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Silicon spin qubits are a promising quantum computing platform offering long coherence times,
small device sizes, and compatibility with industry-backed device fabrication techniques. In recent
years, high fidelity single-qubit and two-qubit operations have been demonstrated in Si. Here,
we demonstrate coherent spin control in a quadruple quantum dot fabricated using isotopically
enriched 28Si. We tune the ground state charge configuration of the quadruple dot down to the
single electron regime and demonstrate tunable interdot tunnel couplings as large as 20 GHz, which
enables exchange-based two-qubit gate operations. Site-selective single spin rotations are achieved
using electric dipole spin resonance in a magnetic field gradient. We execute a resonant-CNOT gate
between two adjacent spins in 270 ns.

Quantum processors based on spins in semiconductors
[1–3] are rapidly becoming a strong contender in the
global race to build a quantum computer. In particu-
lar, silicon is an excellent host material for spin-based
quantum computing by virtue of its weak spin-orbit cou-
pling and low natural abundance of spin-carrying nu-
clei, which lead to intrinsically long spin coherence times
[4, 5]. Within the past few years, tremendous progress
has been made in achieving high fidelity single-qubit [6, 7]
and two-qubit control [8–12] in silicon. Scalable one-
dimensional arrays of silicon quantum dots have been
demonstrated [13], and in GaAs, where electron wave-
functions are comparably large, both one- [14–16] and
two-dimensional arrays [17, 18] of spins have been fab-
ricated. Despite this progress, quantum control of spins
in silicon has been limited to one- and two-qubit devices.
Scaling beyond two-qubit devices opens the door to im-
portant experiments which are currently out of reach,
including error correction [19, 20], quantum simulation
[21–24], and demonstrations of time crystal phases [25].

In this Letter, we demonstrate operation of a four-
qubit device fabricated using an isotopically enriched
28Si/SiGe heterostructure. The device offers independent
control of all four qubits, as well as pairwise two-qubit
gates mediated by the exchange interaction [26]. We
demonstrate control and measurement of the charge state
of the array, and operate in the regime where each dot
contains only one electron. We perform electric dipole
spin resonance (EDSR) spectroscopy on all four qubits
to show that they have unique spin resonance frequen-
cies. Finally, we modulate the tunnel coupling between
adjacent dots and demonstrate a resonant-CNOT gate
[9, 27].

Four spin qubits are arranged in a linear array using
an overlapping gate architecture, as shown in Fig. 1(a)
[28]. Single spin qubits are formed by accumulating a
electron under each plunger gate: P1, P2, P3, and P4.
The couplings between dots and between dots and the
charge reservoirs formed beneath gates S3 and D3 are
tuned by adjusting the barrier gate voltages VBi. Charge
sensing is performed by monitoring the currents IS1 and
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Figure 1. (a) False-color scanning electron micrograph of the
device. The qubit electrons are accumulated underneath the
plunger gates Pi and the charge sensor dots are formed un-
der the gates Mi. (b) A large-scale charge stability diagram
shows that the array can be emptied of electrons to reach the
(0,0,0,0) charge state. The sensing signal dI/dV is obtained
by combining the differentiated signal from both charge detec-
tors. (c) Charge stability diagram acquired near the (1, 1, 1, 1)
charge state, where quantum control is performed.

IS2 through two proximal quantum dot charge detectors
located in the lower half of the device.

Charge stability diagrams for the array are shown in
Figs. 1(b-c). To obtain good charge sensitivity for all four
dot charge transitions dI/dV = dIS1/dVP1+dIS1/dVP4+
dIS2/dVP1 + dIS2/dVP4 is plotted as a function of VP1

and VP4. In Fig. 1(b) we show that we can achieve the
(N1, N2, N3, N4) = (0, 0, 0, 0) charge state, where Ni de-
notes the number of electrons in dot i. The (0, 0, 0, 0)
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charge state is evident from the large region devoid of
charge transitions in the lower left corner of the figure.
The device is typically operated in the (1,1,1,1) charge
state, which is labeled in the zoomed-in charge stability
diagram of Fig. 1(c). The capacitive coupling between
plunger gates and neighboring dots (i.e. gate P1 and dot
2) is naturally an order of magnitude weaker than the
coupling between a plunger gate and the dot formed di-
rectly underneath it (i.e. gate P1 and dot 1) [28]. It
can therefore be challenging to distinguish charge tran-
sitions in adjacent dots (P1 and P2, or P3 and P4) in
two-dimensional charge stability plots since the slopes are
very similar. To more clearly distinguish the charge tran-
sitions, an artificial cross-coupling was added between
each plunger gate and its neighboring plunger gates in
software (details available in the supplementary informa-
tion [29]) such that a sweep in VP1 and VP4 not only in-
duces transitions in dots 1 and 4, but also in dots 2 and
3. To distinguish when the artificial coupling is used, we
relabel VP1 and VP4 as ṼP1 and ṼP4, respectively. With
the (1,1,1,1) charge state having been identified, we next
establish virtual gates, which significantly streamline de-
vice tuning.

