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It is shown that phase errors in a microwave spin wave transmission line can be corrected by
subjecting the signal-carrying propagating spin wave to the action of a localized nonadiabatic para-
metric pumping, having the localization length smaller than the spin wave wavelength. In such a
transmission line the phase transmission characteristic has a “step-like” shape containing flat “sta-
bilization plateaus” separated by the intervals of the π-size. Within the “plateau” regions the phase
of the output spin wave is practically constant in a rather wide range of phases of the input spin
wave. This effect can be used in magnonic logic devices for the correction of phase errors of up to
±0.25π. It is also proved, that this phase stabilization effect is stable against the variations of the
spin wave amplitude, and is present in all the amplitude range of the stable spin wave propagation.

I. INTRODUCTION

Spin waves (SWs) propagating in nanoscale ferromag-
netic waveguides are considered to be promising for the
applications in a new generation of digital and analog
signal processing devices [1–5]. Recently, several novel
concepts of magnonic logic elements and circuits have
been proposed [6–12]. In magnonic logic, a digital signal
can be coded via SW amplitude [6, 13–15] or SW phase
[2, 16]. Obviously, in the case of phase-coded magnonic
logic devices the spin wave phase should be well-defined,
and should not fluctuate substantially in the course of the
spin wave propagation. This property of the SW phase
stability is also crucial for amplitude-coded magnonic
logic devices. Indeed, these devices often use SW in-
terference for the information processing, and the phase
relations between several processed SWs should be well-
defined for correct device operation [13, 15, 17, 18].
For example, result of the interference of two SWs hav-

ing phases ϕ1, ϕ2 and similar amplitudes is proportional
to cos[(ϕ1 − ϕ2)/2]. Deviation of the phase difference
by 0.55π could be enough for incorrect interpretation of
the interference result – instead of 1 in the ideal case
ϕ1 − ϕ2 = 0 (or 0 if ϕ1 − ϕ2 = π) the resulting sig-
nal becomes lesser than 2/3 (greater than 1/3), which is
commonly interpreted as indeterminate in the amplitude-
coded logic [15]. Deviation of the phase difference by 0.8π
leads to a completely wrong result – logic “0” instead of
“1” and vice versa.
There are several reasons for the SW phase deviation

in a magnonic circle. First is the deviation of the SW
waveguide length due to lithographic misprints. It can
occur, for example, due to a misposition of waveguide
bends and a spread of bends shape in a circuit. Small
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length deviations, not exceeding 1 nm at each bend, can
accumulate over a magnonic circle and, for exemplary
SW of the 100 nm wavelength, could reach critical value
(corresponding to 0.55π phase shift) after passing several
tens of such bends. Similarly, misprint of the waveguide
width leads to a change of SW dispersion and, thus, SW
wavenumber at a fixed frequency, which is another source
of random phase accumulation. Finally, stability of the
SW phase can be violated by thermal fluctuations, and
the phase deviations leading, eventually, to a signal pro-
cessing error, can accumulate in the course of the SW
propagation in a magnonic circuit. Therefore, the timely
correction of the phase errors is very important for the
stable and error-free operation of magnonic logic circuits.

In this work, we demonstrate that the problem of the
phase errors correction can be solved by the application
of a localized parametric pumping, i.e. by using the inter-
action of a propagating SW with a localized microwave
magnetic field (external or internal) of approximately
double SW frequency. Parametric pumping is a well-
known method for excitation and amplification of SWs
[19–22]. It is also known, that parametric interaction be-
comes phase-sensitive in the case of a so-called “nonadia-
batic” localized pumping, having the localization length
(or other characteristic length of the spatial variation)
that is smaller than the SW wavelength [23–25]. In our
current work we calculate the phase transmission charac-
teristics for an SW transmission line containing a region
where a nonadiabatic parametric pumping is acting, and
show that phase transmission characteristics of such a
line demonstrate “stabilization plateaus”, within which
the phase of the output SW signal is practically constant
in a rather wide range of phases of the input SW signal.
Thus, the phase fluctuation of the SW signal acquired in
the course of its propagation can be corrected. It is im-
portant, that these phase-stabilization plateaus are sep-
arated by the intervals of the size almost exactly equal
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FIG. 1. A sketch of the considered magnonic transmission line
showing regions of the SW excitation and the localization of
the parametric pumping. The reference points A-D used in
the in the micromagnetic simulations are also shown.

to π, thus being perfectly suitable for the phase-coded
magnonic logic or/and signal processing.

