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Second-order nonlinear interactions in disordered materials based on random phase matching
suggest intriguing opportunities for extremely broadband frequency conversion. Here we present
a quantitative realistic model for random phase matching in zinc-blende polycrystals (ZnSe, ZnS,
GaAs, GaP, etc.) that takes into account effects of random crystal orientation, grain size fluctu-
ations, and includes polarization analysis of the generated output. Our simulations are based on
rigorous transformation of the second-order susceptibility tensor in randomly rotated coordinates −
to account for random orientation of crystalline domains, and demonstrate a good agreement with
our experimental data for ZnSe using a nanosecond λ = 4.7 µm source − in terms of variations of
the strength and polarizations of the output fields. Also, it is revealed that random phase matching
is most suitable for ultrafast (sub-100-fs) interactions with focused beams, e.g. second harmonic
generation, sum and difference frequency generation, and optical parametric oscillation, that typi-
cally require short (< 1 mm) interaction lengths, where disordered polycrystals can be on par, in
terms of conversion yield, with ideal quasi phase matched crystals.

I. INTRODUCTION

Phase matching is a critical factor for generating new
optical frequencies in the coherent process of nonlinear
optical frequency conversion [1]. Birefringent crystals
have been widely used to compensate phase mismatch,
while quasi phase matching (QPM) is another technique
to maintain growth of a new optical field by prevent-
ing destructive interference. An alternative approach is
random phase matching (RPM) which avoids destructive
interference by exploiting the random nature of disor-
dered crystalline domains. A wide variety of materials
can show this feature as long as they are composed of
disordered microstructures possessing second-order non-
linear optical susceptibility. In the early stages of laser
development, this has been used in a powder technique
for evaluating nonlinear optical materials [2]. The first
frequency conversion in a polycrystalline semiconductor
where monocrystals are embedded with random orienta-
tions was demonstrated in 1966 and the variation of an
output signal in terms of intensity and polarization has
been qualitatively discussed [3]. Thanks to the fact that
disordered polycrystalline materials have an extremely
wide acceptance bandwidth they have been used as a non-
linear gain medium for a number of applications such as
nonlinear optical microscopy, autocorrelation measure-
ments, sum and difference frequency generation, and cas-
cade harmonic generation [4–8].

In the field of ultrafast interactions, full advantage has
been taken of the ultra-wide acceptance bandwidth asso-
ciated with RPM: a spectrally broad high-average-power
(0.3 W) second harmonic generation (SHG), and also a
number of other wave mixing processes have been ob-
served inside the gain media of mode-locked lasers based
on Cr2+-doped polycrystalline zinc sulfide (ZnS) and zinc
selenide (ZnSe) samples [9, 10]. Most recently, an optical
parametric oscillator (OPO) based on RPM was demon-
strated in a ZnSe ceramic, pumped by femtosecond 2.35

µm laser pulses. The OPO produced an ultra-broad spec-
trum spanning 3-7.5 µm and exhibited a pump depletion
as high as 79% [11]. Also, a multi-octave spectrum via
simultaneous randomly phase matched three-wave mix-
ing processes, facilitated by filamentation, was observed
in polycrystalline ZnSe [12]. RPM can be viewed as an
analogy of a random walk, where the electric field of the
output wave grows as the square root of the interaction
length within a nonlinear material. Mathematically, the
main features of RPM in non-birefringent polycrystals
with randomly oriented domains are the same as in the
powder technique first outlined by Kurtz and Perry [2].
Namely, (1) the nonlinear conversion yield (in intensity)
grows linearly with the sample thickness, (2) the high-
est conversion is achieved when the average grain size is
close to the coherence length Lc, and (3) at a fixed sample
length and optimized conditions, conversion efficiency is
higher for larger coherence lengths. Although there were
several attempts to analytically describe the frequency
conversion process based on RPM [7, 8, 13, 14], none of
them rigorously derived the probability distribution of
the effective susceptibility of a randomly rotated crystal;
also polarization analysis in RPM has been dismissed in
these works. In this Letter, we present a model for ultra-
fast nonlinear χ(2) interactions in an RPM material that
includes random grain orientation, realistic grain size dis-
tribution, as well as variation of the two orthogonally
polarized outputs due to the randomly transformed sus-
ceptibility tensor. We also calculate (for the first time to
our knowledge) the efficiency of RPM process normalized
to that of an ideal QPM process.

