration of a “perfect mesh” consisting of imperfect
beamsplitters [21] given large N . We will additionally
show that simulated photonic backpropagation [7] with
adaptive learning can adjust to nearly match the perfor-
mance of perfect meshes with errors as high as ε = 0.1
for meshes of size N = 128.

C. Phase shift tolerances

Another source of uncertainty in photonic meshes is
the phase shift tolerances of the mesh which affect the
matrices Rθ, Rφ of Equation 1, shown in orange in Fig-
ure 1. Error sources such as thermal crosstalk or envi-
ronmental drift may result in slight deviance of phase

3 Since γn, φn` are periodic phase parameters, they are in half-
open intervals [0, 2π). In contrast, any θn` ∈ [0, π] must be in a
closed interval to achieve all transmissivities tn` ∈ [0, 1].

shifts in the mesh from intended operation. Such errors
primarily affect the control parameters θn` that control
light propagation in the mesh by affecting the MZI split
ratios. This nontrivial problem warrants a discussion of
mean behavior and sensitivities (i.e., the distribution) of
θn` needed to optimize a random unitary matrix.

III. HAAR INITIALIZATION

A. Cross state bias and sensitivity index

The convergence of global optimization depends crit-
ically on the sensitivity of each phase shift. The gra-
dient descent optimization we study in this paper con-
verges when the phase shifts are correct to within some
acceptable range. This acceptable range can be rigor-
ously defined in terms of average value and variance of
phase shifts in the mesh that together define an unbiased
(“Haar random”) unitary matrix.4 To implement a Haar
random unitary, some MZIs in the mesh need to be biased
towards cross state (tn` near 1, θn` near 0) [16, 24]. This
cross state bias correspondingly “pinches” the acceptable
range for transmissivity and phase shift near the limiting
cross state configuration, resulting in higher sensitivity,
as can be seen in Figure 3(b).

For an implemented Haar random unitary matrix, low-
tolerance, transmissive MZIs are located towards the cen-
ter of a rectangular mesh [16, 24] and the apex of a tri-
angular mesh as proven in Appendix C. For both the
triangular and rectangular meshes, the cross state bias
and corresponding sensitivity for each MZI depends only
on the total number of reachable waveguides ports, as
proven in Appendix I. Based on this proof, we define the
sensitivity index αn` := |In`| + |On`| − N − 1,5 where
In` and On` are the subsets of input and output waveg-
uides reachable by light exiting or entering the MZI, re-
spectively, and |·| denotes set size. Figure 1 and Figure
2(a) show the sensitivity index for the rectangular mesh,
which clearly increases towards the center MZI.

B. Phase shift distributions and Haar phase

The external φn`, γn phase shifts do not affect the the
transmissivity tn` and therefore obey uniform random
distributions [16]. In contrast, the θn` phase shifts have
a probability density function (PDF) that depends on

4 A Haar random unitary is defined as Gram-Schmidt orthogonal-
ization of N standard normal complex vectors [16, 20].

5 Note that 1 ≤ αn` ≤ N − 1, and there are always N −αn` MZIs
that have a sensitivity index of αn`.
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(a) Sensitivity index: αn`
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(b) Reflectivity: 〈rn`〉 = (αn` + 1)−1
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(c) Phase: θn`/2
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(d) Haar phase: ξn` = tαn`n`
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(e) Haar random θn`
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(f) Uniform random θn`
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FIG. 2. (a) The sensitivity index αn` for N = 64. (b)
Checkerboard plot for the average reflectivity 〈rn`〉 in a rect-
angular mesh. (c) Haar-random matrix and run the decom-
position in Ref. [10] to find phases approaching cross state
in the middle of the mesh. (d) The Haar phase ξn` for the
rectangular mesh better displays the randomness. (e, f) Field
measurements (absolute value) from propagation at input 32
in (e) Haar and (f) uniform random initialized rectangular
meshes with N = 64.

αn` [16]:

Pαn`
(
θn`
2

)
= αn` sin

(
θn`
2

)[
cos

(
θn`
2

)]2αn`−1
.

(6)
The general shape of this distribution is presented in

Figure 3(b), showing how an increase in αn` biases θn`
towards the cross state with higher sensitivity.

We define the Haar phase ξn` as the cumulative dis-
tribution function (CDF) of θn`/2 starting from θn`/2 =
π/2:

ξn` :=

∫ θn`/2

π/2

Pαn`(θ)dθ. (7)

Using Equations 6 and 7, we can define ξn`(θn`) ∈ [0, 1]
that yields a Haar random matrix:

ξn` =

[
cos2

(
θn`
2

)]αn`
= tαn`n` , (8)

where tn` represents the transmissivity of the MZI, which
is a function of θn` as defined in Equation 2.

C. Haar initialization

In the physical setting, it is useful to find the inverse
of Equation 8 to directly set the measurable transmis-
sivity tn` of each MZI using a uniformly varying Haar
phase ξn` ∼ U(0, 1), a process we call “Haar initializa-
tion” shown in Figure 2(c, d):

tn` =
αn
√̀
ξn`

θn` = 2 arccos
√
tn` = 2 arccos

2αn
√̀
ξn`,

(9)

where the expression for θn` is just a rearrangement of
Equation 2.

Haar initialization can be achieved progressively using
a procedure similar to that in Ref. [25]. If the phase
shifters in the mesh are all well-characterized, the trans-
missivities can be directly set [16]. We will show in Sec-
tion V that Haar initialization improves the convergence
speed of gradient descent optimization significantly.

We can also use Equation 9 to find the average trans-
missivity and reflectivity for an MZI parameterized by
αn` as is found through simulation in Ref. [24]:

〈tn`〉 =

∫ 1

0

dξn`
αn
√̀
ξn` =

αn`
αn` + 1

〈rn`〉 =
1

αn` + 1
=

1

|In`|+ |On`| −N
.

(10)

The average reflectivity 〈rn`〉 shown in Figure 2(b) gives
a simple interpretation for the sensitivity index shown in
Figure 2(a). The average reflectivity is equal to the in-
verse of the total number of inputs and outputs reachable
by the MZI minus the number of ports on either side of
the device, N . This is true regardless of whether αn` is
assigned for a triangular or rectangular mesh.

To see what the Haar initialization has accomplished,
we can compare the field propagation through the rect-
angular mesh from a single input when Haar initialized
versus uniform initialized in Figure 2(e). Physically, this
corresponds to light in the mesh spreading out quickly
from the input of the mesh and “interacting” more near
the boundaries of the mesh (inputs, outputs, top, and
bottom), as compared to the center of the mesh which
has high transmissivity. In contrast, when phases are
randomly set, the light effectively follows a random walk
through the mesh, resulting in the field propagation pat-
tern shown in Figure 2(f).