II. THEORY

A sketch of the considered SW transmission line is
shown in Fig. 1. It is a ferromagnetic nanowire of the
width wy and thickness h. The SWs of the frequency ωk,
propagating in the +x direction, are excited by the exci-
tation gate, or, in an integrated magnonic circuit, come
from a preceding SW signal processing device. The para-
metric pumping gate of the length Lp is placed on the
propagation path of the SWs. The parametric pump-
ing can be created by a microwave magnetic field with
polarization parallel to the direction of static magnetiza-
tion of the nanowire [20, 21], by the microwave electric
field via various magnetoelectric effects [22], or by other
means. The phase-stabilization effects discussed below
do not depend on the nature of the pumping, and are
also independent of the direction of static magnetization
of the nanowire.
To be specific with the coefficients used in our calcu-

lations, we considered the case of a parametric pump-
ing produced by a microwave voltage via the voltage-
controlled magnetic anisotropy effect (VCMA) [26, 27],
which is the most efficient and convenient for applica-
tions at nanoscale. In this case the pumping gate con-
sists of a strip of a normal metal separated by a dielectric
layer from the conductive ferromagnetic material of the
nanowire. The application of the microwave voltage of
the frequency ωp to the gate results in oscillations of the
perpendicular magnetic anisotropy at the ferromagnetic
- dielectric interface with the same frequency [28, 29]. It
was shown that these oscillations of anisotropy can couple
parametrically to the SWs propagating in the nanowire,
both in the case of the in-plane and out-of-plane static
magnetization direction of the nanowire [22, 29, 30]. In
the former case the coupling is stronger, and demon-
strates no limits with respect to the SW wave number
[30], so below we consider only this case of the in-plane
static magnetization, as shown in Fig. 1.
In the parametric process of the first order the pump-

ing is coupled to a pair of SWs having wave vectors k and
k′. The efficiency of the parametric interaction is propor-
tional to the (k + k′)-th Fourier harmonic bp,k+k′ of the
spatial distribution of the effective pumping field bp(x).
Therefore, in the case of a weakly localized quasiuniform
pumping, when kLp ≫ 1, only the SWs with opposite
wave vectors, k′ = −k, interact efficiently with pumping,
which is a consequence of the momentum conservation
law (case of “adiabatic pumping”).
In contrast, when the pumping localization length L

becomes smaller than the SW wavelength (or if the
pumping is spatially nonuniform with the characteris-
tic length comparable to the SW wavelength) not only
the contra-propagating SWs (k′ = −k), but also other
SWs (k′ 6= k), in particular, co-propagating SWs, can
interact with the localized pumping field. This is the
case of “nonadiabatic parametric pumping”, described
in Ref. 23.
It should be noted, that the parametric interaction has

the maximum efficiency when the resonance condition
ωp = ωk + ωk′ is satisfied. This condition severely lim-
its the number of SWs that can efficiently interact with
pumping. In the simple, and the most common case,
when the pumping frequency is twice larger than the SW
frequency, ωp = 2ωk, the only SWs efficiently interacting
with the nonadiabatic pumping are the above mentioned
contra-propagating SWs having the same modulus of the
SWs wave vectors k and −k; however, nonadiabatic term
results in additional coupling of these SWs with them-
selves (that is the limiting case of the coupling of co-
propagating SWs, when approaching exact parametric
resonance).
The SW dynamics under a localized parametric pump-

ing is convenient to study using Bloembergen’s equations
system. For the case of a nonadiabatic pumping it was
generalized in Ref. 23, and, neglecting the higher order
nonlinear SW interactions, it can be written as:

(

∂

∂t
+ v

∂

∂x
+ Γ

)

a1 = V b0e
−iψa∗2 + V b2ke

−iψa∗1 ,

(

∂

∂t
− v

∂

∂x
+ Γ

)

a∗2 = V b0e
iψa1 + V b2ke

iψa2 .