II. RANDOM SECOND-ORDER NONLINEAR

SUSCEPTIBILITY

The three-wave mixing in χ(2) media is character-
ized by the nonlinear polarization which is expressed as
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P
(2)
i (ω) = ǫ0

∑

jk

χ
(2)
ijk(ω;ω1, ω2)Ej(ω1)Ek(ω2), where the

indices refer to principal axis in a crystal coordinate sys-

tem and χ
(2)
ijk is a second-order nonlinear optical suscep-

tibility, which is a third-rank tensor. For zinc-blende
semiconductors with a symmetry 4̄3m it has six non-
zero components for i 6= j 6= k whose values are all the
same under Kleinman symmetry. For the reason that
three-wave mixing processes are reversible and are cou-
pled through the same susceptibility tensor, the RPM
analysis for the SHG efficiency is valid for its inverse pro-
cess – subharmonic OPO [15]. Thus, we used the SHG
process for both simulation and experiment, and the re-
sults are discussed later for the subharmonic femtosecond
OPO generation.

The susceptibility variation in each successive grain
was modeled by randomly rotated crystal coordinates
(x, y, z) with respect to the laboratory frame (x′, y′, z′).

Here we describe it as three steps as shown in
Fig. 1(a) after setting a random point (x0, y0, z0) =
(sin θ cosφ, sin θ sinφ, cos θ) on a unit sphere in the labo-
ratory frame, such that the probability density per unit
surface area is uniform (see below). (1) Start with crys-
tal’s coordinate system that coincides with that of the
laboratory frame. Rotate the crystal coordinate sys-
tem by angle φ around z-axis (Fig. 1(a)). (2) Rotate
the crystal coordinate system by angle θ around its
new y-axis, so that the new z-axis directs to the point
(x0, y0, z0). (3) Rotate the crystal coordinate system by
random angle ψ (uniformly distributed between 0 to 2π)
around the new z-axis. These operations are expressed
in Eq. (1) as a product of three successive rotation ma-
trices R ~n1

(φ), R ~n2
(θ) and R ~n3

(ψ). Each matrix corre-
sponds to a rotation by an angle φ, θ, ψ (Euler angles)
about a fixed axis specified, respectively, by the unit vec-
tor defined as ~n1 = (0, 0, 1), ~n2 = (− sinφ, cosφ, 0) and
~n3 = (x0, y0, z0).

R = R ~n3
(ψ)R ~n2

(θ)R ~n1
(φ) =





cosφ cos θ cosψ − sinφ sinψ − cosφ cos θ sinψ − cosψ sinφ cosφ sin θ
cos θ cosψ sinφ+ cosφ sinψ − cos θ sinφ sinψ + cosφ cosψ sinφ sin θ

− cosψ sin θ sin θ sinψ cos θ



 (1)

FIG. 1. (a) Schematic of the random rotation from a labo-
ratory coordinate (x′, y′, z′) to a crystal coordinate (x, y, z)
and vice versa. (b) Correlation of the nonlinear coefficient in
a randomly oriented single crystal between orthogonal polar-
izations and their projected 1D histograms. (c) Probability of
the normalized squared nonlinear coefficient for parallel and
perpendicular polarizations and their sum.