D. Tolerance dependence on N

While Haar initialization is based on how the average
component reflectivity scales with N , optimization con-
vergence and device robustness ultimately depend on how



5

0 π/4 π/2

Phase: θ/2

0.0

0.2

0.4

0.6

0.8

1.0

H
aa

r
Ph

as
e:
ξ α

(a)

α = 1

α = 5

α = 25

α = 125

α = 500

0 π/4 π/2

Phase: θ/2

P α
(θ
/
2)

(A
.U

.)

(b)

α = 1

α = 5

α = 25

α = 125

α = 500

0 250 500 750 1000

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

St
an

da
rd

D
ev

ia
ti

on
:
σ
θ
;α

(c)

−2 −1 0 1 2

Periodic Haar Phase: ξ̃α

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

is
si

vi
ty

:
t

=
α√
ξ(
ξ̃ α

)
(d)

α = 1

α = 5

α = 25

α = 125

α = 500

0 1
Haar Phase: ξα

FIG. 3. (a) Plot of the relationship between ξα and θ. (b) We
show that phase shift standard deviation σθ;α decreases as α
increases. (c) A plot of σθ;α as α increases. (d) The transmis-
sivity of an MZI component as a function of a periodic Haar
phase has a power law relationship. The periodic Haar phase

ξ̃α is mapped to the Haar phase by a function ξ : R → [0, 1]
as discussed in Appendix G.

phase shift tolerances scale with N . The average sensitiv-
ity index in the mesh is 〈αn`〉 = (N + 1)/3. As shown in
Figure 3(b, c), the standard deviation σθ;α over the PDF
Pα decreases as α increases. Therefore, a phase shifter’s
allowable tolerance, which roughly correlates with σθ;α,
decreases as the total number of input and output ports
affected by that component increases. Since 〈αn`〉 in-
creases linearly with N , the required tolerance gets more
restrictive at large N , as shown in Figure 3(c). We find
that the standard deviation is on the order 10−2 radi-
ans for most values of N in the specified range. Thus,
if thermal crosstalk is ignored [6], it is possible to imple-
ment a known random unitary matrix in a photonic mesh
assuming perfect operation. However, we concern our-
selves with on-chip optimization given just input/output
data, in which case the unitary matrix is unknown. In
such a case, the decreasing tolerances do pose a challenge
in converging to a global optimum as N increases. We
demonstrate this problem for N = 128 in Section V.

To account for the scalability problem in global opti-
mization, one strategy may be to design a component
in such a way that the mesh MZIs can be controlled by
Haar phase voltages as in Figure 3(d) and Equation 9.
The transmissivity dependence on a periodic Haar phase
(shown in Figure 3(d) and discussed in Appendix G), is
markedly different from the usual sinusoidal dependence
on periodic θn`. The MZIs near the boundary vary in

transmissivity over a larger voltage region than the MZIs
near the center, where only small voltages are needed get
to full transmissivity. This results in an effectively small
control tolerance near small voltages. This motivates the
modifications to the mesh architecture which we discuss
in the next section.

IV. ARCHITECTURE MODIFICATIONS

We propose two architecture modifications that can
relax the transmissivity tolerances in the mesh discussed
in Section III and result in significant improvement in
optimization.

A. Redundant rectangular mesh (RRM)

By adding extra tunable MZIs, it is possible to greatly
accelerate the optimization of a rectangular mesh to an
unknown unitary matrix. The addition of redundant tun-
able layers to a redundant rectangular mesh is depicted
in green in Figure 4(a). The authors in Ref. [24] point
out that using such “underdetermined meshes” (number
of inputs less than the number of tunable layers in the
mesh) can overcome photonic errors and restore fidelity
in unitary construction algorithms. Adding layers to the
mesh increases the overall optical depth of the device, but
embedding smaller meshes with extra beamsplitter lay-
ers in a rectangular mesh of an acceptable optical depth
does not pose intrinsic waveguide loss-related problems.

B. Permuting rectangular mesh (PRM)

Another method to accelerate the optimization of a
rectangular mesh is to shuffle outputs at regular inter-
vals within the rectangular mesh. This shuffling relaxes
component tolerances and uniformity of the number of
paths for each input-output transition. We use this in-
tuition to formally define a permuting rectangular mesh.
For simplicity,6 assume N = 2K for some positive inte-
ger K. Define “rectangular permutation” operations Pk
that allow inputs to interact with waveguides at most 2k

away for k < K. These rectangular permutation blocks
can be implemented using a rectangular mesh composed
of MZIs with fixed cross state phase shifts, as shown in
Figure 4(b), or using low-loss waveguide crossings.

We now add permutation matrices P1, P2, . . . PK−1

6 If N is not a power of 2, then one might consider the following
approximate design: K = dlog2Ne. Define b(K) = K

√
N , and

let each Pk have dbke layers.
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(a) Redundant rectangular mesh (RRM)
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(b) Permuting rectangular mesh (PRM)

FIG. 4. (a) A 16× 16 rectangular mesh (red). Extra tunable
layers (green) may be added to significantly reduce conver-
gence time. (b) A 16-input, 30-layer permuting rectangular
mesh. The rectangular permutation layer is implemented us-
ing either waveguide crossings or cross state MZIs (gray).

into the middle of the rectangular mesh as follows

ÛPR := MK

(
K−1∏

k=1

PkMk

)

Mk :=

min(kdNK e,N)∏

`=(k−1)dNK e

∏

n∈S`,N
Un(θn`, φn`),

(11)

where dxe represents the nearest integer larger than x.
There are two operations per block k: an dNK e-layer

rectangular mesh which we abbreviate as Mk, and the
rectangular permutation mesh Pk where block index k ∈
[1 · · ·K − 1]. This is labelled in Figure 4(b).

V. SIMULATIONS

Now that we have discussed the mesh modifications
and Haar initialization, we simulate global optimization
to show how our framework can improve convergence per-
formance by up to five orders of magnitude, even in the
presence of fabrication error.

A. Mesh initialization

We begin by discussing the importance of initializing
the mesh to respect the cross state bias and sensitivity of

UR(8, 8) UR(32, 32) UR(256, 256) UR(1024, 1024)

UR(8, 16) UR(32, 64) UR(256, 512) UR(1024, 2048)

UPR(8) UPR(32) UPR(256) UPR(1024)

FIG. 5. Elementwise absolute values of unitary matrices re-
sulting from rectangular (U ∼ UR) and permuting rectangular
(U ∼ UPR) meshes where meshes are initialized with uniform-
random phases.

each component for Haar random unitary matrices dis-
cussed in Section III. Uniform random phase initializa-
tion is problematic because it is agnostic of the sensitivity
and average behavior of each component. We define this
distribution of matrices as UR(N,L) for a rectangular
mesh for N inputs and L layers. As shown previously in
Figure 2(f), any given input follows a random walk-like
propagation if phases are initialized uniform-randomly,
so there will only be non-zero matrix elements within a
“bandsize” about the diagonal. This bandsize decreases
as circuit size N increases as shown in Figure 5.

