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Metasurfaces have introduced large flexibility in manipulating the impinging wavefront for light 

and sound by locally engineering the reflection and transmission coefficients based on 

generalized Snell’s laws. Local phenomena in each unit cell, however, are fundamentally limited 

in the level of efficiency with which anomalous wavefront transformations can be achieved. Here, 

we explore acoustic metasurfaces with suitably engineered nonlocality, obtained by coupling 

neighboring cells. We demonstrate that nonlocal passive metastructures can overcome the 

limitations of local designs, and mimic balanced gain and loss distributions, enabling unitary 

efficiency for extreme beam steering. 

 

I. Introduction 

                                                            
* Corresponding author: aalu@gc.cuny.edu 



    Single-layered low-profile artificial surfaces have attracted significant attention recently, due 

to their capability of manipulating the impinging wave, over a compact design and moderate 

fabrication complexity compared with bulky metamaterial devices. These metasurfaces have 

shown interesting prospects for applications in communications, imaging, medical devices, both 

for electromagnetic and acoustic waves [1]-[5]. Early examples of metasurfaces were mainly 

based on accurately controlling the local reflection and/or transmission properties of each unit 

cell, so that the impinging wave can acquire an additional tangential momentum necessary to 

redirect the incoming energy towards the desired direction, dubbed phase-gradient metasurfaces 

for electromagnetics [6]-[10] and acoustics [11]-[14]. More recent studies have highlighted 

inherent efficiency limitations in these designs, since phase-gradient metasurfaces neglect 

impedance matching constraints and are therefore not able to redirect all incident energy into the 

desired direction, with a portion of the impinging wave going into unwanted parasitic diffraction 

orders [15]-[17]. The efficiency decreases rapidly as the steering angle deviates from specular 

reflection, and hence a clear trade-off exists between efficiency and extreme wavefront 

transformations in conventional gradient metasurfaces. More recently, Huygens metasurfaces 

have been introduced, in which a careful design of the local impedance along the surface and the 

addition of bianisotropic phenomena have ensured unitary efficiency for arbitrary wave steering, 

both for electromagnetic [18]-[20] and acoustic [21]-[22] waves. However, unitary efficiency for 

reflective metasurfaces still requires the use of active materials, which makes the realization 

challenging [15]. These findings raise the important question of whether it is possible to realize 

ideal anomalous wave steering with passive metasurfaces. 

    In [15]-[17] it was noticed that a single ultrathin surface can generally achieve unitary steering 

efficiency only provided that, while it is globally lossless, it has an impedance profile with local 



regions of gain and loss. It was further suggested that one way to create this impedance profile is 

to induce nonlocality, which may drive energy from one point to another of the surface and 

address power conservation within a passive design. Simple forms of nonlocality, based on 

auxiliary evanescent waves [23] and leaky modes [24], have been proposed to address these 

needs, showing realistic pathways towards efficiencies close to unitary. However, in these cases 

the metasurface design process is not straightforward and typically a structure optimization is 

necessary to push the efficiency close to unitary. Bi-anisotropic meta-gratings have also been 

proposed for electromagnetics [25]-[28] and acoustics [29], which introduce an effective form of 

nonlocality in each unit cell exploiting resonant scattering and asymmetries. While unitary 

efficiency can be achieved with these passive structures within a simple implementation, still 

optimization to suppress the undesired scattering orders is required in practical designs, and 

beam steering to arbitrary angles may require complicated unit cell designs. 

While acoustic unitary transmission metasurfaces have been recently proposed both in theory 

[17] and experiments [30] using bi-anisotropic unit cells, acoustic reflection metasurfaces with 

large efficiency have been reported in a small number of instances, because of the mentioned 

challenges [31]. Ref. [17] reported 95% reflection efficiency through numerical optimization of 

the metasurface structure, while Ref. [31] realized 97% reflection relying on a nonplanar surface. 