The nonlinear polarization in the laboratory frame is
computed by the transformation rule for third-rank ten-

sors χ
(2)′

i′j′k′ = RT
i′iR

T
j′jR

T
k′kχ

(2)
ijk [16]. In the contracted

form, assuming the fundamental electric field is linearly
polarized (parallel to z′) and propagates along y′, the
second-order polarization components that are parallel
(along z′) and perpendicular (along x′) to the input po-
larization are given by
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We performed a Monte Carlo simulation of one mil-
lion iterations for the nonlinear coefficient in a randomly
oriented single crystal under the Euler angles’ proba-
bility conditions of φ ∈ [0, 2π), θ = arccos(u) where
u ∈ [−1 1] and ψ ∈ [0, 2π) [17]. These conditions ensure
that the probability is uniformly distributed among all
possible domain orientations in space. Fig. 1(b) shows
the distribution of nonlinear coefficient for both paral-
lel and perpendicular output polarizations in 1D and 2D
color-coded form with respect to the linearly polarized
incoming electric field. The nonlinear coefficient fluctu-
ates within the expected range, |d‖/d14|≤

√

4/3 for the
parallel case, and |d⊥/d14|≤1 for the perpendicular case
[18–20]. The correlation 2D map of Fig. 1(b) shows that
numerous grains do not contribute to SHG, whereas there
is a nonzero probability for the grains to align with the [1
1 1] direction, which maximizes the nonlinearity and pro-
duces polarization contributing to the ‘parallel’ SH com-
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ponent. Fig. 1(c) shows the distribution of the squared
nonlinear coefficient, normalized to d214, – for parallel and
perpendicular polarizations, and their combination (if no
polarizer at the output is used). Table I shows the ex-
pected values of the modulus and the squared value of
nonlinear coefficient. We note that the total (parallel plus
perpendicular polarizations added) squared effective non-
linear coefficient is 0.57d214, which is substantially larger
than the value 0.14d214 given in Ref. [7].

TABLE I. The expected value of the nonlinear coefficient in
a randomly oriented single grain.

|d‖/d14| |d⊥/d14| d2‖/d
2
14 d2⊥/d

2
14 (d2‖ + d2⊥)/d

2
14

0.48 0.41 0.34 0.23 0.57

III. EXPERIMENT AND RESULTS

The focus of our experimental study was ZnSe – a zinc-
blende structure with a large coherence length, related to
our specific application in ultrafast mid-infrared OPOs.
First, we characterized the nonlinear optical properties
of ZnSe ceramics through the SHG process (from 4.7 to
2.35 µm) using a nanosecond OPO source at λ = 4.7
µm (Fig. 2). The OPO was pumped by a λ = 1.064 µm
Q-switched Nd:YAG laser with 20 ns pulse duration and
1.5 mJ pulse energy operating at 100 Hz repetition rate.
The OPO linear cavity contained a fanned-out periodi-
cally poled lithium niobate (PPLN) crystal for frequency
tuning, and produced a linearly polarized idler wave with
an energy of about 15 µJ at 4.7 µm, which was focused at
normal incidence into an RPM sample. The second har-
monic output (λ = 2.35 µm) produced in a ZnSe ceramic
sample was detected with an ‘extended’ InGaAs detector
having a long-wave cutoff at 2.6 µm (thus it was ‘blind’
to the fundamental wave). A metal-grid polarizer was
placed before the InGaAs detector to separately measure
the two output SH polarizations. Our ZnSe samples were
based on commercial CVD-grown ZnSe ceramics, where

FIG. 2. Experimental setup for characterization of polycrys-
talline ZnSe via SHG. The PPLN OPO was tuned to select
the idler wave of 4.7 µm. The beam splitter (BS) and the
long-pass filter (LPF) rejected the OPO signal and the pump
beams, and transmitted the OPO idler wave. The beam was
focused by a f = 50 mm CaF2 lens (L1). A ZnSe sample
was placed at the focus and scanned in x-y directions. The
SH signal was collected by a f = 50 mm BK7 lens (L2) and
measured using an InGaAs detector.