We compare the bandsizes of banded unitary matrices
in simulations qualitatively as we do in Figure 5 or quan-
titatively as we do in Appendix D. We randomly gener-
ate U ∼ UR(N,N), U ∼ UPR(N) (permuting rectangular
mesh with N tunable layers), and U ∼ UR(N,N + δN)
(redundant rectangular mesh with δN extra tunable lay-
ers). Figure 5 shows a significant reduction in bandsize as
N grows larger for rectangular meshes. This phenomenon
is not observed with permuting rectangular meshes which
generally have the same bandsize as Haar random ma-
trices (independent of N) as shown in in Figure 5 and
Appendix D. This correlates with permuting rectangular
meshes having faster optimization and less dependence
on initialization.

Instead of initializing the mesh using uniform ran-
dom phases, we use Haar initialization as in Equation
9 to avoid starting with a banded unitary configuration.
This initialization, which we recommend for any pho-
tonic mesh-based neural network application, dramati-
cally improves convergence because it primes the opti-
mization with the right average behavior for each com-
ponent. We find in our simulations that as long as the
initialization is calibrated towards higher transmissivity
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(θn` near 0), larger mesh networks can also have reason-
able convergence times similar to when the phases are
Haar-initialized.

The proper initialization of permuting rectangular
meshes is less clear because the tolerances and average
behavior of each component have not yet been modeled.
Our proposal is to initialize each tunable block Mk as
an independent mesh using the same definition for αn`,
except replacing N with the number of layers in Mk,
dN/Ke. This is what we use as the Haar initialization
equivalent in the permuting rectangular mesh case, al-
though it is possible there may be better initialization
strategies for the nonlocal mesh structure.

B. Optimization problem and synthetic data

After initializing the photonic mesh, we proceed to op-
timize the mean square error cost function for an un-
known Haar random unitary U :

minimize
θn`,φn`,γn

1

2N

∥∥∥Û(θn`, φn`, γn)− U
∥∥∥
2

F
, (12)

where the estimated unitary matrix function Û maps N2

phase shift parameters θn`, φn`, γn to U(N) via Equa-
tions 4 or 11, and ‖ · ‖F denotes the Frobenius norm.

Since trigonometric functions parameterizing Û are non-
convex, we know that Equation 12 is a non-convex prob-
lem. The non-convexity of Equation 12 suggests learning
a single unitary transformation in a deep neural network
might have significant dependence on initialization.

To train the network, we generate random unit-norm
complex input vectors of size N and generate corre-
sponding labels by multiplying them by the target ma-
trix U . We use a training batch size of 2N . The
synthetic training data of unit-norm complex vectors is
therefore represented by X ∈ CN×2N . The minibatch
training cost function is similar to the test cost function,
Ltrain = ‖ÛX − UX‖2F . The test set is the identity ma-
trix I of size N×N . The test cost function, in accordance
with the training cost function definition, thus matches
Equation 12.

C. Training algorithm

We simulate the global optimization of a unitary mesh
using automatic differentiation in tensorflow, which can
be physically realized using the in situ backpropagation
procedure in Ref. [7]. This optical backpropagation pro-
cedure physically measures ∂Ltrain/∂θn` using interfero-
metric techniques, which can be extended to any of the
architectures we discuss in this paper.

The on-chip backpropagation approach is also likely
faster for gradient computation than other training ap-
proaches such as the finite difference method mentioned
in past on-chip training proposals [6]. We find empir-
ically that the Adam update rule (a popular first-order

adaptive update rule [27]) outperforms standard stochas-
tic gradient descent for the training of unitary networks.
If gradient measurements for the phase shifts are stored
during training, adaptive update rules can be applied us-
ing successive gradient measurements for each tunable
component in the mesh. Such a procedure requires min-
imal computation (i.e., locally storing the previous gra-
dient step) and can act as a physical test of the simula-
tions we will now discuss. Furthermore, we avoid quasi-
Newton optimization methods such as L-BFGS used in
Ref. [24] that cannot be implemented physically as
straightforwardly as first-order methods.

The models were trained using our open source simula-
tion framework neurophox 7 using a more general version
of the vertical layer definition proposed in Refs. [7, 23].
The models were programmed in tensorflow [28] and
run on an NVIDIA GeForce GTX1080 GPU to improve
optimization performance.

D. Results

We now compare training results for rectangular, re-
dundant rectangular, and permuting rectangular meshes
given N = 128. In our comparison of permuting rectan-
gular meshes and rectangular meshes, we analyze perfor-
mance when beamsplitter errors are distributed through-
out the mesh as either ε = 0 or ε ∼ N (0, 0.01) and when
the θn` are randomly or Haar-initialized (according to
the PDF in Equation 6). We also analyze optimization
perforamnces of redundant rectangular meshes where we
vary the number of vertical MZI layers.

From our results, we report five key findings:

1. Optimization of N = 128 rectangular meshes re-
sults in significant off-diagonal errors due to bias
towards the banded matrix space of UR(128), as
shown in Figure 6.

2. Rectangular meshes converge faster when Haar-
initialized than when uniformly random initialized,
as in Figure 6, in which case the estimated matrix
converges towards a banded configuration shown in
Appendix H.

3. Permuting rectangular meshes converge faster than
rectangular meshes despite having the same num-
ber of total parameters as shown in Figure 6.

4. Redundant rectangular meshes, due to increase in
the number of parameters, have up to five orders
of magnitude better convergence when the number
of vertical layers are doubled compared to rectan-
gular and permuting rectangular meshes, as shown
in Figure 7.

7 See https://github.com/solgaardlab/neurophox.

https://github.com/solgaardlab/neurophox
https://github.com/solgaardlab/neurophox
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5. Beamsplitter imperfections slightly reduce the over-
all optimization performance of permuting and re-
dundant rectangular meshes, but reduce the perfor-
mance of the rectangular mesh significantly. (See
Figure 6 and Appendix E.)
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FIG. 6. We implement six different optimizations for N = 128
where we vary the choice of permuting rectangular mesh
(PRM) or rectangular mesh (RM); the initialization (random
θn` or Haar-initialized θn`); and photonic transmissivity error
displacements (ε = 0 or ε ∼ N (0, 0.01), where σ2

ε = 0.01 is
the variance of the beamsplitter errors). Conditions: 20000
iterations, Adam update, learning rate of 0.0025, batch size of
256, simulated in tensorflow. (a) Comparison of optimiza-
tion performance (defaults are Haar initialization and εn` = 0
unless otherwise indicated). Optimized error magnitude spa-
tial map for (b) rectangular mesh shows higher off-diagonal
errors and than (c) permuting rectangular. The optimized θn`
phase shifts (see Appendix G) for (d) rectangular meshes are
close to zero (cross state) near the center as opposed to (e)
permuting rectangular meshes which have a striped pattern
(likely due to initialization). NOTE: by |·|, we refer to the
elementwise norm.

