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Quantum-limited Josephson parametric amplifiers are crucial components in circuit QED readout
chains. The dynamic range of state-of-the-art parametric amplifiers is limited by signal-induced
Stark shifts that detune the amplifier from its operating point. Using a Superconducting Nonlinear
Asymmetric Inductive eLement (SNAIL) as an active component, we show the ability to in situ tune
the device flux and pump to a dressed Kerr-free operating point, which provides a 10-fold increase in
the number of photons that can be processed by our amplifier, compared to the nominal operating
point. Our proposed and experimentally verified methodology of Kerr-free three-wave mixing can
be extended to improve the dynamic range of other pumped operations in quantum superconducting
circuits.

I. INTRODUCTION

Superconducting circuits offer the attractive possibil-
ity to synthesize systems with tailor-made Hamiltonians
that display a variety of physical phenomena. Among
the vast diversity of the Hamiltonians that can be pro-
duced, bilinear multi-mode bosonic Hamiltonians are the
simplest, and yet can be wielded to generate nontrivial
operations for quantum information processing. For ex-
ample, single- and two-mode squeezing Hamiltonians are
used to construct quantum-limited parametric amplifiers
[1, 2]. Tunable-strength frequency conversion Hamiltoni-
ans enter in quantum state transfer between remotely
separated modes [3–5]. Bilinear couplings with well-
controlled phases are crucial for realizing active nonre-
ciprocity in few-body systems such as parametric circu-
lators and directional amplifiers [6, 7], as well as for sim-
ulating many-body physics of topological band structure
using photonic systems [8] and implementing topological
traveling-wave amplifiers [9]. Furthermore, bilinear inter-
actions are essential auxiliaries in nonlinear operations,
such as the universal two-qubit entangling gate eSWAP
[10, 11] or Clifford gates on GKP-encoded logical qubits
[12, 13].

For such applications, it is important to master the im-
plementation of bilinear Hamiltonians with high dynamic
range. A common recipe for realizing a bilinear Hamil-
tonian is to pump the four-wave mixing nonlinearity of
the Josephson junction with an external microwave drive.
While this procedure synthesizes the target Hamiltonian,
it unavoidably introduces additional spurious terms of
higher order. To illustrate this inherent problem encoun-
tered in the task of Hamitonian design in the realm of su-
perconducting quantum circuits, consider the particular
task of realizing the Hamiltonian of a degenerate para-
metric amplifier HDPA = −∆bb

†b + g(b2 + b†2), where b
refers to the photon annihilation operator in the rotating
frame. It can be constructed with four-wave mixing by
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pumping n photons at detuning ∆ into the Duffing oscil-
lator realized with, for instance, a capacitively shunted
Josephson junction or SQUID [2, 14]. In such an imple-
mentation, the junction four-wave mixing with strength
K induces three terms: (i) the desired bilinear squeez-
ing term with g = Kn/2, (ii) the spurious Stark shift
∆b − ∆ = −2Kn, and (iii) the residual quartic term
δH = Kb†2b2/2. Kerr terms of the type (iii) have in
general serious consequences for the dynamic range of
various pumped processes. For example, the photon-
number dependent rotation of the phase space caused by
δH leads to the distortion of quantum states of light in a
microwave cavity at the level of a few photons [15, 16], to
“bananization” of squeezing [17, 18], and to saturation of
parametric amplifiers [14, 19–21]. In addition, the spuri-
ous Stark shift of the type (ii) limits the achievable gain
in the multi-pumping schemes for directionality [6, 7] and
deteriorates phase matching in traveling-wave amplifiers
(TWPA) [22–25].

Is it possible to generate pumped bilinear interactions
without the detrimental side-effects provided by Kerr? A
necessary ingredient towards this goal is three-wave mix-
ing, which is possible in superconducting circuits biased
with external magnetic flux or DC current. For amplifica-
tion, the third order nonlinearity can be directly pumped
to generate the squeezing term g without the need for the
Kerr term K. One example of such a three-wave mixing
implementation of the DPA is based on flux-modulating
the SQUID [26–28]. Alternatively, non-degenerate three-
wave mixing is also available via the Josephson ring mod-
ulator (JRM) [29], and is utilized in the Josephson para-
metric converter (JPC) [30]. In both these implemen-
tations the residual Kerr has been determined to cause
amplifier saturation [19, 27]. Recently a two-terminal
three-wave mixing element, the Superconducting Non-
linear Asymmetric Inductive eLement (SNAIL), has been
introduced [20, 31] as a tool to fight Kerr in situ by tun-
ing the magnetic flux. In addition, three-wave mixing
with Kerr suppression capability is also possible using
RF SQUID [32, 33] and inductively-shunted JRM [34].

However, as will be explained below, the Kerr con-
stant K can be significantly dressed by the presence of
the pump. Therefore, the strategy to suppress Kerr must
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take into account this dressing. In this work, we demon-
strate that it is indeed possible to realize the bilinear
Hamiltonian corresponding to the degenerate parametric
amplifier with three-wave mixing, while suppressing the
effect of Kerr in the presence of the pump. We confirm
the practicality of this Kerr cancellation by experimen-
tally achieving an order of magnitude improvement in the
saturation power and intermodulation distortion (IMD)
properties of the parametric amplifier at a Kerr-free sweet
spot, reaching the 1 dB compression power of −102 dBm
on par with the best published results [23]. We fur-
ther show that this is possible without sacrificing nearly
quantum-limited noise performance. More broadly, these
results lead us to argue that the optimal strategy to en-
gineer bilinear Hamiltonians should combine three ingre-
dients: a) presence of a three-wave mixing capability, b)
classical pump tone variable in strength and frequency
and c) sufficiently versatile nonlinearity that allows for
Kerr cancellation.

II. SNAIL PARAMETRIC AMPLIFIER

The device used in this work is the SNAIL paramet-
ric amplifier (SPA) [20]. Its electrical circuit, shown in
Fig. 1(a), consists of an array ofM = 20 SNAILs embed-
ded into a microstrip transmission line resonator. The
array is flux-biased, with a magnetic flux Φ piercing each
loop. This knob enables the tuning of the SPA reso-
nant frequency ωa in the range 6.2 − 7.2 GHz and gives
access to the cubic nonlinearity of the SNAIL’s flux-
dependent potential energy. The signal port of the de-
vice is strongly coupled to a 50 Ohm environment via a
finger-capacitor and sets the energy damping rate of the
SPA mode κ/2π ∈ 150−240 MHz, while a weakly coupled
pump port is used to supply the pump. The Hamiltonian
of such system can be approximated as

HSPA/~ = ωa(Φ)a†a+

∞∑
n=3

gn(Φ)(a† + a)n. (1)

The dependence of the most relevant Hamiltonian pa-
rameters on Φ is shown in Fig. 1(b) and is calculated
and measured using the methods elaborated in Ref. [20]
and in Appendices A and F.

When a strong off-resonant pump is applied at fre-
quency ωp = 2(ωa+∆), this leads to the effective Hamil-
tonian of a driven oscillator with Kerr nonlinearity

Heff/~ = −∆bb
†b+ g(b2 + b†2) +

K

2
b†2b2, (2)

written in terms of the photon annihilation operator b in
the frame rotating at ωp/2. The parameters ∆b, g and
K of the effective Hamiltonian in Eq. (2) depend on all
nonlinearities of the initial Hamiltonian in Eq. (1) and,
importantly, also on the pumping condition. The low-
est order dependence of these parameters on the average

FIG. 1. (a) Schematic of the reflection measurement setup.
Insets show the circuit diagram of a single SNAIL and the fre-
quency landscape of the parametric pumping process. (b) Pa-
rameters of the SPA Hamiltonian and its dissipation as a func-
tion of magnetic flux, calculated (solid line) and measured
(points) using the methods from [20].

number of pump photons in the resonator np is given by

∆b(np) ≈ ∆−
(

32

3
g4 − 28

g2
3

ωa

)
np, (3)

g(np) ≈ 2g3
√
np, (4)

K(np) = 12g∗4 +O(np), where g∗4 = g4 − 5
g2

3

ωa
. (5)

These relations translate into the remarkable capability
of the SPA to harness Kerr-free three-wave mixing: the
parameters g and K are defined by different order non-
linearities, and their flux dependence is such that K(Φ)
can go through zero and change sign while g(Φ) remains
large enough to enable the operation of the SPA as an
amplifier.