the optimal average grain size was close to the coherence
length (102 µm) of our studied nonlinear processes and
was achieved by thermal annealing in vacuum at 900 ◦C
[11]. The samples were cut and polished to a 5×10 mm
cross section, and their thickness varied between 0.5 and
2 mm. The surface of a chemically etched sample reveal-
ing the grain structure is shown in Fig. 3(a).
To measure the grain size distribution we analyzed mi-

croscope etched surface images with the linear intercept
method. The average grain size was 95 µm with a stan-
dard deviation of 48 µm. The distribution was best fitted
with the lognormal function, as shown in Fig. 3(b). The
samples were mounted on an XY translation stage, and
the SH intensity for parallel and perpendicular polariza-
tions was 2D mapped with 100-µm steps. The pump
beam size was 50 µm (FWHM) and the depth of the
focal region was longer than the crystal thickness.

FIG. 3. (a) Cross section of a chemically etched ZnSe ceramic
sample (total size 1.2×0.9 mm). (b) Histogram for the grain
size distribution, which was measured by the line intercept
method. Solid line – a lognormal fit. (c) A modeled poly-
crystalline structure created by Voronoi tessellation, where
different colors correspond to different orientations of grains
(left) and an example of a sliced 50 µm×50 µm×1 mm struc-
ture that was used for w≈D simulation (right).

A typical mapping result for 1-mm-long sample (with
the SH polarizations parallel and perpendicular to that
of the pump) is shown in Fig. 4(a). One can see numer-
ous ‘hot spots’, where the SH intensity is much higher
than the average. These hot spots can be used for appli-
cations requiring high nonlinear gain. Fig. 4(b) plots the
average SH power (parallel SH polarization) for different
lengths of samples (which are all from the same origin).
The linear dependence on the sample length confirms the
prediction of the RPM theory [2]. The ratio of the av-
erage SH power for the parallel and perpendicular po-
larizations P 2ω

‖ /P 2ω
⊥ varied from 1.2 to 2.1 for different

samples. Interestingly when the samples were rotated by
90◦ in the plane perpendicular to the beam, and the two
measurements were averaged, the ratio became closer to
1.5, which is in accord with the simulated average value,
as described below. The fact that the ratio P 2ω

‖ /P 2ω
⊥ was
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not the same for different orientations indicates that the
grain size and orientation are not purely random. The
possible anisotropy can be due to a selected growth direc-
tion in the CVD process. The histograms of SH power for
both output polarizations are shown in Fig. 4(c). (The
normalizing factor was such that the average power for
the parallel polarization is 1.)

FIG. 4. (a) 2D color-coded plot for the relative SH power
obtained by scanning a 1-mm-long sample with a 100-µm step
for both parallel and perpendicular components. (b) Length
dependence of the average SH power. (c) Histogram of SH
power obtained from the mapping. The average values are
1.0 for parallel and 0.53 for perpendicular polarization, and
their ratio is 1.9 in this case. (d,e) Simulated histograms
of normalized SH power for the parallel and perpendicular
components in the cases of w≪D and w≈D.

IV. SIMULATIONS

RPM was numerically investigated for the two condi-
tions in terms of the beam size w compared to the aver-
age grain size D. The model assumed the wave equation
under the plane wave and non-depleted approximation,
together with the derived random susceptibility tensor
and real grain size distribution. Additionally, for analyz-
ing the variation of second harmonic (SH) polarization
through the randomly modified tensor, we regarded two
orthogonally polarized output waves in the plane, trans-
verse to the propagation direction [21]. First, we assumed
that the beam size was much smaller than the average
grain size, which is typically the case for high repetition
rate ultrafast interactions. In this way, we performed
1D simulations along the beam propagation direction.
The simulated histogram of Fig. 4(d) shows higher prob-
ability of weak SH signals, as compared to experiment
(Fig. 4(c)). This mismatch comes from the fact that the
beam inside the sample has a finite cross section and thus
can ‘see’ several grains at a time. To analyze this effect,
a polycrystalline structure model was created by Voronoi
tessellation as shown in Fig. 3(c) [22]. It was based on a
real ZnSe sample – in terms of distribution of the grain
size and orientation. In this simulation, we assumed the
real beam size (50 µm) and performed multiple 1D simu-
lations with 10-µm steps in the transverse plane, assum-
ing that the nonlinear polarizations induced in the neigh-
boring grains (in the transverse plane) are uncorrelated.
An example of 50 µm×50 µm×1 mm structure that was
sliced into several cross sections along the beam propa-
gation direction is shown in Fig. 3(c). The simulated SH
power histogram that took into account averaging over
the beam cross section, shown in Fig. 4(e), demonstrates
a good agreement with experiment (Fig. 4(c)) – in terms
of the histogram shape and the ratio P 2ω