(1)

This system describes the evolution of the envelope am-
plitudes a1(x, t) and a2(x, t) of the two SW wave pack-
ets, having the carrier wave vectors k and −k, respec-
tively. In our problem, a1 describes the envelope ampli-
tude of the incident SW, which propagates toward the
pumping region, and a2 is the envelope amplitude of the
idler SW, which is counter-propagating to a1, and ap-
pears in the pumping region as a result of the parametric
interaction. The relation of envelope amplitudes to the
real magnetization amplitudes is given by the equation
m1,2(x, t) = (mka1,2(x, t) exp[±ikx− iωkt]+c.c.), where
mk describes the vector structure (ellipticity) of a par-
ticular SWs. In Eq. (1) v and Γ are the group velocity
and the damping rate of the SWs, V is the efficiency of
the parametric coupling, ψ is the phase of the pumping,
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and bk = (1/Lp)
∫ Lp/2

−Lp/2
bp(x)e

ikxdx is Fourier-harmonic

of the effective field of pumping with the spatial profile
bp(x). The fact that pumping is nonadiabatic is reflected
by the last term in equations, which describes the para-
metric coupling of the co-propagating SWs (k′ = k). In
the case of quasi-uniform adiabatic pumping this term is,
naturally, absent, since b2k → 0. The value α = |b2k/b0|
describes the strength of the nonadiabatic term relative
to the adiabatic one, and is called “the degree of nonadi-
baticity of the pumping”.
In our particular case of the in-plane static magnetiza-

tion and VCMA-induced pumping, the efficiency of the
the parametric coupling is given by V = γ|mk,z/4mk,y|,
the pumping field is bp = 2βE/hMs with β being the
magnetoelectric coefficient, E is the amplitude of the mi-
crowave electric field applied to the pumping gate [30],
while the pumping Fourier-harmonics bk are given by the
expression bk = bpsinc[kLp/2] ≡ bp sin[kLp/2]/(kLp/2).
The pumping phase ψ is defined in such a way that

the applied microwave electric field is E(t) = E sin[ωpt+
ψ], with ωp = 2ωk (exact parametric resonance). The
real dynamic magnetization, corresponding to the steady
propagating SW of the envelope amplitude a1 = |a1|e

−iϕ,
is mz(x, t) = 2mz,k sin[ωkt+ ϕ− kx], where ϕ is the SW
phase. Note, that the point x = 0 is assumed to be at the
center of the pumping gate, as shown in Fig. 1, and its
position, obviously, affects the definitions of the phases ϕ
and ψ. For other cases of the parametric pumping source
and other directions of the static magnetization, the only
differences in Eq. (1) come from the different value of
the parametric coupling efficiency V , [19, 21, 22], and
relations of the phases ψ and ϕ to the real time profiles of
the dynamic magnetization and applied pumping signal
(microwave magnetic or electric field).
For further analysis it is convenient to introduce new

real variables A1±, A2,±, as a1 = e−iψ/2(A1+ + iA1−)

and a2 = e−iψ/2(A2+ − iA2−), which is possible if the
pumping is harmonic, i.e. if the pumping phase is time-
independent, ψ 6= ψ(t). This operation, in fact, is a
decomposition of a harmonic wave with an arbitrary
phase into two partial waves, sine and cosine, respec-
tively. Then, Eq. (1) is transformed to [23]:

(

∂

∂t
+ v

∂

∂x
+ Γ∓ V b2k

)

A1± = V b0A2± ,

(

∂

∂t
− v

∂

∂x
+ Γ∓ V b2k

)

A2± = V b0A1± .

(2)

As one can see, the pairs of partial waves (A1+, A2+) and
(A1−, A2−) evolve independently, and are connected only
by the boundary conditions. The action of the nonadia-
batic term V b2k results in the different effective damping
for partial waves: effective damping for the “in-phase”
partial waves (A1+, A2+) is decreased, while the “out-of-
phase” SWs (A1−, A2−) acquire an additional damping
term. Thus, the partial waves evolve differently under
the action of pumping, since the pumping pumps energy
more effectively into the “in-phase” partial waves.