The phase-preserving gain of such an amplifier at the
signal frequency near ωp/2 in the presence of ns signal
and ni idler intra-resonator steady-state photons can be
calculated in the input-output formalism using a semi-
classical harmonic balance approximation as in Refs. [20,
27, 35] and Appendix D. The result is given by

G = 1 +
(2|g|κ)2

(κ
2

4 + ∆i∆s − 4|g|2)2 + κ2

4 (∆i −∆s)2
, (6)

where ∆s/i(np, ns, ni) = ∆b(np)−K(np) · (ns/i + 2ni/s).
To obtain large gain, one needs to tune the model de-
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FIG. 2. (a) Measured Stark shift ∆Stark versus the num-
ber of steady-state photons n in the resonator due to a drive
at ωd, for different fluxes Φ denoted with color. Frequency
landscape is sketched in the bottom left. Inset shows zoom-in
of the region with suppressed Kerr. (b) IIP3 measured with
the configuration of tones sketched in black in the top left.
The power of the pump at ωp = 2ωa is adjusted to produce
different gains. The pump is turned off for 0 dB gain.

scribed by Eq. (2) close to the parametric instability
threshold at np = (κ2 + 4∆2

b)/(8g3)2. However, the spu-
rious additional Stark shift K(np) · (ns/i + 2ni/s), cre-
ated by the signal and idler photons, detunes the system
from its operating condition, causing amplifier satura-
tion. In order to improve the saturation power, we need
to find an operating point at which G, given by Eq. (6),
is highly insensitive to ns/i. To first order, this sensitiv-
ity is determined by K dressed by the pump. As we will
show next, in the presence of 103 − 104 pump photons
the O(np) term in Eq. (5) becomes comparable to the
np-independent term, and the lowest order perturbative
approximation for K(np) given by Eq. (5) breaks down.
This breakdown is particularly important in the region
of suppressed Kerr.

III. PUMP-INDUCED DRESSING OF KERR

Experimentally, we can acquire insight into the behav-
ior of K(np) at large numbers of steady-state pump pho-
tons by measuring the Stark shift and intermodulation
distortion. Directly measuring the Stark shift coming
from photons in the pump at ωp is difficult in practice

because it is obscured by the amplification process aris-
ing from the second term in Eq. (2). We instead measure
the Stark shift caused by n steady-state photons of a
strong near-resonant drive placed at ωd = 2π × 7.8 GHz,
about 7 linewidths away from the resonance, which em-
ulates the effect of the pump. The resulting ∆Stark(n)
is shown in Fig. 2(a) for different fluxes in the range
(0.24−0.44)Φ0, where Φ0 = h/2e is the superconducting
magnetic flux quantum. To the lowest order in n, this
Stark shift is given by 24g∗4n. The upper bound on n in
Fig. 2(a) is roughly determined by the onset of chaotic
behavior, caused by the excitation of free-particle like
states [36]. The inset in Fig. 2(a) shows that in a certain
flux range we are able to suppress the linear contribution
to the Stark shift and observe the beginning of an oscilla-
tion. We emphasize that this oscillation, similar to that
theoretically predicted for a Josephson junction [36, 37],
occurs due to the higher order terms in the SPA Hamil-
tonian given by Eq. (1). This phenomenon corresponds
to the dressing of the Kerr constant, which becomes es-
pecially relevant in the flux region of suppressed Kerr.

We further confirm the pump-induced dressing of K
by investigating the IMD properties of the SPA. In this
experiment, two near-resonant signals at ωs1 and ωs2 are
sent to the resonator, and the sidebands at 2ωs1 − ωs2
and 2ωs2 − ωs1 appear at the output due to four-wave
mixing. The input-referred third-order intercept point
IIP3 is then calculated as the extrapolated signal power
for which the power in the sidebands is equal to the signal
power. Here, it is related to the Kerr constant via

IIP3 =
κ

|K|
1

(
√
G+ 1)3

~ωaκ, (7)

as proved in [20]. The measurement result of IIP3 with
the pump off is shown in Fig. 2(b) in blue, and the cor-
responding g∗4 extracted according to Eqs. (7) and (5)
is shown in Fig. 1(b) in good agreement with that ex-
tracted from the linear Stark shift. Eq. (7) suggests that
IIP3 decreases as G−3/2 for large G under the assump-
tion that K is independent of np as in Eq. (5), and thus
the peak shape in IIP3 at Φ = 0.40 Φ0 would remain
unchanged with increasing gain. However, in the exper-
iment we find that pumping at ωp = 2ωa (i.e. ∆ = 0)
leads to the complete disappearance of the peak in IIP3

at gains G > 5 dB, meaning that K(np(G)) is no longer
small. This dressing is most pronounced in the region
of reduced Kerr where the contribution given by Eq. (5)
is intentionally suppressed. Outside this region, the ap-
proximation K(np) = const works well up to np required
for G = 20 dB, see Appendix C.

We next formulate a procedure to correct for the dress-
ing of K by the pump. As suggested by the measurement
of nonlinear Stark shift shown in Fig. 2(a), changing np
at a fixed Φ can influence the sensitivity of the Kerr-
induced terms ∆s/i(np, ns, ni) in Eq. (6) to ns/i, provid-
ing us the tool that we need in order to find the effective
Kerr-free point. At a fixed Φ, we can vary the pump pho-
ton number np required to reach G = 20 dB by changing
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the pump detuning ∆, which had been set to zero in the
analysis so far.

IV. STABILITY REGIONS

The model described by Eq. (2) exhibits a variety of
new effects when ∆ is varied away from zero. We first
discuss these effects, which can be understood by consid-
ering the stability diagram of the Kerr oscillator driven
parametrically near twice its resonant frequency, shown
in Fig. 3(a) for Φ = 0.30Φ0. The colors in this diagram
represent the three regions in the space of parameters
∆b and g, in which the classical nonlinear dissipative dy-
namics of a complex amplitude b has qualitatively dif-
ferent phase portraits [38, 39]. In general, the motion
of b is not governed by a Hamiltonian that has separate
potential and kinetic energy terms. However, under cer-
tain conditions, due to the separation of time scales one
can integrate out the fast component of the motion and
reduce the problem to the slow motion in an effective
1D potential [40, 41]. This potential can have one, two
or three minima depending on the parameters ∆b and
g, and is sketched for illustration purpose in Fig. 3(a).
Such a 1D potential helps to qualitatively think about
the problem, but the partition of the stability diagram
into three separate single-, bi- and tristable regions can
be done regardless, because it is based on the full 2D
phase portrait of the system.

Region (I) of the stability diagram has a trivial ground
state, in which b fluctuates near zero. At G = 20 dB
operating points in this region, the device behaves as a
nearly quantum-limited amplifier which is seen from the
measurement of the noise visibility ratio (NVR), defined
as the ratio of noise power spectral densities with the
SPA pump on and off, see Fig. 3(b) right upper panel and
Appendix A. In addition, the saturation curve taken at
the signal frequency near ωp/2 monotonically decreases
with increasing signal power, see Fig. 3(b) right lower
panel.