In this paper, we explore suitably engineered nonlocality in acoustic unit cells to design unitary 

reflection acoustic metasurfaces with planar profile. Tailored nonlocal unit cells can accurately 

control the tunneling of energy between neighboring units, offering a simple design pathway 

towards efficient reflective acoustic metasurfaces without design limitations and trade-offs. Our 

analysis proves that the efficiency of our designed metasurfaces can reach unitary levels based 

on a straightforward design and an easy-to-understand physical mechanism, highlighting the 



powerful opportunities enabled by engineered nonlocality in metasurface designs for wavefront 

transformations. 

 

II. Limitations of Local Metasurfaces 

    Consider an acoustic plane wave sin cos
0

i iik x ik y
i ip p e eθ θ−=  traveling in the x-y plane with 

incidence angle iθ , where pi0 is the complex amplitude and k is the free-space wave number. 

Here and in the following, the time convention i te ω−  is omitted for simplicity. We aim to design a 

planar metasurface lying on the x-z plane, steering the impinging wavefront in reflection towards 

the angle rθ , with pressure sin cos
0

r rik x ik y
r rp p e eθ θ= , as shown in Fig. 1(a). For unitary reflection, 

energy conservation requires 0 0 cos cosr i i rp p θ θ= . In a conventional gradient metasurface 

design, each unit cell is composed of locally vibrating elements. The right panel in Fig. 1(a) 

presents the equivalent circuit model for this geometry, with a single unit cell drawn in the blue 

dashed frame. The current source represents the net volume velocity flowing into the unit cell 

due to the contribution of incident and reflected waves. The impedance element 2Z iX= −  

represents the response of the local element, which is tuned transversely element by element to 

provide the required phase gradients to steer the wave. This circuit model describes all designs 

for metasurfaces based on local approaches, no matter whether the realization is based on folded 

units [12] or Helmholtz resonators [13]. The common drawback of these elements is obvious: 

each unit cell is separate from each other, which makes transverse energy tunneling between 

neighboring cells impossible. For passive and lossless elements, X2 must be real. However, in 

order to get unitary reflection, the impedance needs to locally satisfy 
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Figure 1(b) presents the impedance distribution for a unitary local metasurface according to Eq. 

(1). Here the incident angle is 0iθ = o  and the reflection angle is 75.5rθ = o , and 

( )2 sin sinr iD π θ θ= −  is the period. From Eq. (1) and Fig. 1(b), it is clear that for anomalous 

reflection ( i rθ θ≠ ), the required impedance to provide unitary reflection is necessarily active 

and/or lossy, (i.e., X2 needs to generally be a complex number) [15]. Figure 1(c) provides the 

distribution of Poynting vector in the y-direction (Iy) along the metasurface. In part of the unit 

cell area, the Poynting vector is negative, indicating that the energy is being absorbed by the 

surface, while in other areas the Poynting vector is positive, indicating that energy is being 

emitted. Eq. (1) essentially forbids unitary reflection with passive and lossless local metasurfaces.  

 

III. Nonlocal Metasurfaces 

In order to realize unitary reflection avoiding the use of active and/or lossy unit cells, we propose 

the use of engineered nonlocality in the unit cells, which therefore support transverse tunneling 

of energy from some regions of the surface to others, mimicking effective active and lossy unit 

cells, as shown in Fig. 2(a). In acoustics, we can implement this idea by opening a physical path 

between neighboring unit cells, supporting flows of pressure or velocity. In the equivalent circuit, 

this extra path can be modeled as an extra series impedance element -iX1 connecting transversely 

neighboring unit cells, as shown in the right panel of Fig. 2(a). Our goal is to use only passive 

elements with engineered nonlocality to realize unitary reflection by energy tunneling, therefore 

X1 and X2 must be real. 



    Suppose that the length of the channel connecting neighboring elements is w, then the volume 

velocity through this channel is ( ) ( )U x v x w z= Δ , where zΔ  indicates its width in the z-direction. 