Virtual gates have been described in detail and
compensate for the effects of device cross-capacitance
through software corrections that effectively invert the
capacitance matrix [21, 30–33]. Whenever the voltage of
gate VPi is adjusted to tune the chemical potential of dot
i, the voltages on adjacent gates VP (i−1) and VP (i+1) are
modified by a calibrated amount to keep the chemical
potentials of dots i − 1 and i + 1 constant. The mea-
sured capacitance matrix is given in the supplementary
information [29] and is used to establish the virtual gate
space [30].

Pairwise charge stability diagrams measured using vir-
tual gates are shown in Figs. 2(a–c). As the two virtual
gates ui and ui+1 are swept, the charge sensor currents
IS1 and IS2 are measured. Here we plot IS1 - IS2 as it re-
sults in higher charge sensing contrast. Gates not being
swept [i.e. u3 and u4 in Fig. 2(a)] are held fixed at the
same chemical potential as the source and drain reser-
voirs to enable fast loading and unloading of electrons
throughout the array. The orthogonality of the charge
transitions indicates that we have independent control of
each quantum dot’s chemical potential.

Loss & DiVincenzo suggested that the exchange inter-
action between two spins could be modulated by adjust-
ing the height of the tunnel barrier separating the spins
[1]. We demonstrate control over all of the interdot tun-
nel couplings (tcij) in our device by measuring the charge
state occupation as a function of detuning εij for differ-
ent barrier gate voltages VBi. Figure 2(d) plots P(0,1,∗,∗)
along the detuning axis shown in Fig. 2(a). The * denotes
that the chemical potential of the dot is held at the same
value as the source and drain chemical potentials. As
the tunnel coupling is increased, the charge delocalizes
across adjacent dots and the interdot charge transition
broadens. These data are fit as described in [34, 35] to
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Figure 2. Pairwise charge stability diagrams measured for
(a) dots 1 and 2, (b) dots 2 and 3, and (c) dots 3 and 4.
Here we use virtual gates to independently tune each dot’s
chemical potential. (d–f) Charge state occupation measured
as a function of detuning εij for various barrier gate voltages
VBi. An increase in interdot tunnel coupling broadens the
interdot charge transitions. The data are fit to theory (solid
lines) to extract the interdot tunnel coupling tcij between dots
i and j [34].

extract the interdot tunnel coupling. The lever arm con-
version between gate voltage and energy is determined
by measuring finite bias triangles for each pair of dots as
reported in Table 1. As shown in the data, the device
offers a high degree of control, with tunnel coupling tun-
able from 2tcij ≈ kBTe ≈ 2 GHz to many 10’s of GHz,
which is sufficient to enable fast CNOT gates. Here kB
is Boltzmann’s constant and the electron temperature Te
≈ 90 mK is obtained by fitting the charge transitions to
the source and drain to a Fermi function as described in
[13].

Site-selective single spin rotations are achieved using
EDSR [36, 37] in the presence of a magnetic field gradient
generated by a Co micromagnet [29]. The field from the
micromagnet BM

i is different at each dot and therefore
each spin has a unique electron spin resonance frequency
fi given by hfi = gµB(Bext + BM

i ), where h is Planck’s
constant, g ≈ 2 is the Landé g factor, and Bext is the ex-
ternally applied magnetic field. Our micromagnet design
is similar to that used by Yoneda et al. [38], but it has a
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Dot α (meV/mV) Ec (meV) BM
i (mT) T ∗2 (µs) T2,echo (µs)

1 0.14 4.5 137.6 2.6 41

2 0.13 4.7 165.8 1.5 31

3 0.14 4.5 194.3 10.4 72

4 0.15 4.7 199.2 9.4 109

Table I. Summary of single-qubit parameters including lever-
arm conversion between gate voltage and energy α, charging
energy Ec, magnetic field offset due to the micromagnet BM

i ,
spin dephasing time T ∗2 , and spin coherence time T2,echo.

slanting edge (as seen from above) that extends the field
gradient over the entire quadruple quantum dot [29].