Region (II) has two stable points and, in the result-
ing ground state, b has a finite mean amplitude, imply-
ing the resonator oscillates at frequency ωp/2 even with
no applied signal power, an effect termed as paramet-
ric self-oscillation or period-doubling [42]. This region is
separated from the rest of the diagram by the paramet-
ric instability threshold, where the gain of a parametric
amplifier diverges [39]. In the K < 0 case, due to the
Stark shift produced by np, there is a maximal positive
detuning ∆ beyond which large gain can no longer be
obtained. Immediately next to the threshold, the black
line denotes the pump photon number and detuning for
G = 20 dB. In our experiment, we always operate on
this line below the threshold and thus do not enter re-
gion (II), although note that it is an interesting region for
operating the device as a parametric oscillator [41, 43].

On the negative detuning side, the G = 20 dB line
enters the region (III) of the oscillator stability diagram,

FIG. 3. (a) Stability diagram of parametrically driven Kerr
oscillator in coordinates (∆, np), analytically calculated using
approximations from Eqs. (3)-(5) for the SPA parameters at
Φ = 0.30 Φ0, see Appendix D. Also shown are sketches of the
effective 1D potential adapted from [40]. The black line below
the parametric instability threshold is the line of G = 20 dB.
(b) Upper panels: noise visibility ratio at G = 20 dB as a
function of noise frequency. The horizontal dashed line at
8.3 dB is a guide to the eye, indicating the quantum limit of
the amplification chain. Lower panels: gain as a function of
input signal power. The three data sets correspond to the
operating points marked with arrows in (a).

which has three stable points. As long as the device
operates at the single, global minimum at zero amplitude,
it remains nearly quantum-limited as seen by the NVR
trace in Fig. 3(b) upper middle panel. Nevertheless, as
shown in Fig. 3(b) lower middle panel, the response of the
amplifier to large signals changes qualitatively. When the
signal power is increased above a certain threshold, the
system will undergo the equivalent of a first-order phase
transition and adopt a new working point with increased
gain. This phenomenon is captured by the self-consistent
equation (6) for gain G as a function of ns/i(G), as shown
in Appendix C. The characteristic shape of the saturation
curve in this regime was called “shark fin” in Ref. [19],
where a similar phenomenon was reported for the JPC.
Interestingly, shark fins can be extremely sensitive to the
level of input signal power, changing the output by 15 dB
when the input difference is less than 1 dB.

The presence of additional stable points in the re-
gion (III) implies that the period-doubling effect is also
possible here. The associated instability where the sys-
tem dynamically switches between the global minimum
and the secondary ones brings the danger of increased
noise temperature of the amplifier. However, the high-
amplitude minima are separated from the trivial mini-
mum by potential barriers that prevent the system from
switching [38, 44]. Therefore, the NVR is not appre-
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FIG. 4. Upper panels: phase-preserving gain as a function of pump detuning ∆ and signal power at various magnetic fluxes
in the region of reduced Kerr. At each ∆ the pump power is adjusted to reach G = 20 dB for signals weaker than −140 dBm.
Solid and dashed black lines are isolines of 19 dB and 21 dB respectively. Lower panels: maximum noise visibility ratio as a
function of pump detuning ∆. The horizontal dashed line at 8.3 dB is a guide to the eye, indicating the quantum limit of the
amplification chain.

ciably degraded at small red detuning inside the region
(III). Following the 20 dB curve in Fig. 3(a), it is only
beyond the detuning where all three coexisting steady-
states have equal populations that the system will prefer
to stay in the high-amplitude state [45]. Hence, we at-
tribute the significant increase of NVR at large negative
detuning, shown in Fig. 3(b) upper left panel, to the en-
hanced switching between the high- and low-amplitude
stable points. This effect is quantified by the increase
of the noise temperature of the SPA by a factor of 2.9
at ∆ = −500 MHz. In such a state, the amplifier is no
longer quantum-limited and cannot be described by the
conventional theory which leads to Eq. (6).

The stability diagram in Fig. 3(a) was constructed at
Φ = 0.30 Φ0, away from the region of reduced Kerr. Since
we cannot predict the stability regions at the fluxes where
we expect the approximation in Eq. (5) to fail, we need
to perform an empirical search for the dressed Kerr-free
point in the space of parameters Φ and ∆.

V. DRESSED KERR-FREE POINT

We show in Fig. 4 the results of the measurement of
gain saturation (upper panels) and NVR (lower panels)
for high-resolution sweeps of detuning ∆ done at five dif-
ferent fluxes Φ in the region of reduced Kerr. At every de-
tuning, the pump power is adjusted to obtain the small-
signal gain of 20 dB. The input signal power is then swept
beyond the 1 dB compression point (solid black). The left
and right boundaries of the ∆ sweep at each Φ correspond
to detunings where a small-signal gain G = 20 dB could
not be achieved at any applied pump power. Moving
from smaller to larger Φ, the ∆ tuning range decreases

from about 900 MHz at Φ = 0.19 Φ0 to about 200 MHz
at Φ = 0.48 Φ0 (not shown) and its median shifts from
positive to negative values.

We find the Kerr-free operating point in the presence
of the pump to be at Φ = 0.34 Φ0, ∆ = −95 MHz.
There, the 1 dB compression power peaks at a value
P1dB = −102 dBm which is an order of magnitude larger
than at ∆ = 0. The tunable bandwidth over which
we observe the P1dB increase is about 200 MHz. We
measure a similar improvement in the IMD properties
with peak IIP3 = −94 dBm, see Appendix B. Impor-
tantly, as indicated by the NVR, the amplifier remains
nearly quantum-limited at this operating point. This re-
sult demonstrates that it is indeed possible to realize the
degenerate parametric amplifier Hamiltonian with three-
wave mixing, while suppressing the effect of Kerr in the
presence of the pump.

VI. CONCLUSION

To conclude, through theory and experiments we have
formulated the methodology for realizing a quantum-
limited degenerate parametric amplifier with suppressed
spurious Kerr effect, and hence improved dynamic range.
This work raises several directions for future investiga-
tion. Our device achieved P1dB = −102 dB, on par with
the best published results, but with room for further im-
provement. In Appendix E we provide an outlook for how
such an optimization would proceed and introduce a new
concept of “pump power efficiency” that would need to
be addressed to achieve further gains in dynamic range.

Another important direction would be to investigate
the limits on the tunable “Kerr-free bandwidth” and on



6

the compression power at the dressed Kerr-free point,
which are possibly due to even higher-order terms not
included in the effective Hamiltonian in Eq. (2). This
naturally raises the question of whether it is possible
to mitigate the detrimental effect of these higher order
terms by circuit design and choice of pumping condition.

More broadly, we expect that the strategy of operat-
ing at a Kerr-free point while accounting for the dressing
by the pump will be crucial for improved performance of
other flux-biased three-wave mixing amplifiers that are
in principle capable of operating at a Kerr-free point,
such as the JPC with an inductively-shunted JRM [34]
or the TWPA with array of RF SQUIDs [33] where Kerr
cancellation will improve phase matching [46]. Finally,
our methodology for achieving Kerr-free three-wave mix-
ing can be applied for engineering other pumped bilinear
Hamiltonians with superconducting circuits while sup-
pressing the effect of spurious processes.
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P. D. Kurilovich, V. D. Kurilovich, G. Liu and T. Roy.
We also acknowledge the Yale Quantum Institute. Fa-
cilities use was supported by the Yale SEAS clean room
and YINQE. This research was supported by AFOSR
under Grant No. FA9550-15-1-0029, and by ARO un-
der Grants No. W911NF- 18-1-0212, W911NF-18-1-0020
and W911NF-16-1-0349.