Mass conservation requires that the input volume velocity equals the output one, 

( ) ( ) ( )nU x v x S U x− ++ Δ = , where ( ) ( )n nv x S v x x zΔ = Δ Δ  indicates the injected volume velocity 

contributed by incident and reflected waves. The equivalent of Kirchhoff’s laws for the lumped 

elements –iX1 and –iX2 can be written as 1( ) ( ) ( ) ( )t tp x p x x iX x U x+= + Δ −  and 

[ ]2( ) ( ) ( ) ( )tp x iX x U x x U x+ −= − − Δ − , respectively. From these equations, we can derive the 

expression for the pressure along the surface as (Appendix A) 

( )10

2 2

x
t n

Y viip v
Y Y x

ωρ ∂
= − +

∂
.                                       (2) 

Here, 1
1

xY
X z
Δ=

Δ
 and 2

2

1Y
x zX

=
Δ Δ

 are effective admittance elements, which are real because X1 

and X2 are real in the lossless limit. In the local scenario, 1X → ∞  ( 1 0Y → ), the pressure along 

the surface is only proportion to the normal velocity ( 2t np iv Y= − ), thus the metasurface 

converges to the conventional local surface shown in Fig. 1(a). The ratio of local pressure and 

velocity, i.e., the surface impedance, can thus be calculated as 2/Z i Y= − . When nonlocality is 

considered, however, the surface pressure is no longer a monotropic function of the normal 

velocity nv , but also a function of tangential velocity xv , as shown in Eq. (2). Hence, we can 

calculate the Poynting vector along y as 

( ) ( )2
1* *0

2 2

1 1Re Re Re
2 2 2

xn
y t n n

Y vv iiI p v v
Y Y x

ωρ⎛ ⎞∂⎛ ⎞
= = − + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

.                      (3) 



The first term in this expression stems from the local interactions, while the second term is due to 

the transverse energy tunneling between unit cells. For local metasurfaces ( 1 0Y → ), passive and 

lossless units ( 2Y  is real), 0yI =  is always satisfied. However, for nonlocal passive and lossless 

metasurface (both 1Y  and 2Y  real), even though the first term of Eq. (3) is zero, the second term is 

nonzero, indicating an effective ‘absorption’ or ‘radiation’ of energy locally along the 

metasurface, based on nonlocal effects. 

   For given incident and reflection angles, we can evaluate the required total pressure field pt, 

tangential velocity vx and normal velocity field vn on the metasurface. By further requiring a 

lossless response, we find the expression for the effective admittances 1Y  and 2Y  to realize 

unitary reflection with a passive nonlocal metasurface. The full analytical expressions as a 

function of incident and reflection angles are explicitly given in Appendix B. Besides beam 

steering, this design approach can be generalized to arbitrary wave transformations, by plugging 

in the equations the incident and desired reflected field distributions. By engineering the local 

and nonlocal impedance along the surface it is possible to transform with unitary efficiency and 

large flexibility the impinging sound wave in arbitrary scenarios.  

 

 

 

 

IV. Unitary Reflection 



As an example, we assume that the incident angle is normal to the metasurface 0iθ = o  and the 

desired reflection angle is 75.5rθ = o  ( 1cos
4rθ = , 15sin

4rθ =  ). The effective admittance can 

be expressed as (see detailed derivation in Appendix B) 
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r

r

kx
Y
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θ
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                                             (4) 
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.                                       (5) 

Figures 2(b) and (c) show the profile of the required 1Y  and 2Y  to achieve unitary efficiency. In 

the left half period, the effective admittances are respectively negative and positive, and in the 

right half period, they reverse signs. By replacing Eq. (4) and (5) into Eq. (3), we find the 

Poynting vector profile, which coincides with the one shown in Fig. 1(c), confirming the ideal 

response of the surface, and its effective absorption and re-radiation across each unit cell, which 

is enabled in a locally lossless metasurface based on nonlocal phenomena.  

In order to explore a practical realization of these concepts, we need to discretize the 

profile of the required admittances, and determine an acoustic micro-structure that synthesizes 

the nonlocal response. While the profile of 2Y  has different signs in different locations, the 

corresponding micro-structure can be designed with folded structures [12] or Helmholtz 

resonators [32]-[33], consistent with previous approaches to local metasurfaces. Here we choose 

impedance tubes with different lengths, as shown in the inset of Fig. 2(a).  