To find a steady-state solution of the transmis-
sion problem, we consider a stationary regime, setting
∂Ai/∂t = 0. Equations (2) should be accompanied by
a boundary condition: a1(−Lp/2) = A0e

−iϕ0 , which de-
scribes the incoming SW with amplitude A0 and arbi-
trary phase ϕ0, and a2(Lp/2) = 0, meaning that no idler
wave is incident to the pumping region. Then, the en-
velope amplitude of the output SW aout = a1(Lp/2) can
be found as:

aout = A0e
−iψ/2

(

cos

[

ϕ0 −
ψ

2

]

K+

− i sin

[

ϕ0 −
ψ

2

]

K−

)

,

(3)

where

K± =

(

cos[κ±Lp] +
Γ̃±

vκ±
sin[κ±Lp]

)−1

(4)

are the amplification rates for partial waves, Γ̃± = Γ ∓

V b2k, and κ
2
± = (V b0)

2 − Γ̃2
±.

As usual[21], the parametric pumping results in a par-
tial amplification of the incident SW, until pumping am-
plitude reaches a certain threshold, at which a sponta-
neous generation of SWs takes place (the threshold of
generation is determined from the condition K+ → ∞).
Due to the nonadiabatic term, the amplification rates of
the partial waves are different, resulting in the depen-
dence of the output SW amplitude on its phase [23, 24].
Simultaneously, it means that the ratio between the am-
plitudes of the partial wavesA1+ and A1− changes within
the pumping region, and is different at the end of the
pumping gate compared to the gate entrance. Thus, the
phase of the incident SW a1 changes during the propa-
gation through the pumping gate. Since the “in-phase”
partial wave A1+ grows faster (or decays slower) than
the “out-of-phase” partial wave, the phase of the inci-
dent wave approaches the phase of the “in-phase” par-
tial wave, which is fixed by the phase of pumping to the
accuracy of an integer multiple of π: ϕ(x) → ψ/2 + πn,
n ∈ Z.
The phase transmission characteristics are obtained

from Eq. (3), simply as ϕout = −Arg[aout]. In the case
of an adiabatic pumping, when b2k = 0, the phase trans-
mission characteristic is a simple straight line, ϕout = ϕ0

(Fig. 2(a)). Recall, that the SW phase ϕ was introduced
as a phase of the SW envelope, so the propagation phase
shift kLp is not taken into account in Fig. 2. This leads
to a simple vertical shift of all the curves.
In contrast, as soon as the pumping becomes nonadia-

batic, the SW phase transmission characteristics become
nonlinear. They demonstrate pronounced plateaus near
the values ϕ = 0, π, which are the phases of the “in-
phase” partial wave (since it was assumed that the pump-
ing phase ψ = 0). Within these plateaus, the output SW
phase is almost constant in a wide range of the input
SW phases, i.e. the nonadiabatic parametric pumping
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FIG. 2. (a) SW phase transmission characteristics ϕout =
f(ϕ0) and (b) amplification rates |K| = f(ϕ0) of a parametric
pumping gate for different degrees of the pumping nonadia-
baticity α = |b2k/b0|. Pumping length Lp = 0.1v/Γ, pumping
strength is the 90% of the SW generation threshold, pumping
phase ψ = 0.

demonstrates the effect of a SW phase stabilization. Im-
portantly, the SW phase stabilization plateaus are sepa-
rated by the phase intervals of the π - size, which per-
fectly matches the needs of the phase-coded magnonic
logic, as under this approach the logic state “0” and the
logic state “1” are coded by the SWs with the phase dif-
ference of π.

Stabilization plateaus become wider and more flat with
the increase in the degree α = |b2k/b0| of the pumping
“nonadiabaticity” (Fig. 2(a)). A similar enhancement of
the phase stabilization properties is observed with the
increase of the pumping strength, when this strength ap-
proaches the threshold of the parametric SW generation.
In a limiting case, when K+ ≫ K− (which means that
the pumping amplitude is close to the threshold, or that
the length of the pumping region is sufficiently large),
the phase transmission characteristic becomes almost a
step-like function.