Appendix A: Device parameters and measurement
setup

The SPA device package is shown in Fig. 5. Joseph-
son junctions of the SNAIL are formed by Al/AlOx/Al
layers deposited using the Dolan bridge shadow evapo-
ration process (critical current density jc = 120 A/cm2),
and have critical currents Ic = 8.5 uA and Ic = 0.85 uA.
The microstrip transmission line resonator is formed by a
2µm thick silver film deposited on the back of a 300µm
thick silicon wafer to act as a ground plane, and by the
aluminum traces on the chip. The silver back-plane of
the chip is glued using conducting silver paste to the
copper back-plane of the TMM10i printed circuit board
(PCB), which is soldered to the gold-plated aluminum
box, see Fig. 5(a). The first resonant mode of the box is
at 18 GHz, well above relevant frequencies for the opera-
tion of the SPA. The pump and signal aluminum trans-
mission line traces on the chip are wire-bonded to the
copper transmission line traces on the PCB, which are
soldered to the edge-mount SMA connectors.

A superconducting NbTi coil that applies magnetic
flux to the SNAILs is mounted under the PCB inside of
the box, as shown in Fig. 5(a). The aluminum box acts as
a partial shield against stray external magnetic fields. For
better protection, an additional cryogenic µ-metal shield
is fitted around the aluminum box. The device is ther-
mally anchored to the base stage of a dilution refrigerator
(T = 24 mK) through this shield. It is mounted back-to-
back with the 4 − 8 GHz cryogenic circulator, which is

connected to the signal port of the SPA with a short 2
inch cable. This configuration allowed us to significantly
suppress the small-scale ripples in the data resulting from
the impedance mismatches [20, 47, 48]. We found that
the close proximity of the commercial ferrite circulator
does not influence the SPA performance.

The SPA pump tone is generated by an Agilent PSG
E8257D generator. The DC current is supplied to the
coil by a Yokogawa GS200 current source. All measure-
ments, including the IMD and NVR, are done using the
corresponding measurement classes of a Keysight PNA-X
N5242A network analyzer.

We found that PNA-X “Noise Figure” measurement
class sometimes displays a sharp spike at ωp/2, which is
absent in a separate measurement done with an Agilent
EXA N9010A Spectrum Analyzer, and likely results from
the lower tolerance of the PNA-X to the pump leaking
through the isolators of the output chain at frequencies
close to their cutoff at 12 GHz. This spike does not af-
fect the rest of the data, as verified by the independent
measurements of NVR, and is filtered out in software.

Extraction of the amplifier noise temperature from
NVR requires the calibration of the gain of the out-
put chain, for example with the shot noise thermome-
ter [49, 50], which was not available in our setup. How-
ever, our claim that the system is nearly quantum-limited
when NVR ≈ 8.3 dB is supported by the independent
measurement of quantum efficiency η = 0.6 in the exper-
iment [51] done with the SPA.

Appendix B: Intermodulation distortion (IMD)

In the IMD measurement the two signals at ωs1 and
ωs2 of equal power are sent to the input of the SPA. The
median of the signals is detuned from the center of the
Lorenzian gain at ωp/2 by amount δ1 ≡ (ωs1 + ωs2)/2−
ωp/2 = 2π × 500 kHz to avoid phase-sensitive amplifica-
tion. The detuning is chosen small compared to the am-
plifier 3dB-bandwidth B ∼ 2π×25 MHz. The separation
of the two tones is δ2 = ωs2−ωs1 = 2π×100 kHz. Due to
the nonlinear intermodulation distortion, the sidebands
at 2ωs2 − ωs1 and 2ωs1 − ωs2 appear at the output and
are measured using the IMD measurement class of the
PNA-X. The IIP3 extracted from the raw data is shown
in Fig. 6, and exhibits a peak value IIP3 = −94 dB at
the dressed Kerr-free point similar to the peak in P1dB.

Appendix C: Saturation power and shark fins

Saturation of a good amplifier happens at large aver-
age signal and idler photon numbers ns/i � 1/2, justify-
ing the use of the semi-classical approximation, in which
the phase preserving gain G at the signal frequency near
ωp/2 is given by Eq. (6). The small-signal limit of this
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FIG. 5. (a) Schematic of the SPA package that contains the superconducting box, SMA connectors, magnet spool, PCB
and the silicon chip. (b) Optical microscope image of the microstrip resonator, (c) finger capacitor, (d) SNAIL array, and (e)
electron micrograph of a single SNAIL.

expression is given by

G0 = 1 +
4κ2|g|2

(∆2
b + κ2

4 − 4|g|2)2
. (C1)

The goal of this section is to derive a closed-form ex-
pression for the input signal power Pin at which the gain
changes from G0 to G (which directly gives the closed
form expression for P1 dB) and to study the phenomenon
of shark fins. Using input-output theory, we can establish
the relation between the input power Pin and the intra-
resonator populations ns and ni. For large gain G � 1
we obtain ns ≈ ni ≈ GPin/~ωaκ with a relative error
δns/ns ∼ 1/

√
G, which is about 10% for G = 20 dB. In

this approximation, we can rewrite Eq. (6) in the form

G = 1 +
4κ2|g|2

(∆2
eff + κ2

4 − 4|g|2)2
, (C2)

∆eff = ∆b − 3K
GPin

~ωaκ
, (C3)

where ∆eff contains the additional Stark shift created by
the signal and idler photons (this formula is given in [20],
but with a typo which is corrected here). After plugging

FIG. 6. IIP3 as a function of pump detuning measured in
the same sweep as the data in Fig. 4 at Φ = 0.34 Φ0.

this into Eq. (C3) and solving for Pin, we obtain

Pin =
~ωaκ
3KG

(
∆b ±

√
4|g|2 − κ2

4
+

2κ|g|√
G

)
. (C4)

The Hamiltonian parameter g can be expressed
through G0 from Eq. (C1), which leads to

Pin =
~ωaκ2

3KG

{
∆b

κ
±

√
∆2
b

κ2
+

√
G0 −

√
G√

G0G

√
∆2
b

κ2
+

1

4

}
.

(C5)

In this expression both K and ∆b depend on np, and
thus implicitly on gain. When we consider a simplified
case of small negative K, such that ∆b ≈ ∆ and K ≈
12g∗4 , we can further simplify Eq. (C5) to

Pin =
~ωaκ2

36g∗4G

{
∆

κ
±

√
∆2

κ2
+

√
G0 −

√
G√

G0G

√
∆2

κ2
+

1

4

}
.

(C6)

At positive detuning, only one solution is possible for
G < G0 and no solutions for G > G0, while at negative
detuning two solutions are possible for G > G0 and one
for G < G0, which corresponds to the “shark fin” shape
of the saturation curve.