The singular value decomposition (SVD) architecture
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FIG. 7. A comparison of test error in tensorflow for N = 128
between rectangular (RM), permuting rectangular (PRM),
and redundant rectangular (RRM) meshes for: 20000 itera-
tions, Adam update, learning rate of 0.0025, batch size of 256.
Ideal = Haar random initialized θn` with ε = 0. δN is the
additional layers added in the redundant mesh. We stopped
the δN = 128 run within 4000 iterations when it reached con-
vergence within machine precision. Redundant meshes with
32 additional layers converge better than permuting rectangu-
lar meshes, and with just 16 additional layers, we get almost
identical performance.

discussed in Refs. [6, 22] consists of optical lossy compo-
nents flanked on both sides by rectangular meshes and are
capable of implementing any linear operation with rea-
sonable device input power. Note that with some modifi-
cations (e.g. treating loss and gain elements like nonlin-
earities in the procedure of Ref. [7]), SVD architectures
can also be trained physically using in situ backpropa-
gation. We simulate the gradient-based optimization of
SVD architectures using automatic differentiation in Ap-
pendix F.

VI. DISCUSSION

A. Haar initialization

For global optimization and robustness of universal
photonic meshes, it is important to consider the required
biases and sensitivities for each mesh component. Im-
plementing any Haar random matrix requires that each
component independently follows an average reflectivity
within some tolerance. This requirement becomes more
restrictive with the number of input and output ports
accessible by each mesh component. For the rectangular
mesh, this means the center mesh components are close
to cross state and the most sensitive.

In a Haar-initialized mesh, as shown in Figure 2, the
light injected into a single input port spreads out to all
waveguides in the device uniformly regardless of N . This
is a preferable initialization for global optimization be-
cause Haar random matrices require this behavior. In
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contrast, when randomly initializing phases, the light
only spreads out over a limited band of outputs. This
band gets relatively small compared to the mesh gets
larger as shown in Figure 9.

The average reflectivities given by Haar initialization
may be useful for inverse design approaches [29] for
compact tunable or passive multiport interferometers.
The component tolerances may inform how robust phase
shifters need to be given error sources such as thermal
crosstalk [6]. The thermal crosstalk might make it diffi-
cult to achieve required tolerances for devices interfering
up to N = 1000 modes that generally have phase shift
tolerances just above 10−2 radians.8

In our simulations in Section V, we assume that the
control parameter for photonic meshes is linearly related
to the phase shift. However, in many current phase
shifter implementations, such as thermal phase shifters
[6], the phase is a nonlinear function of the control pa-
rameter (i.e., the voltage) and has minimum and max-
imum values, unlike the unbounded phase used in our
optimization. In addition, like the Haar phase in our
theory, the voltage acts as the CDF for transmissivities
in the physical device, up to a normalization factor. Par-
ticular attention needs to be given to phase uncertainty
as a function of voltage, since the Haar random distribu-
tion of internal MZI phases has small variance for large
N , as we show in Figure 3(c). As mentioned in Section
III, the ideal transmissivity-voltage dependence with this
consideration would be identical to the transmissivity vs
Haar phase dependence in Figure 3(d).

B. Applications of mesh optimization

Meshes can be tuned using either self-configuration
[11, 22] or global optimizations (gradient-based [7] or
derivative-free [30]). The algorithmic optimizations pro-
posed in Refs. [11, 22] assume that each component in the
mesh can cover the entire split ratio range, which is not
the case in presence of 50:50 beamsplitter errors. This
ultimately leads to lower fidelity in the implemented uni-
tary operation, which can be avoided using a double-MZI
architecture [21, 31] or a vertical layer-wise progressive
algorithm [25]. We explore a third alternative to over-
come photonic errors; gradient-based global optimization
is model-free and, unlike algorithmic approaches, can ef-
ficiently tune photonic neural networks [7]. This model-
free property makes gradient-based optimization robust
to fabrication error; we show in Figure 6(a) that meshes
with split ratio error variances of up to σε = 0.1 can be
optimized nearly as well as a perfect mesh, particularly
for permuting rectangular meshes.

8 Ref. [6] propose a standard deviation of ∼ 10−3 might be possi-
ble with further circuit characterization, which might be scalable
based on Figure 3(c).

In the regime of globally optimized meshes, we pro-
pose two strategies to modify the rectangular architec-
ture: adding waveguide permutation layers and adding
extra tunable vertical MZI layers. Both approaches re-
lax the cross state requirements on the MZIs and acceler-
ate the mesh optimization process. Nonlocal interference
works by allowing inputs that are far away physically in
the mesh to interact. These approaches are inspired by
several recent proposals in machine learning and coher-
ent photonics to design more error tolerant and efficient
meshes, many of which use single layers of MZIs and non-
local waveguide interactions [23, 26, 32, 33]; such designs
can also be considered to be in the same class of permut-
ing architectures as our proposed permuting rectangular
mesh. Adding extra tunable vertical layers, as proposed
in Ref. [24], simply adds more tunable paths for the
light to achieve a desired output. As shown in Figure 6,
we achieve up to five orders of magnitude improvement
in convergence at the expense of doubling the mesh size
and parameter space.

Like permuting rectangular meshes, multi-plane light
conversion successfully applies the non-local interference
idea for efficient spatial mode multiplexing [34, 35]. In
this protocol, alternating layers of transverse phase pro-
files and optical Fourier transforms (analogous to what
our rectangular permutations accomplish) are applied to
reshape input modes of light [34, 35]. A similar con-
cept is used in unitary spatial mode manipulation, where
stochastic optimization of deformable mirror settings al-
low for efficient mode conversion [36]. Thus, the idea of
efficient unitary learning via a Fourier-inspired permut-
ing approach has precedent in contexts outside of pho-
tonic MZI meshes.

An on-chip optimization for multi-plane light conver-
sion has been accomplished experimentally in the past
using simulated annealing [30]. The success of simulated
annealing in experimentally training small unitary pho-
tonic devices [30] (rather than gradient descent as is used
in this work) suggests there are other algorithms aside
from gradient descent that may effectively enable on-chip
training.

We propose that similar simulated annealing ap-
proaches might be made more efficient by sampling Haar
phases from uniform distributions and flashing updates
onto the device. Similar derivative-free optimizations
may also be useful for quantum machine learning [37–
39]. Whether such approaches can compete with back-
propagation for classical applications remains to be in-
vestigated. For experimental on-chip tuning, simulated
annealing has the attractive property of only requiring
output detectors. For practical machine learning ap-
plications, however, there is currently more literature
for backpropagation-based optimization. Furthermore,
gradient-based approaches allow for continuous control
of phase shifters during the optimization.

Our tensorflow simulations may be useful in the de-
sign of optical recurrent neural networks (RNNs) that
use unitary operators parameterized by photonic meshes.
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Such “unitary RNNs” (URNNs) have already been simu-
lated on conventional computers and show some promise
in synthetic long-term memory tasks [23, 40]. Unitary
RNNs are physically implementable using a single mesh
with optical nonlinearities and recurrent optoelectronic
feedback, suggesting that the architecture discussed in
this work is a scalable, energy-efficient option for ma-
chine learning applications. It is possible that some tun-
able features such as the “bandedness” of unitaries im-
plemented by rectangular MZI meshes can be useful (e.g.
as an attention mechanism in sequence data) for certain
deep learning tasks that use URNNs.