To map out BM
i , EDSR spectroscopy is performed on

each qubit. During spectroscopy, the array is configured
such that only dot i contains a single electron – all other
dots are empty. In practice, we find that adding an elec-
tron to an adjacent dot only shifts the resonance fre-
quency by a few MHz. A frequency chirped microwave
pulse (± 15 MHz around a frequency f for 120 µs) is ap-
plied to gate MS. If the chirped pulse sweeps through the
spin resonance frequency fi of dot i, its spin will end up
in a mixed state. Here our chirped pulses are not adia-
batic, but are nonetheless convenient for identifying spin
resonance conditions, as the linewidth of electron spins
in 28Si can be narrow (<100 kHz). The spin state of dot i
is then measured through spin-selective tunneling to the
leads [39]. In the case of i = 2 and i = 3, where the dots
are not directly connected to the leads, the electron is
shuttled to the edge of the array and read out in dots 1
or 4, respectively. Loading the array follows the read out
sequence in reverse. These measurements are repeated
over a range of Bext spanning 250 – 450 mT.

The spectra for all four qubits are summed and plot-
ted in Fig. 3(a). The field gradient from the micromagnet
separates the qubit resonance frequencies by hundreds of
MHz, as highlighted by the linecut through the data in
Fig. 3(b). For comparison, in silicon devices relying on
Stark shifts or interface disorder for spin selectivity, the
qubit splitting is typically a few 10’s of MHz [8, 11]. We
find that over the course of ∼24 hours the qubit frequen-
cies are constant to within a few hundred kilohertz. The
readout visibility is primarily limited by Te and spin re-
laxation (T1 = 52 ms for qubit 4). The latter can be
overcome by employing cryogenic current amplifiers to
reduce noise and improve the measurement bandwidth
[40].

We next measure the spin dephasing times T ∗2 and spin
coherence times T2 for each qubit (see Table 1). In nat-
ural silicon, spin coherence is limited by the hyperfine
interaction with the 4.7% abundant 29Si nuclei. Here,
our device consists of an isotopically enriched 28Si quan-
tum well, which is 4.9 nm thick and has only an 800 ppm
residual concentration of 29Si [41, 42]. The buffer layers,
however, consist of natSi and natGe containing residual
spin-1/2 and spin-9/2 nuclei, respectively. Wavefunction
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Figure 3. (a) Summed EDSR spectra for all four qubits. The
qubits are driven using gate MS and four distinct ESR transi-
tions are observed. The ESR lines do not appear continuous
due to undersampling in Bext. Inset: Cross-sectional cartoon
of the device showing all four qubits subject to the same driv-
ing field, but with only qubit 2 on resonance. (b) A line cut
through the data at Bext = 435 mT shows that all four qubits
are well separated in frequency. The spacing between qubits
1, 2, and 3 is ∼800 MHz and qubits 3 and 4 are separated
by ∼130 MHz. The qubit linewidths are broadened by the 30
MHz microwave chirp used in these measurements.

overlap with these nuclei will be non-negligible given the
relatively thin quantum well [43].
T ∗2 is determined through measurements of Ramsey

fringes. For each Ramsey decay curve, the data are in-
tegrated over 15 minutes. Qubits 3 and 4 show a nearly
tenfold increase in T ∗2 compared with T ∗2 ∼ 1 µs for elec-
tron spins in natural silicon, whereas qubits 1 and 2 have
a dephasing time that is comparable to natural silicon.
A simple Hahn echo pulse sequence significantly extends
the coherence times, as summarized in Table 1. Similar
fluctuations in the coherence times have been observed
in other devices [9–11] and may be due to sampling over
a relatively small number of spin-carrying nuclei in the
quantum well and SiGe barrier layers. Another reason
for the fast dephasing in qubits 1 and 2 could be charge
noise which has been shown to shorten T1 [44] and T2
[6] in the presence of field gradients and is discussed in
the supplementary information [29]. Due to the wedge
shaped geometry of the micromagnet, the field gradient
experienced by qubits 1 and 2 is significantly larger than
at sites 3 and 4 which is evident from the large change in
field offsets BM

i between dots 1-3, and a relatively small
change in BM

i between dots 3 and 4 (see Table 1). The
short coherence times in dots 1 and 2 are still comparable
with the times reported in natural Si/SiGe and are not
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Figure 4. (a) Energy level diagram for dots 3 and 4 subject to a magnetic field gradient and either no exchange (left) or finite
exchange (right). Increasing VB4 turns on the exchange interaction J34 between qubits 3 and 4. Under exchange, the spin