The comparison of Eq. (C6) to the measured P1dB at
a fixed detuning ∆ = 0 as a function of flux Φ is shown
in Fig. 7(a), and comparison to the measured P1dB at
a fixed flux Φ = 0.30 Φ0 as a function of detuning ∆ is
shown in Fig. 7(b). For the plotted theory lines, we have
assumed that there exists a systematic miscalibration of
the resonant frequency (and therefore the detuning ∆) by
approximately 25 MHz. The compression power is very
sensitive to such miscalibration especially near the de-
tuning ∆ = 0, as evident from Fig. 7(b). Accounting for
this shift aligns the theory and data much better in both
∆ and Φ axes, while without this correction we find a
6 dB systematic disagreement between theory and data
in Fig. 7(a).
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FIG. 7. Input saturation power (a) as a function of Φ at fixed detuning ∆ = 0, and (b) as a function of ∆ at fixed flux
Φ = 0.30 Φ0. Expression (C6) has limited validity, it is plotted at Φ & 0.30 Φ0 only to show the expected divergence, but should
not be extrapolated to the region of significant Kerr dressing. Empirically, the region of validity corresponds to where the blue-
dashed and solid theory lines in (a) are similar. Likewise, it should not be extrapolated beyond the detuning ∆ ≈ −300 MHz
in (b), where the ground state of the metapotential in Eq. (2) is significantly modified and the derivation of Eq. (C6) is not
valid. Panels (c) and (d) show the experimental and theoretical saturation curves for various pump detunings ∆ denoted with
color. At negative ∆ the system undergoes an equivalent of the first-order phase transition with increased input signal power.

The extrapolation of Eq. (C6) to detunings ∆ <
−300 MHz predicts persisting shark fins, which are not
observed in data. We understand this effect to arise
from the fact that the ground state of the metapoten-
tial in Eq. (2) is significantly modified at large negative
detuning ∆ due to the secondary high-amplitude min-
ima, which invalidates the derivation of P1dB presented
in this section. Empirically, we locate this region by the
increased NVR at large negative detuning, as discussed
in the main text. Similarly, the extrapolation of Eq. (C6)
to fluxes Φ & 0.30Φ0 leads to the incorrect prediction
of improved compression power at an unpumped Kerr-
free point at Φ = 0.40 Φ0, as shown in Fig. 7(a). Using
Eq. (C6) with K extracted from the IMD measurement
at gain G = 20 dB leads to a much better functional
agreement, indicating that the IMD experiment better
captures the dressing of the Kerr constant by the pump.

We can view Eq. (C3) as a self-consistent equation
of state, analogous to the Van der Waals equation for
nonideal gas, which exhibits a first-order phase transi-
tion [53]. In this analogy, the detuning ∆ plays the role
of temperature, input signal power Pin plays the role of
pressure, and gain G plays the role of volume. As shown
in Fig. 7(d), for the negative detuning ∆, the equation
(C3) predicts the possible existence of a metastable state
with high gain. In the sweep of input signal power, the
system switches to this state along the line analogous to
the isobar in the Maxwell construction, as shown in the

experimental data in Fig. 7(c).
Finally, note that the flux tuning range of the SPA

shown in Fig. 7(a) corresponds to a wide tunable band-
width of about 1 GHz. Moreover, at a fixed Φ the tunabil-
ity can be accomplished with the help of pump detuning
∆, which corresponds to a tuning range of approximately
700 MHz, as shown in Fig.7(b) for Φ = 0.30 Φ0. However,
not all of this range corresponds to the quantum-limited
performance as discussed in the main text, reducing the
usable tunability at a fixed flux to about 400 MHz. Due
to this property, such an SPA is a good candidate for
time-multiplexed readout schemes, in which the pump
frequency can switch to match the required readout chan-
nel, similarly to the proposal of flux switching in Ref. [54].

Appendix D: Stability diagram of the parametrically
driven Kerr oscillator

In this section we derive the separation lines between
the regions of the stability diagram at Φ = 0.30 Φ0 shown
in Fig. 3(a), using the semi-classical harmonic balance
method. When the pump and signal tones are incident on
the SPA nonlinear resonator, the mixing between them
results in the amplification of the signal, creation of the
idler and creation of other intermodulation products at
frequencies that can be parametrized as ωnm = nωp +
mωs where n and m are integers. However, under certain
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conditions, generation of radiation which does not belong
to this family of intermodulation products is possible. Of
particular interest to us is the coherent period-doubling
tone at frequency ωp/2 generated solely by the pump.

To grasp the major processes that happen in the
pumped SPA, we perform a second order harmonic bal-
ance calculation which accounts for the following har-
monics:

◦ Pump ωp, signal ωs and idler ωi = ωp − ωs comprise
a minimal set required for quantum-limited amplifica-
tion.

◦ 2ωp, 2ωs, 2ωi, ωp + ωs, ωp + ωi, ωs − ωi and DC are
required in the consistent calculation that takes into
account linear Stark shift. These harmonics lead to
∼ g2

3/ωa corrections to K in Eq. (5) and to pump-
induced Stark shift in Eq. (3).

◦ ωp/2, ωp/2 − ωs and ωp/2 − ωi account for a possible
period-doubling effect.

Following the steps of [20] and Refs. [27, 35], we de-
rive the self-consistent system of equations that links the
amplitudes of all chosen harmonics. This is done by solv-
ing the quantum Langevin equation (QLE) [55] without
RWA approximation (because the out-of-band harmonics

do not satisfy it). In order to do this, we need to take into
account that the negative frequency Fourier component
of the annihilation operator a is linked to the positive
frequency component via the relation

a†−ω =
ωa − ω
ωa + ω

aω. (D1)

The a†−ω is usually dropped from the frequency-domain
QLE for aω if all the signals arriving at the resonator are
near the resonance. Eq. (D1) can be derived from the
relation Φ̇ = CaQ between the canonical coordinate Φ
of the mode and its canonical momentum Q, written in
second-quantized form.

Taking into account Eq. (D1), we will seek the semi-
classical harmonic balance solution to QLE in the form

α(t) =
∑
x

(
αxe

−iωxt +
ωa − ωx
ωa + ωx

α∗xe
iωxt

)
, (D2)

where x runs over all harmonics described previously.
Equations for the out-of-band harmonics can be par-

tially solved, and the system further reduced to three
complex equations for the amplitudes at ωs, ωi and ωp/2,
denoted as αs, αi and αh respectively:

(ω + ∆b + iκ/2)αs = us + (4g3αp + 12g∗4α
2
h)α∗i + 12g∗4(|αs|2 + 2|αi|2 + 2|αh|2)αs, (D3)

(−ω + ∆b + iκ/2)αi = ui + (4g3αp + 12g∗4α
2
h)α∗s + 12g∗4(|αi|2 + 2|αs|2 + 2|αh|2)αi, (D4)

(∆b + iκ/2)αh = uh + 4g3αpα
∗
h + 12g∗4(|αh|2 + 2|αs|2 + 2|αi|2)αh, (D5)

where ω = ωs−ωp/2 is the signal detuning, ∆b is defined
in Eq. (3), and us, ui and uh denote the drive strengths
at corresponding frequencies, following the notations in-
troduced in Ref. [20]. Note that the pump amplitude
αp = up/ωa here does not include any corrections due
to αs, αi and αh – they have been reabsorbed into the
above equations.

To derive the boundaries in the stability diagram, we
solve these equations in the small-signal approximation,
in which the Stark shift due to |αs|2 and |αi|2 can be
neglected. Since no input is sent at ωp/2, we can set the
drive strength uh to zero. Then equation (D5) reduces
to (

∆b − 12g∗4 |αh|2 + iκ/2
)
αh = 4g3αpα

∗
h. (D6)

After multiplying it by the complex conjugate, we find
a trivial solution αh = 0 and possible high-amplitude
solutions

|αh|2 =
1

12g∗4

(
∆b ±

√
(4g3|αp|)2 − κ2

4

)
. (D7)

First, consider ∆b > 0 half-plane. In this case only
the solution with the minus sign in Eq. (D7) is possible
if the additional condition (4g3|αp|)2 − κ2

4 > ∆2
b is sat-

isfied. This defines the separation line between region
(I) and (II) of the stability diagram. In region (I) only
αh = 0 solutions exists and is stable. High-amplitude
solution exists in region (II) and is stable, while αh = 0
is unstable.