VII. CONCLUSION

The scalability of gradient-based optimization of Haar
random unitary matrices on universal photonic meshes is
limited by small reflectivities and MZI phase shifter sen-
sitivities arising from the constraint of locally interact-
ing components. As shown in Section III, the required
average reflectivity and sensitivity for each MZI is in-
versely related to the total number of inputs and out-
puts affected by the MZI. If the tolerance requirements
are not met by the physical components, optimization
algorithms will have difficulty converging to a target uni-
tary operator. As shown in Section V for the case of
N = 128, convergence via in situ backpropagation is
generally not achieved if phase shifters are initialized ran-
domly. However, Haar initialization can sufficiently bias

the optimization for convergence to a desired random uni-
tary matrix, even in the presence of significant simulated
beamsplitter fabrication errors.

In Section IV, we propose adding extra tunable beam-
splitters or mesh nonlocalities to accelerate mesh opti-
mization. Naive (uniform random) initialization on a
standard photonic mesh has difficulty learning random
unitary matrices via gradient descent. By introducing
non-localities in the mesh, we can improve optimization
performance without the need for extra parameters. A
Haar-initialized redundant architecture can achieve five
orders of magnitude less mean square error for a Haar
random unitary matrix and decrease optimization time
to such a matrix by at least two orders of magnitude,
as shown in Figure 7. Our findings suggest that archi-
tecture choice and initialization of photonic mesh com-
ponents may prove important for increasing the scala-
bility and stability of reconfigurable universal photonic
devices and their many classical and quantum applica-
tions [3, 5, 6, 12, 22, 37–39, 41].
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Enrique Mart́ın-López, Nicholas J. Russell, Joshua W.
Silverstone, Peter J. Shadbolt, Nobuyuki Matsuda,
Manabu Oguma, Mikitaka Itoh, Graham D. Marshall,
Mark G. Thompson, Jonathan C.F. Matthews, Toshikazu
Hashimoto, Jeremy L. O’Brien, and Anthony Laing,
“Universal linear optics,” Science (2015), 10.1126/sci-
ence.aab3642.

[3] Justin B. Spring, Benjamin J. Metcalf, Peter C.
Humphreys, W. Steven Kolthammer, Xian Min Jin,
Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter,
Nathan K. Langford, Dmytro Kundys, James C. Gates,
Brian J. Smith, Peter G.R. Smith, and Ian A. Walmsley,
“Boson sampling on a photonic chip,” Science (2013),
10.1126/science.1231692.

[4] Nicholas C. Harris, Gregory R. Steinbrecher, Mihika
Prabhu, Yoav Lahini, Jacob Mower, Darius Bunandar,
Changchen Chen, Franco N.C. Wong, Tom Baehr-Jones,
Michael Hochberg, Seth Lloyd, and Dirk Englund,
“Quantum transport simulations in a programmable
nanophotonic processor,” Nature Photonics 11, 447–452
(2017).

[5] Andrea Annoni, Emanuele Guglielmi, Marco Carminati,
Giorgio Ferrari, Marco Sampietro, David Ab Miller, An-
drea Melloni, and Francesco Morichetti, “Unscram-
bling light - Automatically undoing strong mixing be-
tween modes,” Light: Science and Applications 6 (2017),
10.1038/lsa.2017.110.

[6] Yichen Shen, Nicholas C. Harris, Scott Skirlo, Mihika
Prabhu, Tom Baehr-Jones, Michael Hochberg, Xin Sun,
Shijie Zhao, Hugo Larochelle, Dirk Englund, and Marin
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Appendix A: Software

To reproduce the results of this paper, the reader
can be directed to neurophox, an open-source Python
package that implements the optimizations and simula-
tions of this paper in numpy and tensorflow. The ex-
act code used to generate the results is provided in the
neurophox-notebooks repository.

Appendix B: Derivation of beamsplitter errors

Unitary matrices generated by lossless MZIs are prone
to errors in beamsplitter fabrication. We introduce the
error ε to our expression derived in Equation 1, which is
twice the displacement in beamsplitter split ratio from
50 : 50. Beamsplitter gates with error ε are defined as

Bε =

[
ρ iτ
iτ ρ

]
where ρ =

√
1+ε
2 , τ =

√
1−ε
2 are trans-

missivity and reflectivity amplitudes that result in slight
variations from a 50 : 50 beamsplitter. We use this error
definition since it is a measurable quantity in the chip; in
fact, there are strategies to minimize ε directly [21]. The
unitary matrix that we implement in presence of beam-
splitter errors becomes

Uε := RφBε2RθBε1

tε := |Uε,12|2 = |Uε,21|2

rε := |Uε,11|2 = |Uε,22|2.
(B1)

If ε1 = ε2 = ε, which is a reasonable practical assumption
for nearby fabricated structures, then solving for tε in
terms of t:

tε = 4|ρ|2|τ |2t

= 4t

(
1

2
+
ε

2

)(
1

2
− ε

2

)

= t(1− ε2).

(B2)

Similarly, we can solve for rε:

rε = 1− tε = r + t · ε2. (B3)

As we have discussed in this paper (and as we later
show in Figure 12), photonic errors ε (standard devia-
tion of 0.1) can affect the optimized phase shifts for uni-
tary matrices. The above constraints on rε and tε sug-
gest that limited transmissivity is likely in the presence
of fabrication errors, which can inhibit progressive setup
of unitary meshes [21, 24]. However, we will later show
through tensorflow simulation that in situ backprop-
agation updates can to some extent address this issue
using a more sophisticated experimental protocol involv-
ing phase conjugation and interferometric measurements
[7].

Appendix C: Haar measure
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FIG. 8. Triangular mesh for N = 8 using (a) 2N − 3 vertical
layers ` showing the sensitivity index αn` and (b) N diagonal
layers m showing the transmissivity basis (tn in red) and the
measurement basis (xn in purple).

In this section, we outline a proof for the Haar measure
of a unitary matrix in terms of the physical parameters
of a photonic mesh to supplement our discussion of Haar
phase and the proof in Ref. [16]. The Haar measure for
U(N) can be defined in two physical basis representa-
tions: the measurement basis represents measurements
after each MZI and the transmissivity basis represents
the transmissivity of each MZI.

To make our explanation simpler, we will adopt the
orthogonalization protocol used by Ref. [11]. In this
representation, we define the triangular mesh UT as

UT =

N−1∏

m=0

U (N−m)

U (m) =

m−1∏

n=1

UN−n(θ
(m)
N−n, φ

(m)
N−n) ·Dm(γN−m+1),

(C1)

whereDm is a diagonal matrix representing a single mode
phase shift at index N −m+ 1.