In should be noted, that the pumping nonadiabaticity
also results in the dependence of the output SW am-
plitude on the input SW phase, as shown in Fig. 2(b).
When the phase stabilization becomes better, the vari-
ations of the SW amplitude also increase. Large varia-
tions of the SW amplitude, naturally, are not acceptable

in the SW processing devices, which limits the practi-
cally achievable ranges of the possible phase error correc-
tions. Usually, about 10-15 % of the SW amplitude vari-
ation can be considered acceptable, which defines practi-
cal limits of the possible phase error correction interval as
about ±0.25π. Additional improvements can be achieved
by placing after the phase stabilizer a phase-insensitive
amplitude-stabilization device, which could use a nonlin-
ear regime of the SW interaction with adiabatic pumping
[31] or other nonlinear phenomena.

At the same time, a certain degree of the SW amplitude
variation can even be useful. When the SW phase is close
to ϕ0 = π/2, it means that the phase error is large, and
the interpretation of the SW phase as the closest value
of 0 or π may be incorrect. In a case of so large val-
ues of the phase errors it is often recommended to start
the signal processing over. The above proposed phase-
stabilization device indicates such large phase errors by
a significant reduction of the amplitude of the output
SW. In summary, using the proposed phase-stabilization
device small and moderate phase errors can be corrected,
while the presence of large phase errors can clearly de-
termined and indicated.

Finally, we note that Fig. 2 illustrates the case when
the phase stabilization is accompanied by the amplifi-
cation of processed SWs. Often, this amplification is
desirable in magnonic circuits to compensate propaga-
tion and processing losses, but sometimes a regime of
no amplification (K(0, π) ≈ 1) for in-phase waves needs
to be realized. Fortunately, it is easy to vary the SW
amplification rate by choice of the pumping amplitude
and length. For example the case of no amplification re-
quires either a sufficiently long parametric pumping gate
or the enhanced magnetic damping within the parametric
gate, so that the “out-of-phase” partial SWs decay sig-
nificantly. The pumping nonadiabaticity in the case of a
relatively long pumping gates can be realized by creating
a spatially nonuniform pumping (e.g. pumping gate con-
sisting of several fingers having different polarity and/or
strength of applied voltage). If the averaged pumping sig-
nal is nonzero (e.g., if fingers of opposite polarity are of
unequal length), SW dynamics is described by the same
Eq. (1), in which nonadiabatic term b2k becomes large if
2k ≈ 2π/P , where P is the period of the fingers array.
However, even in the case of zero averaged pumping one
should expect the phase stabilization effect. In this case
only nonadiabatic term is left, and one arrives to the lim-
iting case the parametric interaction of co-propagating
waves, when idler wave is equivalent to the signal wave.
In the case of co-propagating waves parametric pumping
also can amplify waves (but cannot excite them) [32, 33],
and nonadiabatic term still be phase-sensitive; thus, one
should expect qualitatively the same effect.
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III. MICROMAGNETIC SIMULATIONS

To confirm our theoretical predictions about the SW
phase stabilization we performed a series of micromag-
netic simulations using the GPMagnet solver [34, 35]. In
our simulations the SWs were excited linearly by a mi-
crowave magnetic field applied at the excitation gate of
the length Le = 50 nm. The excitation frequency was
6.49 GHz which corresponds to the SW wavelength of
210 nm. The microwave parametric pumping in the form
of modulation of the perpendicular anisotropy ∆K⊥ =
bpMs sin[ωpt] at the frequency ωp/(2π) = 12.98GHz was
applied at the pumping gate of the length Lp = 50 nm,
separated from the excitation gate by the distance LAB =
250 nm. Corresponding degree of the pumping nonadia-
baticity in this case is α = 0.67. To avoid the mistakes
in the output SW phase determination due to the pres-
ence of the idler SW, the phase of the output SW was
calculated at the point D. The SW phase at the end of
the gate was retrieved by subtraction of the propagation
phase accumulation kLCD, where LCD = 250 nm. The
following material parameters of the Fe/MgO structure
(common for VCMA experiments [36]) were used: sat-
uration magnetization µ0Ms = 2.1T, exchange length
λex = 3.4 nm, surface perpendicular anisotropy energy
Ks = 1.36mJ/m2, effective Gilbert damping (includ-
ing non-uniform broadening for a given SW frequency)
αG = 0.02. The nanowire thickness was set to h = 1nm,
width w = 20 nm, and the bias magnetic field was absent.
Simulations performed with no incident SW and finite

temperature of 1K give the threshold of parametric ex-
citation equal to bp,th = 130mT. It is somewhat smaller,
than the threshold of 169mT, calculated using the ana-
lytical equation Eq. (4) (from the condition K+ → ∞).
We believe, that the discrepancy is caused by the disper-
sion of SW group velocity.