Next, consider ∆b < 0 half-plane. The requirement for
|αh|2 being real leads to the condition (4g3|αp|)2 > κ2

4 .
This condition defines the separation line between region
(I) and (III) of the stability diagram. Below the separa-
tion line only the trivial solution is possible, while above
this line both signs in Eq. (D7) are possible. This yields
5 stationary points: a stable trivial αh = 0 point, a pair
of symmetric unstable points defined by the plus sign in
Eq. (D7) and a pair of symmetric stable points defined
by the minus sign. The two unstable stationary points
merge with the stable αh = 0 point on the line which
separates region (II) and (III), defined by the equation
(4g3|αp|)2 = κ2

4 + ∆2
b . Above this line in region (II) the
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FIG. 8. Power efficiency at G = 20 dB of various amplifiers available in the literature. Data for SPAs (devices A-D from
Ref. [20]) corresponds to operating points at different fluxes. The line of ηp = 0.5 is shown for reference, and is not achievable
even in theory; this value is chosen to indicate equal pump power distribution between signal and idler. The color gradient on
the right represents the possible increase of fridge base temperature at high pump powers.

αh = 0 point becomes unstable and the two symmetric
high-amplitude states remain stable.

The stability diagram plotted in coordinates ∆ and np
(which directly translate into the experimental control
knobs pump frequency ωp and power Pp) is shown in
Fig. 3(a). Note that similar stability diagrams can be
found in for example Refs. [39, 40].

Finally we note that by setting αh = 0 (where appro-
priate, see Appendix C) the system of equations (D3)-
(D4) together with the input-output relation can be
solved to yield the expression (6) for gain in the pres-
ence of a finite input signal.

Appendix E: Further optimization of the SPA: an
outlook

Given the findings of this work, one can raise the ques-
tion of how to improve the compression power of resonant
parametric amplifiers beyond what has been achieved
at a Kerr-free point in our particular device. Although
sweet spots are in general useful, it is desirable to have
a systematic approach to the problem of saturation of
quantum-limited amplifiers. We would like to emphasize
that such an approach was suggested in Ref. [20], where
steady improvement of P1dB of an SPA was achieved
by varying the design parameters in the direction cor-
responding to the increase of the coupling κ and the de-
crease of the overall level of nonlinearity.

Continuing to improve P1dB in this fashion will require
more pump power to be delivered to the device at the
base of the dilution refrigerator. As such, it is important
to compare state-of-the-art quantum-limited parametric
amplifiers on the metric of power efficiency, here defined
as the ratio of the signal output power at the 1 dB com-
pression point to the required pump power Pp

ηp =
GP1dB

Pp
. (E1)

As shown in Fig. 8, the amplifiers with off-resonant
pumps, such as three-wave mixing SPAs and JPCs and
flux-pumped JPAs, suffer from poor power efficiency,
compared to the four-wave mixing amplifiers with near-
resonant pumps and traveling-wave amplifiers.

This is an important challenge on the way towards
larger dynamic range. Indeed, as the required pump
power increases, undesired effects such as increased noise
temperature or fridge heating, may result. An Oxford
Triton dilution refrigerator will heat up by about 10 mK
for −20 dBm of applied power at the base stage. Typ-
ically, an attenuator is used to thermalize the pump to
this stage. Assuming 20 dB of attenuation, this puts the
limit on allowable pump power at the plane of the device
close to −40 dBm. This limit is fuzzy (shown as color
gradient in Fig. 8), because it depends on the exact de-
tails of the attenuation and filtering chosen for the pump
line. Nevertheless, it is clear that further increase of P1dB

at the expense of pump power is not a viable approach
for optimization.

Instead, this issue needs to be addressed with better
design of the pump coupling, which will allow to obtain
the required np with less pump power Pp supplied to the
plane of the device. Note that the large spectral separa-
tion of signal and pump in three-wave mixing amplifiers
can be utilized to separately engineer the environmen-
tal properties seen by them. For example, the pump
could be coupled through a separate resonant filter mode,
which would also protect against the leakage of the signal
through this port. At the same time, the signal port of
the SPA can be optimized for bandwidth using the meth-
ods employed in Refs. [47, 48, 56]. These advances are
left for future work.
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Appendix F: Derivation of the SPA Hamiltonian

The truncated Hamiltonian of the SPA, limited to only the fundamental mode a, further submitted to pumping, is
given by

HSPA/~ = ωaa
†a+ g3(a+ a†)3 + g4(a+ a†)4 + ... (F1)

The goal of this section is to obtain the dependence of the parameters ωa, g3 and g∗4 ≡ g4 − 5g2
3/ωa on the design

parameters of the circuit. The expressions (F22), (F34) and (F36) obtained here were used for fitting and making the
design choices in this work and in Ref. [20].

Equations of motion in the distributed-element model of the SPA

Let the length of each arm of the transmission line resonator be d, the capacitance to ground per unit length be
c, and the inductance per unit length be `. We treat the array of M SNAILs as a lumped circuit element located at
x = 0 with the phase distributed equally among all SNAILs in the array. We will denote the generalized flux field in
the transmission line as φ(x). For simplicity, we also introduce the notation φR/L = lim

x→±0
φ(x).

The Lagrangian can be written as

L =

∫ −0

−d

[
c

2
(∂tφ)2 − 1

2`
(∂xφ)2

]
dx+

∫ d

+0

[
c

2
(∂tφ)2 − 1

2`
(∂xφ)2

]
dx−MUS

(
φR − φL

Mφ0

)
, (F2)

where φ0 = ~/2e is the reduced flux quantum and US(ϕ) is the potential energy of the SNAIL with a phase drop ϕ,

US(ϕ) = −EJ
[
α cosϕ+ 3 cos

(
ϕext − ϕ

3

)]
(F3)

where EJ is the Josephson energy of the large junctions, α is a ratio of the junction inductances in the two arms of
the SNAIL, and ϕext = 2πΦ/Φ0 is the phase bias corresponding to the external magnetic flux Φ, see [20].

The action for this Lagrangian is simply given by S =
∫ t2
t1
L(t)dt, and can be split into three separate parts

S = SL + SR + SSNAIL corresponding to the separate contributions in the Lagrangian in Eq. F2. The variation of
action δS contains three terms

δSL = −
∫ t2

t1

dt

[
1

`
∂xφ

]
δφ

∣∣∣∣x=−0

x=−d
−
∫ t2

t1

dt

∫ −0

−d

[
c∂2
t φ−

1

`
∂2
xφ

]
δφdx, (F4)

δSR = −
∫ t2

t1

dt

[
1

`
∂xφ

]
δφ

∣∣∣∣x=d

x=+0

−
∫ t2

t1

dt

∫ d

+0

[
c∂2
t φ−

1

`
∂2
xφ

]
δφdx, (F5)

δSSNAIL = −M
∫ t2

t1

dt
∂US(ϕ)

∂ϕ

δφR − δφL

Mφ0

∣∣∣∣
ϕ=φR−φL

Mφ0

. (F6)

According to the variational principle, by requiring δS = 0 we obtain the equations of motion for the flux φ(x, t)
and the boundary conditions.

◦ In the bulk of the transmission line resonator, for x ∈ (−d, 0) and x ∈ (0, d), the flux field φ(x) obeys the wave
equation

∂2
t φ− v2∂2

xφ = 0. (F7)

where v = 1/
√
`c is the phase velocity.