The N operators U (m) represent the diagonal layers of
the triangular mesh and their role is to project inputs
from Hilbert space dimension from m to m − 1 recur-
sively until we reach a single mode phase shift in U (1) =
D1(γN ). Our proof moves the same direction as Reck’s
orthogonalization procedure; starting from m = N , we
progressively find the for each U (m) in decreasing order.

http://dx.doi.org/10.1088/2058-9565/aaf59e
http://dx.doi.org/10.1088/2058-9565/aaf59e
https://github.com/solgaardlab/neurophox
https://github.com/solgaardlab/neurophox-notebooks
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For each layer m, there are 2m− 1 complex hyperspher-
ical coordinates (m − 1 “amplitude” coordinates and m
“phase” coordinates). The first column vector of U can
be recovered by shining light (using a unit power P = 1)
through the top port of the layer (given by n = N−m+1)
and measuring the output fields in the triangular mesh
generated by U (m), as shown in Figure 8(b). As men-
tioned in Refs. [11, 22], progressive optimization moves
in the opposite direction; the desired output fields are

shined back into the device and the transmissivities t
(m)
n

and phases φ
(m)
n for each layer m (moving from N to 1)

can be progressively tuned until all the power lies in the
top input port for that layer.

The measurement basis is an unbiased Haar measure
(as shown in Ref. [16] using Gaussian random vectors)
and can be physically represented by the power xn mea-
sured at waveguides n ≤ m − 1 due to shining light
through the top input port for that layer. Unlike the
proof in Ref. [16], we choose our constraint that the in-
put power P = 1 rather than P ∈ R+, which introduces
a normalization prefactor in our Haar measure by inte-
gration over all possible P .9 This allows us to ignore the
power in the final output port xN because energy conser-

vation ensures we have the constraint xN = 1−∑N−1
n=1 xn.

Therefore, our simplified Cartesian basis for each m is
(ignoring the normalization prefactor):

dµ(U (m)) ∝ dγN−m

m−1∏

n=1

dxn

m∏

n=1

dφn. (C2)

Now we represent the Cartesian power quantities xn
explicitly in terms of the component transmissivities,
which we have defined already to be tn := cos2(θn/2).
Using the same convention as hyperspherical coordinates,
we get the following recursive relation for xn as shown di-
agrammatically by following the path of light from the
top input port in Figure 8(b):

xn = (1− tn)

n−1∏

k=1

tk. (C3)

Intuitively, Equation C3 implies that the power xn
measured at port n is given by light that is transmitted
by the first n−1 components along the path of light and
then reflected by the nth component. In other words, xn
follows a geometric distribution.

We can use Equation C3 to find the Jacobian J ∈
RN−1×N−1 relating the xn and the tn. We find that we
have a lower triangular matrix J with diagonal elements
for n ≤ N − 1

Jnn =
∂xn
∂tn

= −
n−1∏

k=1

tk. (C4)

9 This prefactor is exactly
∫∞
0 dPe−PPm−1 = (m− 1)!.

We know J is lower triangular since for all n′ > n, Jnn′ =
∂xn
∂tn′

= 0 from Equation C3.

Since the determinant of a lower triangular matrix is
the same as the product of the diagonal, we can directly
evaluate the unbiased measure (off by a normalization
constant) as

dµ(U (m)) ∝ dγN−m+1 detJ
m−1∏

n=1

dtn

m∏

n=1

dφn

= dγN−m+1

m−1∏

n=1

Jnn
m−1∏

n=1

dtn

m∏

n=1

dφn

∝ dγN−m+1

m−1∏

n=2

tm−nn−1

m−1∏

n=1

dtn

m∏

n=1

dφn

(C5)

To get the total Haar measure, we multiply the volume
elements for the orthogonal components dµ(U (m)). We
get from this procedure that the sensitivity index αn` =
N−n for a triangular mesh in Equation C5 (independent
of `), which can be seen using Figure 8. We can express
this Haar measure in terms of Qαn`(tn`), the probability
distribution for the transmissivity, and Pαn`(θn`/2), the
probability distribution for the phase shift corresponding
to that same transmissivity, assuming appropriate choice
n, ` for the triangular mesh:

dµ(U) =

N∏

n=1

dµ(U (n))

=
∏

n

dγn
∏

n,`

Qαn` (tn`) dtn`dφn`

=
∏

n

dγn
∏

n,`

Pαn`
(
θn`
2

)
dθn`dφn`

(C6)

We can now normalize Equation C5 using the normal-
ization factor for P to get Qαn`(tn`) and then substi-
tute tn` = cos2(θn`/2) to get our desired expression for
Pαn`(θn`/2):

Qαn` (tn`) = αn`t
αn`−1
n`

Pαn`
(
θn`
2

)
= αn` sin

(
θn`
2

)[
cos

(
θn`
2

)]2αn`−1
.

(C7)
Finally, we can recover the Haar phase parameter ξn` ∈

[0, 1] (i.e. the cumulative density function) in terms of
either tn` or θn`:

ξn` =

[
cos

(
θn`
2

)]2αn`
= tαn`n` . (C8)

Finally, as explained in Ref. [16], we can use the
Clements decomposition [10] to find another labelling for
αn` in a rectangular mesh that gives probability distri-
butions and Haar phases in the same form as Equations
C7 and C8 respectively.
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Appendix D: Unitary bandsizes

We would like to quantify the bandedness of matri-
ces implemented by the meshes with randomly initial-
ized phases. We define the η-bandsize as the minimum
number of matrix elements whose absolute value squared
sums to (1−η)N . Note that our η-bandsize measurement
is agnostic of the ordering of the inputs and outputs, and
is therefore agnostic to any permutations that may be
applied at the end of the decomposition. In photonics
terms, if η = 0.001, let ri measure the fraction of output
waveguides over which 99.9% of the power is distributed
when light is input into waveguide i. The η-bandsize is ri
averaged over all i. Sampling from our matrix distribu-
tions, we observe the relationship between the bandsize
(given η = 0.001) and the dimension N in Figure 9.
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FIG. 9. Given η = 0.001, we compare bandsizes for rectangu-
lar (U ∼ UR(N,N)), permuting rectangular (U ∼ UPR(N)),
and redundant meshes (U ∼ UR(N, 2N)). Permuting rectan-
gular meshes match the bandsize of Haar random matrices.

Appendix E: Introducing photonic errors in a
redundant mesh

When photonic errors are added to the redundant
mesh, specifically the 256-layer mesh, we observe a slight
decrease in optimization performance in Figure 10, sim-
ilar to what we observed for the rectangular and per-
muting rectangular meshes in Figure 7. This decrease
in performance, however, is less concerning considering
that we still achieve a mean square error of around 10−5,
suggesting that RRM might be more robust to photonic
errors even during on-chip optimization.