In the simulations of the SW phase transmission char-
acteristics in the presence of an incident SW we set
the pumping strength to bp = 100mT, which is 77%
of the SW generation threshold. Thermal fluctuation
were switched off to speed up the simulations – since
we work sufficiently away from the threshold we do not
expect a significant grows of thermal fluctuations under
the parametric pumping gate. Simulated phase trans-
mission characteristic for small-amplitude (linear) SWs,
which were excited by a 1 mT excitation field, is shown
in Fig. 3(blue dots). It shows definite phase-stabilization
plateaus, and matches well the phase characteristic ob-
tained in the analytical calculation (solid line) for the
pumping strength equal to 77% of theoretical SW gen-
eration threshold. We believe, that the small upshift of
the simulated phase characteristic is also related with the
dispersion of the SW group velocity.
We have also verified how phase transmission charac-

teristics change with the SW amplitude, when different
nonlinear SW interactions become important. For this
purpose we performed simulations for larger excitation
fields, 10 mT and 30 mT, respectively. For the exci-
tation field of 30 mT the SW amplitude reaches the
value My/Ms ≈ 0.15, which is definitely beyond the
range where the excited SWs can be considered small-
amplitude (or linear) and in which our analytical the-
ory is valid. From Fig. 3 one can see that the phase-
stabilization effect is still present in the case of the large-
amplitude nonlinear SWs, and the sizes and slope of the
phase-stabilization plateaus are almost the same, as in
the linear case. The only difference is a down-shift of
these plateaus, which is a consequence of the nonlinear
SW phase accumulation. Thus, the nonadiabatic para-
metric pumping can be used for phase error correction of
both linear and nonlinear SWs.

IV. SUMMARY

In summary, we have demonstrated that the inter-
action of a propagating SW with a localized nonadia-
batic parametric pumping leads to a shift of the SW
phase, additional to a simple propagation phase accu-
mulation kLp. As a result, the SW phase transmission
characteristics become nonlinear, demonstrating a “step-
like” shape. They contain pronounced flat “stabilization
plateaus”, within which the output SW phase is almost
constant in a certain range of phases of the input SW.
The phase-stabilization effect becomes more pronounced
with the increased level of the pumping nonadiabaticity,
and when the pumping strength approaches the thresh-
old of the parametric SW generation (but it should not
exceed the threshold). Our findings open a way for the
implementation of phase error corrections in magnonic
logic circuits. The range of possible phase error correc-
tion is limited mainly by the phase dependence of the
output SW amplitude, and is about ±0.25π, for both
linear and nonlinear SWs.
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brands, and A. V. Chumak, “Spin-wave logic devices
based on isotropic forward volume magnetostatic waves,”

Appl. Phys. Lett. 106, 212406 (2015).
[17] M. Balynsky, A. Kozhevnikov, Y. Khivintsev,

T. Bhowmick, D. Gutierrez, H. Chiang, G. Dudko,
Y. Filimonov, G. Liu, C. Jiang, A. A. Balandin, R. Lake,
and A. Khitun, “Magnonic interferometric switch for
multi-valued logic circuits,” J. Appl. Phys. 121, 024504
(2017).

[18] B. Rana and Y. Otani, “Voltage-Controlled Reconfig-
urable Spin-Wave Nanochannels and Logic Devices,”
Phys. Rev. Applied 9, 014033 (2018).

[19] V. S. L’vov, Wave Turbulence under Parametric Excita-
tion (Springer-Verlag, New York, 1994).

[20] A. G. Gurevich and G. A. Melkov, Magnetization Os-
cillations and Waves (CRC Press, New York, 1996) p.
464.
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