transition frequency of qubit 3 (the target qubit) f (3) depends on the input state of qubit 4 |Ψ4〉 (the control qubit). (b) EDSR
spectroscopy of qubit 3. The spin-up probability P↑,3 is plotted as a function of f and VB4. (c) By varying the frequency and
amplitude of a microwave pulse applied to the target qubit with the control qubit prepared in either the up state (top panels)
or the down state (bottom panels), we map out the frequency of the target qubit conditioned on the state of the control qubit.
(d) Driving at frequency fCNOT and varying the microwave burst time τp results in Rabi oscillations of the target qubit that
are conditioned on the state of the control qubit. When the microwave burst is timed to correspond to a π-rotation on the
target qubit, τp = τCNOT = 270 ns, a CNOT gate is achieved (dotted line).

prohibitive for two-qubit operation.

Two-qubit gates are performed by applying voltage
pulses to the barrier gates Bi separating the dots [1].
Applying a positive voltage to a barrier gate increases
wavefunction overlap between adjacent dots and turns
on exchange [27], as illustrated in the energy level dia-
gram of Fig. 4(a). To first map out the influence of the
barrier gate on the exchange interaction, we vary the gate
voltage VB4 and perform EDSR spectroscopy on qubit 3,
as shown in Fig. 4(b). Before measuring the EDSR spec-
trum of qubit 3, qubit 4 was prepared in a mixed state
such that any state dependent line splitting could be ob-
served [9]. The EDSR spectrum of qubit 4 is probed in a
similar way. As VB4 is increased, the EDSR lines split to
reveal a doublet with a peak separation that is equal to
the exchange energy J34. The overall frequency shift of
the doublet is attributed to the displacement of the elec-
tron’s wavefunction within the magnetic field gradient as
VB4 is adjusted [9]. When applying voltage pulses to any
gates, these induced frequency shifts must be accounted
for and corrected using single qubit z-rotations [9, 45].

A resonant-CNOT gate can be achieved using this de-
vice architecture by following the protocol developed by
Zajac et al. [9]. Here we focus on qubits 3 and 4, while
dots 1 and 2 are empty. With J34 ≈ 0, we prepare in-
put state |ψin〉 = |↓↓〉 through spin-selective tunneling or
input state |ψin〉 = |↓↑〉 through spin-selective tunneling
followed by a π-pulse on spin 4. We then apply a volt-
age pulse to gate B4 to turn on exchange while simulta-
neously applying a microwave burst of varying duration

τp and frequency f . The resulting spin-up probabilities
P↑,3(P↑,4) for qubit 3(4) are plotted in Fig. 4(c). Rabi
oscillations are observed for qubit 3 with a resonance fre-
quency that is dependent on the state of qubit 4. By
setting f = fCNOT, where the microwave tone is reso-
nant with the target qubit when the control qubit is in
the spin-up state, we drive Rabi oscillations on the target
qubit conditioned on the state of the control qubit [see
Fig. 4(d)]. Furthermore, when t = tCNOT, qubit 3 will be
flipped when qubit 4 is in the spin-up state. With these
settings, we realize a resonant-CNOT gate in a four qubit
device [9, 27]. To implement a high fidelity CNOT gate,
it is important to note that some additional phase accu-
mulation due to the VB4-induced Ising interaction must
be compensated for by properly tuning τDC and VB4 as
described in our previous work [9, 27]. We attribute the
slight oscillations that appear on qubit 3 in the lower
panel of Fig. 4(d) to state preparation errors on qubit
4. Off-resonant driving would lead to oscillations at a
frequency above 6 MHz.

In conclusion, we have demonstrated one- and two-
qubit gate operations in a four qubit device fabricated
from an isotopically enriched 28Si quantum well. Our
device design allows for full control of the charge state
in the array. Interdot tunnel coupling and exchange are
tuned using barrier gates. We demonstrate independent
control of all four qubits, which is enabled by the field
gradient from a Co micromagnet. To demonstrate a two-
qubit gate involving dots 3 and 4, we mapped exchange as
a function of VB4 and performed a resonant-CNOT gate
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in 270 ns. These results set the stage for a four qubit
spin-based quantum processor in silicon, which should
be capable of performing small-scale quantum algorithms
and demonstrating time crystal phases [25].
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