  The design of the admittance 1Y  is trickier, especially when the profile is negative in some 

portion of each unit cell. While membranes are the most common tool to provide compact 



capacitive responses for sound [34]-[36], the required pretension process of each membrane 

makes the realization of arrays of them for metasurfaces difficult to reproduce and scale up. For 

this reason, we aim at using impedance tubes, which ensure stability and accuracy of 

implementation. However, as shown in the equivalent circuit of Fig. 2(a), the volume velocity at 

both sides of 1Y  should be identical, but the pressure across it should not be zero. Thus, a single 

tube cannot realize our goal. In our realization, we use two narrow tubes connecting a wide tube 

to realize the required additional tunneling path, as shown in the inset of Fig. 2(a). By accurate 

design, the middle tube can store some of the volume velocity, which ensures that the volume 

velocity at both sides of 1Y  is identical. This tube design can therefore synthesize either a 

capacitive or inductive response by changing the tube length (Appendix C). 

    We first discretize the required admittance profile into fourteen segments for each period. For 

a normally incident plane wave with desired 75.5 deg reflection angle, an efficiency of 99.6% is 

obtained, as shown in the left panel in Fig. 3(a). The numerical simulation is calculated by the 

commercial finite element method software COMSOL Multiphysics [37]. The reflection pressure 

field is twice stronger than the incident field, confirming unitary anomalous reflection of our 

metasurface. As a comparison, we remove the tunneling path, suppressing the engineered 

nonlocal response, and the reflection efficiency drastically decreases, while strong parasitic 

waves arise, as seen in the right panel in Fig. 3(a). This comparison confirms the effectiveness of 

our nonlocal metasurface design. Fig. 3(c) presents the schematic geometry of each unit. Here 

w=0.5 mm and α=3. Other design parameters can be found in Table I. We also provided the 

incident and reflected wave calculated by effective impedance theory shown in Fig. 3(d) for 

comparison. 



Fig. 3(b) presents the same design with only four discrete segments in each period, i.e., a 

sparse discretization of the required nonlocal impedance profile. Here w=1.75 mm and α=3. 

Other design parameters can be found in Table II. The reflection field for the nonlocal 

metasurface and for the associated local profile are shown in the left and right panels, 

respectively. In this case, the nonlocal efficiency is still very large, 96.4%, while the local 

metasurface has a much poorer performance, proving the robustness of nonlocal metasurfaces to 

coarse discretization. 

 

V. Conclusion 

In this paper we introduced an approach to realize low-profile planar metasurfaces with 

unitary efficiency in acoustic wavefront transformation using engineered nonlocality. The 

nonlocal effect is realized by introducing a connecting path between neighboring unit cells, so 

that the energy can tunnel through, and synthesize effective loss and gain profiles in the effective 

local description of the surface. In Appendix D, we consider the presence of viscous and thermal 

loss in the involved materials, showing that the phenomenon is rather robust to imperfections. 

Different from other approaches, our design does not require engineering additional reactive 

fields in the proximity of the surface, and it is directly based on an analytical approach with 

simple design guidelines. In its actual acoustic implementation, we considered a meandering tube 

to synthesize the required local and nonlocal impedance profile, achieving high efficiencies even 

in coarsely discretized impedance profiles. Although this approach is proposed in the field of 

acoustics, similar approaches may be explored in electromagnetics, optics and for elastic waves, 

with interesting opportunities in a wide range of applications. In the paper we focused our 



attention on the canonical problem of beam steering, but the analysis can be straightforwardly 

extended to other wavefront transformations, such as for focusing or beam multiplexing. 
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APPENDIX A. I. Derivation of Nonlocal Impedance 

According to Fig. 2(a), the mass conversation law and impedance relation for –iX1 and –iX2 can 

be expressed as 

( ) ( ) ( )nv x w z v x x z v x w z− +Δ + Δ Δ = Δ                                       (A1) 