‖ /P 2ω
⊥ . For large

beams w≫D, the variation of the output signal is ex-
pected to be even smaller due to the averaging effect in
the transverse plane.

V. RANDOM-PHASE VS. QUASI-PHASE

MATCHING

As predicted earlier [13] and demonstrated experimen-
tally [9–12] RPM is very well suited for ultrafast three-
wave interactions. In fact, the group-delay walk-off be-
tween the waves with different center wavelengths, espe-
cially when few-optical-cycle laser pulses are used, limits
the interaction length to less than 1 mm. Using Monte
Carlo simulations, we evaluated performance of RPM
ZnSe for w≪D by comparing it with QPM. We mod-
eled an ‘ideal’ ZnSe QPM material which uses nonlinear
coefficient of

√

4/3d14 (beam propagates along [1 1 0],
all polarizations are along [1 1 1], by analogy with GaAs
[19]). Fig. 5 shows RPM SHG efficiency for different sam-
ple lengths, normalized to that of an ‘ideal’ QPM crys-
tal of the same length. One can see that the RPM vs.
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FIG. 5. RPM SHG efficiency for tightly focused beams nor-
malized to that of an ideal QPM material (only parallel out-
put component is counted) as a function of the normalized
sample length. For each sample length (1, 3, 10, 30, 100,
300Lc) the Monte Carlo simulation was performed using 1,000
sets of random structures and the average efficiency is shown
as a solid line. Nonlinear coefficient of

√

4/3d14 was used for
the QPM condition.

QPM efficiency quickly degrades with the sample length
(as 1/L), however for shorter interaction lengths, there
is a greater chance that RPM can perform on par with
QPM. For example, at L < 5Lc, SHG efficiency in RPM
hot spots can reach 50% of that of an ideal QPM crys-
tal. This is totally consistent with the measured pump
threshold in the femtosecond OPO that was based on
RPM ZnSe and pumped at λ = 2.35 µm, demonstrated
in [11]. Given the effective length for nonlinear inter-

action of ∼500 µm (5 ZnSe grains), determined by the
depth of the focal region of the focused pump beam, and
assuming d14 ≈ 20 pm/V for ZnSe, we estimate that the
90-mWOPO pump threshold observed in the experiment
was less than 2 times of that for an ideal QPM case.

VI. CONCLUSION

We have developed a rigorous model for RPM in a
zinc-blende structure, which takes into account real-
istic distribution of the effective nonlinearity among
the grains for both parallel and orthogonal output
polarizations, as well as grain size distribution. We
verified the model’s predictions and found a good accord
between experiment and theory. We have also shown
that in the case of ultrafast interactions with focused
beams, a disordered RPM material can perform on par
with a QPM material. This is especially important
for ZnSe, in which case QPM material is not yet
available. Overall, RPM in polycrystalline materials
opens a new route for ultrafast interactions, including
frequency up and down conversion, as well as produc-
ing ultra-broadband mid-infrared OPO frequency combs.
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Infrared Nonlinear Phenomena in Polycrystalline Semi-
conductors, Appl. Phys. B 55, 437 (1992).

[6] T. D. Chinh, W. Seibt, and K. Siegbahn, Dot patterns
from second-harmonic and sum-frequency generation in
polycrystalline ZnSe, J. Appl. Phys. 90, 2612 (2001).

[7] M. Baudrier-Raybaut, R. Häıdar, P. Kupecek, P. Lemas-
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