Appendix F: Photonic singular value decomposition
simulations

We compare the simulated performance of such rect-
angular and permuting rectangular architectures in the
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FIG. 10. A comparison of test mean square error for N = 128
between redundant rectangular meshes with error ε for 256-
layer mesh for: 20000 iterations, Adam update, learning rate
of 0.0025, batch size of 256, simulated in tensorflow.
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FIG. 11. A comparison of test mean square error for N = 64
between SVD devices using rectangular (SVD-RM) and per-
muting rectangular (SVD-PRM) meshes for: 20000 iterations,
Adam update, learning rate of 0.005, batch size of 128, sim-
ulated in tensorflow. Unless otherwise noted, the default
setting is Haar random initialized θn` with σε = 0.

singular value decomposition (SVD) configuration dis-
cussed in Refs. [6, 22]. Such architectures would allow
one to perform arbitary linear operations with a rela-
tively small footprint, and may have some other useful
dimensionality-reduction properties in machine learning
contexts.

In SVD, we represent complex matrix Â ∈ CM×CN as
Â = Û Σ̂V̂ †, where Σ̂ is a diagonal matrix implemented
on-chip with min(M,N) single-mode gain or attenuating

elements and Û , V̂ † are unitary matrices implemented
in a photonic mesh. While Â has 2MN free parame-
ters, any global optimization for a photonic SVD imple-
mentation using rectangular meshes can have at most
D = N(N − 1) +M(M − 1) + 2 min(N,M) ≥ 2MN free
parameters, with equality when M = N . In the trian-
gular architecture discussed in Ref. [22], the total com-
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plexity of parameters can be exactly D = 2MN when
setting a subset of the beamsplitters to bar state. In the
case where the total number of singular values for Â is
S < min(M,N), we get D = 2S(M +N − S) tunable el-
ements. Additionally, there is an “effective redundancy”
in that some vectors in U, V are more important than
others due to the singular values.

In our simulations, we investigate an SVD architecture
for A = UΣV † for A ∈ CM × CN composed of the uni-
taries U ∈ CM ×CM and V ∈ CN ×CN . Note that such
an architecture is redundant when M 6= N , so we focus
on the simple case of M = N = 64.

We define our train and test cost functions analogous
to the unitary mean-squared error cost functions as

Ltest =
N‖Â−A‖2F

2‖A‖2F
Ltrain = ‖ÂX −AX‖2F ,

(F1)

where Â = Û Σ̂V̂ † is defined in Section V.
We randomly generate A ∈ CN × CM by expressing

Ajk = a+ib, where a, b ∼ N (0, 1). The synthetic training
batches of unit-norm complex vectors are represented by
X ∈ CN×2N .

Assuming a procedure similar to [7] can be used in
presence of gains and optimization, the permuting rect-
angular mesh converges slightly faster but is significantly
more resilient to uniform random phase initialization
compared to the rectangular mesh as shown in Figure 11.
Both optimizations are minimally affected by beamsplit-
ter error, unlike what is seen in the unitary optimization
case.

Appendix G: Periodic parameters

We comment on our reported values of θn` in the
checkerboard plots in Figures 3 (of the main text) and
12. Since our simulated optimization does not have the
explicit constraint that θn` ∈ [0, π), we report the “ab-
solute θn`,” where we map all values of θn`/2 to some
value in [0, π/2]. This corresponds to the transformation
(assuming θn` is originally between 0 and 2π):

θn` →
{
θn` θn` ≤ π
2π − θn` θn` > π

. (G1)

Note a similar treatment as Equation G1 can be used
to represent the Haar phase ξ ∈ [0, 1] in terms of a “pe-

riodic” Haar phase ξ̃ ∈ [0, 2] with period 2:

ξ(ξ̃) =

{
ξ̃ ξ̃ ≤ 1

2− ξ̃ ξ̃ > 1
. (G2)

Note both ξ̃ and θ̃ can therefore be made to vary con-

tinuously from (−∞,∞) with ξ̃ having a period of 2 and

θ̃ having a period of 2π. We map these periodic parame-
ters to their half-periods according to Equations G1 and
G2 based on symmetry arguments.

Appendix H: Training simulation comparisons

In Figure 12, we compare the performance for our uni-
tary network experiment over our aforementioned condi-
tions in Section V. For each plot, we also have an asso-
ciated video, showing how the parameter distributions,
estimates, and errors vary during the course of the opti-
mization, available online.10

There are several takeaways from these plots. First,
the reflectivity of the MZIs near the center of the mesh
are much smaller in the optimized rectangular meshes
than in the permuting rectangular meshes. Second, the
gradient descent algorithm has a hard time finding the
regime of Haar random matrices after a uniform random
phase initialization. The values of θn` are much larger
than they need to be even 100 iterations into the op-
timization. This is likely evidence of a “vanishing gra-
dient” problem when the mesh is not Haar-initialized.
Finally, an important observation for the meshes with
beamsplitter error is that the θn`/2 distribution shifts
slightly towards 0 in the rectangular mesh. This is a
consequence of the limits in reflectivity and transmissiv-
ity in each MZI due to beamsplitter fabrication error as
discussed in Section II.

Our simulated permuting rectangular implementation
uses the same layer definitions as defined in Equation
11 except the Pk with the most layers are in the center
of the mesh, and the Pk with the fewest layers are near
the inputs and outputs of the mesh. In Figure 4, P2

and P3 would be switched, and for N = 128, the order
is [P2, P4, P6, P5, P3, P1]. We find this configuration to
be the best permuting rectangular mesh so far in our
experiments, although the architecture in Equation 11
gives improvements over the rectangular mesh.

Appendix I: An equivalent definition for αn`

Let αn` be the sensitivity index for an MZI (“node”)
at (waveguide, layer) coordinates (n, `) in a local decom-
position for an N × N unitary operator. We define the
“row coordinate” or waveguide index n from the MZI’s
operator Un coupling waveguides n and n + 1, and we
define the “column coordinate” or layer index m to be
` = k + 1, where k is the maximum number of opera-
tors applied to a reachable input (This is equivalent to
the vertical layers definition in Figure 1.). The reachable
inputs In` are the subset of input modes affecting the
immediate inputs of the MZI at (n, `), and the reachable
outputs On` are the subset of output modes affected by
the immediate outputs of the MZI.

Following the definitions in Ref. [16], in the trian-
gular scheme, αn` := N − n, and in the rectangular
scheme, αn` := d (n, `) + 1 − sn`[`] where d(n, `) is the

10 See https://av.tib.eu/series/520/photonic+optimization.

https://av.tib.eu/series/520/photonic+optimization
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FIG. 12. Comparison of learned matrix errors and learned θn` weights after 20000 iterations for the Adam update at learning
rate 0.0025 and batch size 256 for the simple unitary network. We consider two meshes: (1) rectangular mesh (RM), and
(2) permuting rectangular mesh (PRM). We consider three conditions for each mesh: (1) ideal (with Haar random unitary
initialization), (2) photonic beamsplitter error displacement ε ∼ N (0, 0.01), (3) random initialization.
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FIG. 13. Comparison of learned, normalized θn` distributions
for N = 128 rectangular (RM) and permuting rectangular
(PRM) meshes with Pα(θ/2) PDFs for α = N+1

3
= 43 (the

average sensitivity index) and α = b N
2 logN

c = 9 respectively.
Note that permuting meshes have a larger tolerance, which
eventually results in faster mesh optimization.

number of nodes on the diagonal (measured along paths
of constant n + `) containing a rotation parameterized
by θn`, and sn` is a sequence of decreasing odd integers
d(n, `) ≥ kodd ≥ 1, followed by increasing even integers
2 ≤ keven ≤ d(n, `), as defined in [16]. We prove be-
low that for both the triangular and rectangular meshes,
αn` = |In`|+ |On`| −N − 1.