◦ At the boundaries x = −d and x = d the flux field has zero current boundary condition

∂xφ = 0. (F8)

◦ In the center of the resonator, where it is interrupted by the SNAIL array, the left and right continuity conditions
should hold

1

φ0

∂US(ϕ)

∂ϕ

∣∣∣∣
ϕ=φR−φL

Mφ0

=
1

`
∂xφ

L/R, (F9)
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which also implies the current conservation ∂xφ
L = ∂xφ

R across the array. Strictly speaking, the bare SNAIL
potential US(ϕ) is 6π-periodic in ϕ. However, we are interested in a time scale on which the phase slips can be
neglected, and thus the fact that ϕ is compact does not matter. In this approximation, we can assume that the
phase ϕ is localized near the bottom of one of the many equivalent potential minima and expand the potential
around that point (denoted as ϕmin)

US(ϕ) = EJ

(
c2
2!

(ϕ− ϕmin)2 +
c3
3!

(ϕ− ϕmin)3 +
c4
4!

(ϕ− ϕmin)4 + ...

)
, (F10)

where all dimensionless expansion coefficients ck ≡ ck(Φ, α) depend only on the external magnetic flux Φ and
junction inductance ratio α. Using this expansion truncated to the fourth order, we can rewrite the continuity
condition at x = ±0 as

EJ
φ0

[
c2

(
φR − φL

Mφ0
− ϕmin

)
+
c3
2!

(
φR − φL

Mφ0
− ϕmin

)2

+
c4
3!

(
φR − φL

Mφ0
− ϕmin

)3 ]
=

1

`
∂xφ

L/R. (F11)

This condition will allow us to match the solutions of the wave equation (F7) in the left and right arms of the
microstrip transmission line.

Instead of working with the continuous flux field φ(x), it is convenient to decompose it using the eigenmode excitations
of the circuit. This is done by using as a basis the general solution to Eq. (F7) in the left and right arms of the
transmission line resonator

φ(x, t) = (a
L/R
0 + b

L/R
0 x) +

∑
n

[
aL/Rn cos

(
ωnx

v

)
+ bL/Rn sin

(
ωnx

v

)]
, (F12)

φL/R = a
L/R
0 +

∑
n

aL/Rn , (F13)

where the coefficients aL/Rn (t) and bL/Rn (t) should satisfy [∂2
t +ω2

n](·) = 0. We need to rewrite the boundary condition
in Eq. (F8) and the continuity condition in Eq. (F11) using the eigenmode decomposition. Starting with the boundary
condition, by differentiating Eq. (F12) we obtain

b
L/R
0 +

∑
n

ωn
v

[
± aL/Rn sin

(
ωnd

v

)
+ bL/Rn cos

(
ωnd

v

)]
= 0, (F14)

and since this has to be satisfied at all times, applying harmonic balance leads to

± aL/Rn sin

(
ωnd

v

)
+ bL/Rn cos

(
ωnd

v

)
= 0, (F15)

and also bL/R0 = 0, meaning that there is no uniform static flux gradient in the resonator. Now we can similarly treat
the continuity condition in Eq. (F11) using Eq. (F13) and its derivative

∂xφ
L/R = b

L/R
0 +

∑
n

ωn
v
bL/Rn . (F16)

The continuity condition contains two equations for the left and right side of the array. Equivalently, we can use
one of them and the current conservation condition ∂xφL = ∂xφ

R instead. With the help of Eq. (F16) and applying
harmonic balance, this reduces to

bLn = bRn . (F17)

As the second continuity equation we choose Eq. (F11) on the right side of the array, which with the help of
Eqs. (F12) and (F16) can be transformed to

EJ
φ0

c2( ∞∑
n=0

aRn − aLn
Mφ0

− ϕmin

)
+
c3
2!

( ∞∑
n=0

aRn − aLn
Mφ0

− ϕmin

)2

+
c4
3!

( ∞∑
n=0

aRn − aLn
Mφ0

− ϕmin

)3
− 1

`

∑
n

ωn
v
bRn = 0.

(F18)
Note that this equation is nonlinear, which leads to the coupling of various eigenmodes by the SNAIL array mixer.

In the limit of weak excitations, we can linearize the system and decompose it into a collection of harmonic oscillators
with eigenfrequencies ωn. The lowest such eigenmode of the device is used to implement the SPA.
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Eigenmode decomposition

The linear part of Eq. (F18) is simply

1

Ls

( ∞∑
n=0

aRn − aLn
M

− φmin

)
− 1

`

∑
n

ωn
v
bRn = 0,

where we have introduced the inductance of the large junction of a SNAIL LJ = ϕ0/EJ , the flux-dependent SNAIL
inductance Ls(Φ) = LJ/c2(Φ) and the flux offset φmin = ϕmin φ0. After applying harmonic balance to this equation
we obtain

aR0 − aL0
M

− φmin = 0, (F19)

1

Ls

aRn − aLn
M

− 1

`

ωn
v
bRn = 0. (F20)

Now the eigenmodes of the circuit can be found using the equations (F15), (F17) and (F20). It is convenient to
combine them in a matrix form 

tan
(
ωnd
v

)
1 0 0

0 0 − tan
(
ωnd
v

)
1

0 1 0 −1
−1 0 1 −LsMωn

Zc



aLn
bLn
aRn
bRn

 = 0, (F21)

where we have introduced the characteristic impedance of the transmission line resonator Zc =
√
`/c. By requiring

that the determinant of Eq. (F21) is zero we obtain the equation for eigenfrequencies, while the eigenvectors define
the coefficients needed to calculate the flux profile of the eigenmodes in Eq. (F12). The equation for eigenfrequencies
is

2Zc
MLs(Φ)

= ωn tan

(
π

2

ωn
ω0

)
, (F22)

where we have explicitly indicated the flux dependence of the SNAIL inductance and defined the parameter ω0 = π
2
v
d ,

whose physical meaning is the frequency of the fundamental harmonic of the resonator in the absence of the array.
We will use the value of the flux field at the right boundary φn(t) = φn(d, t) as the canonical coordinate for each

mode. It is a natural choice, since this is the variable to which we couple the input transmission line via a weak
coupling capacitor. In terms of φn we can write the components of the eigenvector of Eq.(F21) as

aRn = φn cos

(
π

2

ωn
ω0

)
, aLn = φn

[
cos

(
π

2

ωn
ω0

)
− MLsωn

Zc
sin

(
π

2

ωn
ω0

)]
, bL/Rn = φn sin

(
π

2

ωn
ω0

)
, (F23)

and the flux distribution in each eigenmode as

φn(x, t) = φn

[
sgnx cos

(
ωnx

v

)
cos

(
π

2

ωn
ω0

)
+ sin

(
π

2

ωn
ω0

)
sin

(
ωnx

v

)]
. (F24)

Note also that the constant flux offset between the two arms of the resonator is given by Eq. (F19). After substituting
the flux distribution given by Eq. (F12) into the Lagrangian and calculating the x-integral, we can diagonalize it and
reduce to the collection of independent harmonic oscillators

L =
∑
n

(
Cnφ̇

2
n

2
− φ2

n

2Ln

)
, (F25)

with the mode capacitance and inductance given by

Cn =
1

2ωnZc

[
π
ωn
ω0

+ sin

(
π
ωn
ω0

)]
, (F26)

L−1
n =

ωn
2Zc

[
π
ωn
ω0

+ sin

(
π
ωn
ω0

)]
, (F27)

and the mode resonant frequency ωn = 1/
√
LnCn and impedance Zn =

√
Ln/Cn. Note that in general both Cn and

Ln can depend on Φ.
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Nonlinearities of the SPA

Having considered the linear properties of the SPA resonator, we will now focus on deriving the dependence
of nonlinearities g3 and g∗4 on the design parameters of the circuit. Such a perturbative approach, with the first
step consisting of solving the linearized problem, is valid if Zn � RQ [57], where Zn is the mode impedance and
RQ = ~/(2e)2 is the reduced resistance quantum.