1( ) ( ) ( ) ( )t tp x p x x iX x v x w z+= + Δ − Δ                                    (A2) 

2

( ) ( ) ( )
( )

tp x v x x w z v x w z
iX x + −= − Δ Δ − Δ

−
                                   (A3) 

Substituting Eq. (A1) into Eq. (A3), we get 

2
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t
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p x v xv x w
i x zX x x

+∂+ =
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                                         (A4) 

Set 2
2

1( )
( )

Y x
x zX x

=
Δ Δ

, Eq. (A4) is changed to 

2
( )( ) ( ) ( )t n

v xip x Y x v x w
x

+∂− + =
∂

 .                                     (A5) 

From Eq. (A2), we get 

1( ) ( ) ( )tp x X x zi v x w
x x +

∂ Δ=
∂ Δ

.                                       (A6) 



Set 1
1

( )
( )

xY x
X x z

Δ=
Δ

, Eq. (A6) becomes 

1
( )( ) ( )tp xiY x v x w
x +
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∂

,                                            (A7) 

And after taking the derivative in x, we get 

2
1

1 2
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Replacing Eq. (A8) into Eq. (A5): 
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Note that 0
( ) ( )t

x
p x i v x

x
ωρ∂ =

∂
. Then we are able to get the pressure expression along the 

metasurface from Eq. (A9): 
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APPENDIX B: Derivation of Effective Admittance Profiles 

Substituting the expressions of total pressure field along the metasurface 

sin sin
0 0 cos / cosi rik x ik x

t i rp p e p eθ θθ θ= +  , total tangential velocity 
0

( )1( ) t
x

p xv x
i xωρ

∂=
∂

 and the total 

normal velocity field along the metasurface 

( ) ( )sin sin
0 0 0 0 0 0cos cos cos / cosi rik x ik x

n i r i rv p c e p c eθ θθ ρ θ ρ θ θ= −  into Eq. (2), we get 



(sin sin ) (sin sin )2 2 2
2 1

cos cos1 sin sin
cos cos

r i r iik x ik xi i
i r

r r

e Y k e Yθ θ θ θθ θθ θ
θ θ

− −⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(sin sin ) (sin sin )1

0 0 0 0

cos cos coscossin sin
cos cos

r i r iik x ik xi i ir
i r

r r

Yik e i e i
x c c

θ θ θ θθ θ θθθ θ
θ ρ θ ρ

− −⎛ ⎞ ∂= + + −⎜ ⎟⎜ ⎟ ∂⎝ ⎠
    (B1) 

Note that 1Y  and 2Y  are real, due to the use of passive lossless units, hence we can separate Eq. 

(B1) into real part and imaginary part, respectively: 
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By solving these two differential equations, we are able to uniquely determine the profile of 1Y  

and 2Y  for arbitrary incident and reflection angles as 
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APPENDIX C. Detailed Nonlocal Metasurface Design Approach 

The design structure of the nonlocal metasurface is shown in Fig. 3(c). In each unit cell, we 

have one left impedance tube and one right cascading tube. The left impedance tube corresponds 

to the traditional metasurface design and the cascading tube connecting the neighboring elements 

is the extra path that allows transverse energy tunneling. 

For the traditional impedance with length l0, its corresponding impedance expression is 

2 0 0 0tanY c klρ = − .                                             (C1) 

Therefore, for a given admittance 2Y , the desired length l0 can be chosen as 

( )2 0 0
0

arctan Y c
l

k
π ρ−

= .                                      (C2) 



The cascading tube contains two small tubes with identical width w and length h and one large 

tube with width wα  and length d. Here α  is the proportionality coefficient. Suppose the 

pressure field and velocity field in the left small tube to be iky iky
Lp Ae Be−= +  and 