Lemma 1. In the triangular mesh, αn` = |In`|+ |On`|−
N − 1.

Proof. In the triangular mesh (shown for N = 8 in Figure
8) αn` := N − n, so we wish to show that N − n =
|In`|+ |On`| −N − 1, or:

2N + 1 = |In`|+ |On`|+ n. (I1)

Suppose Equation I1 holds for some arbitrary n′, `′ in
the mesh, such that 2N + 1 = |In′`′ |+ |On′`′ |+n′. First,
induct on n: if we take n = n′ + 2 and ` = `′, then
|In`| = |In′`′ |−1 and |On`| = |On′`′ |−1. Next, induct on
`: if we take n = n′ and ` = `′+ 2, then |In`| = |In′`′ |+ 1
and |On`| = |On′`′ |−1. In both cases, Equation I1 holds.

Traversals by 2 along n or ` from a starting node can
reach all nodes with the same parity of n and `, so we
need two base cases. Consider the apex node at n = 1,
` = N − 1 and one of its neighbors at n = 2, ` = N .
The former has |In`| = |On`| = N and the latter has
|In`| = N and |On`| = N − 1. In both cases, Equation I1
is satisfied, so the lemma holds by induction.

Lemma 2. In the rectangular mesh, αn` = |In`|+|On`|−
N − 1.

Proof. In the rectangular mesh, αn` := d (n, `)+1−sn`[`],
as defined in Ref. [16]. Define orthogonal axes x and
y on the lattice such that for a node at (n, `), travel-
ing in the +x direction gives the neighboring node at
(n+ 1, `+ 1) and traveling in the +y direction gives the
neighboring node at (n− 1, `+ 1), as depicted in Figure
14. For even {odd} N , let the node at (n, `) = (1, 1)
have x = 1 and the node at (n, `) = (N − 1, 1{2}) have
y = 1. Then there is a one-to-one mapping such that
(x, y) =

(
n+`
2 , `−n2 + bN2 c

)
, as shown in Figure 14, and it

suffices to prove the lemma by induction in this diagonal
basis.

Since d (n, `) is defined to be the length of a diagonal
along paths of constant n + `, it depends only on x, so
we rewrite d (n, `) 7→ d(x) explicitly:

d(x) =

{
2x− 1 x ≤ bN2 c
2(N − x) x > bN2 c

. (I2)

Similarly, since sn`[`] is enumerated along a diagonal,
it depends only on y, and we convert sn`[`]→ sx[y] from
the sequence definition of Ref. [16] to an explicit lattice
form:

sx[y] =

{
2
(
bN2 c − y

)
+ 1 y ≤ bN2 c

2
(
y − bN2 c

)
y > bN2 c

. (I3)

In this diagonal basis, we want to show that

d(x) + 1− sx[y] = |Ixy|+ |Oxy| −N − 1. (I4)

There are two boundaries at x, y = bN2 c which separate
four quadrants that must be considered, depicted by gray
lines in Figure 14. We will induct on x and y within each
quadrant, then induct on x or y across each of the two
boundaries.

Suppose that Equation I4 holds for some arbitrary x′y′

in the mesh, such that d (x′) + 1 − sx′ [y′] = |Ix′y′ | +
|Ox′y′ | −N − 1. First, we induct on x and y within each
quadrant; the results are tabulated in Table I. In every
case, d(x) − sx[y] − |Ixy| − |Oxy| = d (n, `) − sx′ [y′] −
|Ix′y′ | − |Ox′y′ |, so Equation I4 remains satisfied.

Next, we induct across the x, y = bN2 c boundaries,
shown in Table I. Again, in every case, d(x) − sx[y] −
|Ixy|−|Oxy| = d (n, `)−sx′ [y′]−|Ix′y′ |−|Ox′y′ |, satisfying
Equation I4.

Finally, note that the base case of the top left MZI at
(n, `) = (1, 1), (x, y) =

(
1, bN2 c

)
holds, with d(x) + 1 −

sx[y] = 1 = 2 + N − N − 1 = |Ixy| + |Oxy| − N − 1.
This completes the proof in the (x, y) basis, and since
there is a one-to-one mapping between (x, y) ↔ (n, `),
αn` = |In`|+ |On`| −N − 1 holds by induction.
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FIG. 14. Rectangular decomposition for even (N = 8) and odd (N = 7) meshes, showing the diagonal x, y basis. Values for αn`
are shown in red above each MZI, with values for sx[y] shown in blue below. The critical boundaries of x, y = bN

2
c separating

the different quadrants are drawn in green. (Boundaries are offset for visual clarity.)

Quadrant Induction d(x) = · · · sx [y] = · · · |Ixy| = · · · |Oxy| = · · ·

x′ ≤ bN
2
c, y′ ≤ bN

2
c x = x′ − 1 d (n, `)− 2 sx′ [y

′] |Ix′y′ | − 2 |Ox′y′ |
y = y′ − 1 d (n, `) sx′ [y

′] + 2 |Ix′y′ | − 2 |Ox′y′ |
x′ ≤ bN

2
c, y′ > bN

2
c x = x′ − 1 d (n, `)− 2 sx′ [y

′] |Ix′y′ | − 2 |Ox′y′ |
y = y′ + 1 d (n, `) sx′ [y

′] + 2 |Ix′y′ | |Ox′y′ | − 2

x′ > bN
2
c, y′ ≤ bN

2
c x = x′ + 1 d (n, `)− 2 sx′ [y

′] |Ix′y′ | |Ox′y′ | − 2

y = y′ − 1 d (n, `) sx′ [y
′] + 2 |Ix′y′ | − 2 |Ox′y′ |

x′ > bN
2
c, y′ > bN

2
c x = x′ + 1 d (n, `)− 2 sx′ [y

′] |Ix′y′ | |Ox′y′ | − 2

y = y′ + 1 d (n, `) sx′ [y
′] + 2 |Ix′y′ | |Ox′y′ | − 2

TABLE I. Induction on x and y within each of the quadrants in the mesh.

x′ y′ Induction d(x) = · · · sx [y] = · · · |Ixy| = · · · |Oxy| = · · ·

x′ = bN
2
c any x = x′ + 1 d (n, `)− {+}1 sx′ [y

′] |Ix′y′ |+ 0{1} |Ox′y′ | − 1{0}
any y′ = bN

2
c y = y′ + 1 d (n, `) sx′ [y

′] + 1 |Ix′y′ | |Ox′y′ | − 1

TABLE II. Induction on x or y across each of the borders of x, y = bN
2
c.
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