Because of the nonlinearity of the array, exciting a particular nonlinear mode n leads to the oscillations not only at
the frequency ωn, but also at higher harmonics of this frequency 2ωn, 3ωn etc. The amplitudes of the oscillations at
the multiples of the mode frequency ωn are small if the mode is not significantly excited, and if the system is weakly
nonlinear. This allows to solve the problem in a perturbative manner, similar to the calculation in [58], using the
eigenmodes found in the previous section as the first approximation.

In this section, we focus on the lowest mode n = 1 of the circuit. This single-mode approximation is justified in the
SPA resonator for two reasons. First, the SPA mode is in the nearly “lumped” regime, where almost all inductance
comes from the array and all capacitance comes from the microstrip pads. We have experimentally verified using
two-tone spectroscopy that the next mode of the SPA is at 25 GHz (data not shown). Since the detuning of the higher
modes is much larger than the lowest mode frequency, we expect the effect of these modes on the nonlinearities of
the lowest mode to be small. Second, all the driving signals in our experiments are significantly below these higher
modes, and therefore do not excite them.

To be consistent with Eq. (F1), we will denote the frequency of the mode as ωa and canonical coordinate as φa.
The flux profile of the excited mode should still obey the equation (F7) in the left and right arms of the transmission
line resonator, and thus we can write it as

φa(x, t) = u
L/R
0 +

∑
k

[
u
L/R
k cos

(
kωax

v

)
+ v

L/R
k sin

(
kωax

v

)]
, (F28)

instead of Eq. (F24). The new coefficients uL/Rk (t) and vL/Rk (t) should obey the equation [∂2
t + (nωa)2](·) = 0. In the

linear approximation, we have already found the coefficients of this expansion in the previous section. The DC part
obeys uR0 − uL0 = Mφmin, and the only nonzero coefficients are uR/L1 = ±φa cos

(
π
2
ωa
ω0

)
and vR/L1 = φa sin

(
π
2
ωa
ω0

)
; the

rest of the harmonics with k > 1 are not excited. Using the perturbative approach, we will find that the amplitudes
of these higher harmonics are suppressed, for example we will find that uR/L2 ∝ φ2

a. But first, by using the boundary
conditions and harmonic balance we can establish a useful relation between uL/Rk and vL/Rk , which will allow us to
reduce the number of independent coefficients. This way we find that uLk = −uRk and vRk = uRk tan

(
π
2
kωa
ω0

)
, and

thus for each k we only need to use uRk . Let us now return to the continuity condition in Eq. (F18), which we have
previously linearized, but this time treat it as nonlinear. We will set the amplitudes of all higher modes with n > 1 to
zero, but include the higher harmonics of the first mode, truncated at the second order. Then Eq. (F18) reduces to

3∑
m=1

cm+1

φm−1
0 m!

(
2∑
k=1

2uRk
M

+
uR0 − uL0
M

− φmin

)m
− ωLJ

Zc

2∑
k=1

kuRk tan

(
π

2

kωa
ω0

)
= 0. (F29)

By including the time dependence uR1 (t) = uR1 sinωat and uR2 (t) = uR2 cos 2ωat and keeping the relevant contributions
(in the spirit of perturbation theory) we solve Eq. (F29) by harmonic balance.

◦ DC harmonic

uR0 − uL0
M

− φmin = −c3
c2

1

M2

(uR1 )2

φ0
. (F30)

◦ Second harmonic 2ωa

uR2 =
c3

c2 − ωaLJM
Zc

tan
(
π ωaω0

) 1

2M

(uR1 )2

φ0
. (F31)

◦ First harmonic ωa[
2c2
M
− ωaLJ

Zc
tan

(
π

2

ωa
ω0

)]
+

[
c4 −

2c23
c2
− c23
c2 − ωaLJM

Zc
tan

(
π ωaω0

)] 1

M3

(uR1 )2

φ2
0

= 0. (F32)

Note that to write the relation (F32) we had to use the expressions (F30) and (F31) to eliminate uR0 , uL0 and uR2 .
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The equation (F32) is essentially equivalent to the dispersion relation Eq. (F22), corrected by an additional term
proportional to the intensity of the excitation – a result of the Kerr effect. By subtracting Eq. (F22) from Eq. (F32)
and replacing the finite difference with the derivative we obtain

∆ω =
Zc

2LJ

cos2
(
π
2
ωa
ω0

)
sin
(
π ωaω0

)
π
ω0

Zc
MLs

+ sin2
(
π
2
ωa
ω0

) 1

M3

[
c4 −

2c23
c2
− c23
c2 − ωaLJM

Zc
tan

(
π ωaω0

)]φ2
a

φ2
0

, (F33)

where we have used the relation uR1 = φa cos
(
π
2
ωa
ω0

)
to express the resulting frequency shift ∆ω in terms of the

canonical coordinate φa.
We can also compute the linear shift of the resonant frequency due to the finite average mode population n using

the model described by Eq. (F1), which results in ∆ω = 12g∗4n with g∗4 = g4 − 5g2
3/ωa. To directly compare these

two results for ∆ω, we need to express φ2
a in terms of the average photon number as well, which can be done using

the conventional method of canonical quantization. This leads to φa = φZPF(a + a†), where φZPF =
√

~Z1/2 and
Z1 =

√
L1/C1 is the impedance of the mode calculated with the help of Eqs. (F26) and (F27). Comparison of the

two expressions for the shift ∆ω leads to the following

g∗4 =
1

12

ωa sin2
(
π ωaω0

)
c2M2 tan

(
π
2
ωa
ω0

)[
π ωaω0

+ sin
(
π ωaω0

)]2 ZcRQ
[
c4 −

c23
c2

3 + 5
(
ωaMLs

2Zc

)2
1 + 3

(
ωaMLs

2Zc

)2 ], (F34)

The derivation of g∗4 presented here relies crucially on the careful treatment of higher harmonics of the excited
mode. Such treatment is necessary for any higher-order nonlinearity of the system. However, to find the lowest order
nonlinearity g3, we can employ the traditional black-box quantization method [59]. In this method, the circuit is first
linearized, and the nonlinearity is then applied to the phase drop across the nonlinear elements of the original circuit.
Therefore, the cubic contribution to the Hamiltonian in Eq. (F1) coming from the array can be written simply as

MEJ
c3
3!

(
φR − φL

Mφ0
− ϕmin

)3

→ φ3
a

φ0

8

M2LJ

c3
3!

cos3

(
π

2

ωa
ω0

)
. (F35)

Plugging in the expression φa = φZPF(a+ a†), we recover the cubic term g3(a+ a†)3 with g3 given by

g3 =
4Zcc3

3M2LJ

(
cos2

(
π
2
ωa
ω0

)
π ωaω0

+ sin
(
π ωaω0

))3/2
√
Zc
RQ

. (F36)

Fitting

To conclude this section, we have calculated the coefficients ωa(S,Φ), g3(S,Φ) and g4(S,Φ) of the SPA Hamiltonian
as functions of the design parameters S = {M,ω0, Zc, LJ , α} of the device, as well as the external magnetic flux Φ. In
the experiment, we fit the resonance frequency ωa(Φ) in order to refine the knowledge of the parameters in S. Those
are obtained in the following way: Zc = 45.8 Ohm is defined by the microstrip geometry, LJ = 38 pH is calculated
using the room temperature measurements of junction’s resistance and the Ambegaokar-Baratoff formula, M = 20
is the number of SNAILs in the array, and ω0 = 2π × 16.0 GHz and α = 0.065 are fitted and are found to be close
to their design values. The measurement results of g∗4 and g3 are compared to the predicted values using the refined
parameters S in Fig. 1(b).
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