( ) 0 0
iky iky

Lv Ae Be cρ−= − , respectively. And the pressure field and velocity field in the right 

small tube to be: iky
Rp Ce=  and 0 0
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Rv Ce cρ= , respectively. If we set the location of 

connection point of the small and large tubes to be y=0, we can also get the pressure and velocity 

field for the large tube: 2iky ikd iky
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Largev Ee Ee e cρ− −= − . At the 

connection point y=0, the pressure should be continuous: 
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At the same point, the mass conservation law requires 
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In addition, the input and outgoing velocities at the left and right small tube need to be identical: 
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The impedance relation for 1Y  requires 
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Combining Eqs. (C3)-(C6), we can get the required length of h and d for any admittance 1Y  as 
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APPENDIX D. Viscous phenomena and thermal loss 

We have explored the effect of realistic loss for the design shown in Fig. 3b by taking the 

viscous effects into consideration. The simulation including realistic viscous and thermal loss is 

performed through COMSOL Multiphysics Thermoviscous Acoustics Model. In our simulation, 

we choose air as the background medium and set thermal conductivity 0.025768 / ( )k W m K= ⋅ , 

dynamic viscosity 51.814 10B Pa sμ −= × ⋅ , bulk viscosity 51.0884 10B Pa sμ −= × ⋅ . The boundary 

conditions are set to ‘no slip’ for the mechanical boundary value problem, and to isothermal for 

the thermal one. While the efficiency of beam steering is slightly deteriorated because of the 

small width of the considered channels, we envision a trade-off between channel width to impart 

the nonlocal effect (and hence metasurface thickness), and overall efficiency of wavefront 

transformation.  



 

Fig. D. Simulation result for the design shown in Fig. 3(b) by taking viscous effects and thermal 

loss into consideration. 
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(mm) 1 2 3 4 5 6 7 

l0 36.8 40.9 43.8 45.8 46.8 46.9 43.2 

d 32.7 33.6 33.7 33.8 33.8 33.8 33.6 

h 35.2 33.9 33.6 33.5 33.5 33.5 33.9 

 8 9 10 11 12 13 14 

l0 25.6 21.9 22.0 23.0 25.0 27.9 32.0 

d 34.5 34.2 34.2 34.2 34.3 34.4 35.3 

h 32.6 32.9 33.0 32.9 32.8 32.6 31.3 

TABLE I. Detailed design parameters of each unit shown in Fig. 3(a). 

(mm) 1 2 3 4 

l0 40.5 45.8 20.5 25.8 

d 30.1 32.9 36.6 39.0 

h 37.6 34.7 28.2 25.1 

TABLE II. Detailed design parameters of each unit shown in Fig. 3(b). 

 

  



 

Fig. 1. (a) Schematic geometry and equivalent circuit model for a local metasurface. The blue 

dashed frame indicates one unit cell. The current source indicates the net volume velocity 

flowing into the metasurface, and the lumped impedance element models the local unit cell 

response. (b) Local impedance profile with the use active and/or lossy units. The required 

impedance is active in some areas of the unit cell and lossy in others. (c) Distribution of Poynting 

vector in the y-direction along the unit cell. 

  



 

Fig. 2. (a) Schematic geometry and its equivalent circuit model for the proposed nonlocal 

metasurface. The equivalent circuit model introduces an extra transverse path connecting 

neighboring elements, and thus makes the impedance nonlocal. Energy tunnels through this path, 

so that unitary efficiency can be achieved with passive lossless elements. (b) Distribution of the 

effective series admittance 1Y  to realize unitary reflection. (c) Distribution of the effective shunt 

admittance 2Y  . 

  



 

Fig. 3. (a) Discretized reflection metasurface with realistic implementation using 14 units in each 

period. The left panel presents the incident and reflection field for a nonlocal metasurface with 

connecting paths. The right panel presents the corresponding field for a local metasurface 

without transverse connections. For the nonlocal metasurface with 14 units in each period, the 

efficiency reaches 99.6%. (b) Reflection metasurface with 4 elements in each unit cell. The left 

and right panels present the incident wave and the reflection field for nonlocal and for local 

metasurface, respectively. For the nonlocal metasurface with 4 units in each period, the 

efficiency reaches 96.4%. (c) Schematic geometry of each unit. (d) Incident and reflected wave 

calculated through effective impedance theory. 

 


