This is the accepted manuscript made available via CHORUS. The article has been published as:

Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer

Phys. Rev. Applied **11**, 044092 — Published 30 April 2019

DOI: [10.1103/PhysRevApplied.11.044092](https://doi.org/10.1103/PhysRevApplied.11.044092)
Gate-efficient simulation of molecular eigenstates on a quantum computer

M. Ganzhorn,1 D.J. Egger,1 P. Barkoutsos,1 P. Ollitrault,1 G. Salis,1 N. Moll,1 M. Roth,2,3 A. Fuhrer,1 P. Mueller,1 S. Woerner,1 I. Tavernelli,1 and S. Filipp1

1IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
2JARA Institute for Quantum Information (PGI-11), Forschungszentrum Jülich, 52428 Jülich, Germany
3Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany

Dated: April 8, 2019

A key requirement to perform simulations of large quantum systems on near-term quantum hardware is the design of quantum algorithms with short circuit depth that finish within the available coherence time. A way to stay within the limits of coherence is to reduce the number of gates by implementing a gate set that matches the requirements of the specific algorithm of interest directly in hardware. Here, we show that exchange-type gates are a promising choice for simulating molecular eigenstates on near-term quantum devices since these gates preserve the number of excitations in the system. We report on the experimental implementation of a variational algorithm on a superconducting qubit platform to compute the eigenstate energies of molecular hydrogen. We utilize a parametrically driven tunable coupler to realize exchange-type gates that are configurable in amplitude and phase on two fixed-frequency superconducting qubits. With gate fidelities around 95% we are able to compute the eigenstates within an accuracy of 50 mHartree on average, a limit set by the coherence time of the tunable coupler.

I. INTRODUCTION

The simulation of the electronic structure of molecular and condensed matter systems is a challenging computational task as the cost of resources increases exponentially with the number of electrons when accurate solutions are required. With the tremendous improvements in the control of complex quantum systems this bottleneck may be overcome by the use of quantum computing hardware [1]. Various algorithms for quantum simulation have been designed to that end, including adiabatic and quantum phase estimation algorithms [2, 3]. With these algorithms the challenges for practical applications lie in the efficient mapping of the electronic Hamiltonian onto the quantum computer and in the required number of quantum gates, respectively, that remains prohibitive on current and near-term quantum hardware [4] without quantum error correction schemes [5]. On the other hand, variational quantum eigensolver (VQE) methods [6, 7] can produce accurate results with a small number of gates [8] using algorithms with low circuit depth [9] and do not require a direct mapping of the electronic Hamiltonian onto the hardware. Moreover, such algorithms are inherently robust against certain errors [8, 10, 11] and are therefore considered as ideal candidates for first practical implementations on noisy intermediate scale quantum hardware.

Recently, the molecular ground state energy of hydrogen and helium have been computed via VQE in proof of concept experiments using NMR quantum simulators [12–14], photonic architectures [6] or nitrogen-vacancy centers in diamond [15]. Although very accurate energy estimates are obtained, quantum simulation of larger systems remains an intractable problem on these platforms because of the difficulties arising in scaling them up to more than a few qubits. For this reason trapped ions [16–19] and superconducting qubits [20–22] have become promising candidates to carry out VQE-based quantum simulations in particular for quantum chemistry applications. For instance, the ground state energies of molecules like H2 [23–25], LiH and BeH2 [24], as well as the energy spectrum of the four eigenstates of H2 [25], have been measured on general purpose superconducting qubit platforms. In these experiments, a heuristic approach based on gates naturally available in hardware, such as C-Phase, CNOT or bSWAP, is employed. However, computing larger molecules with more orbitals in the active computational space becomes impractical with this method. Without further constraints, the dimension of the Hilbert space accessed via the parameterized gate sequences grows exponentially with the number of required qubits N. The probability to reach the wanted ground state decreases accordingly. It is, thus, important to use a set of entangling gates that matches the specifics of the problem [8]. For quantum chemistry calculation, each qubit typically represents the population of an electronic orbital [26, 27]. Since the number of electrons ne is constant for a given molecular system or a chemical reaction, the number of qubit excitations is too. Qubit gates which preserve the number of excitations on the qubit processor are, therefore, better suited than other two-qubit gates to compute molecular eigenstates [8, 28]. In fact, using only excitation-preserving gates constrains the accessible state space to a subspace of the full 2N-dimensional Hilbert space: only the (ne)-dimensional manifold with ne electrons is explored in VQE, which simplifies the construction of a reduced molecular Hamiltonian [7] and the expansion of the trial wavefunction [8].

In this paper, we show an efficient and scalable approach to compute the energy spectrum of molecules using excitation-preserving exchange-type two-qubit gates.
We demonstrate in simulation that the circuit depth required to achieve chemical accuracy in a VQE algorithm can be significantly reduced by using exchange-type gates, which would allow the simulation of larger quantum systems on near-term quantum hardware. We implement such an exchange-type gate based VQE algorithm on a hardware platform consisting of two fixed-frequency superconducting qubits coupled via a tunable coupler [29, 30] and determine the ground state energy of molecular hydrogen. Finally, we efficiently derive the excited states of molecular hydrogen from the measured ground state using the equation-of-motion (EOM) approach [31], which complements the quantum subspace expansion (QSE) in [25, 32].

II. GATE EFFICIENT QUANTUM CIRCUITS

In quantum chemistry, the molecular Hamiltonian is represented in second quantization [7, 11] as a sum of one and two-body terms and then mapped to the qubit space using a fermion-to-qubit transformation, like the Jordan-Wigner [26] or the parity mapping transformation [33]. Suitable trial states for VQE can be computed with a unitary coupled cluster (UCC) ansatz [34], which is however costly in terms of quantum gates [7, 8]. Alternatively, trial states are generated heuristically by a parametrized cost function on a hardware platform consisting of two fixed-frequency superconducting qubits coupled via a tunable coupler architecture (Fig. 2) [29, 30, 41].

The simplest method is to prepare the initial state with \(n_e \) qubit excitations e.g. \(|1_1, 1_2, \ldots, 1_n_e, 0, \ldots, 0\rangle\) and apply only gates \((\hat{\sigma}^+ + \hat{\sigma}^- + h.c.)\) that exchange excitations between qubits by creating \((\hat{\sigma}^+)\) and annihilating \((\hat{\sigma}^-)\) excitations at the same time. The size of the restricted subspace is then given by \((N/n_e) \leq 2^N\). Close to half-filling with \(n_e \approx N/2 \), the advantage is small since \((N/n_e) \approx 2^{N/2}\). For many molecules however, the number of electrons is typically \(n_e \approx N/10 \) [35] and the size of the restricted subspace \((N/n_e)^{n_e} \) is significantly smaller than that of the full Hilbert space. We note that the restriction of the search space to a given number of electrons prevents the VQE from getting trapped in local minima with an unphysical number of electrons, which is beneficial in particular for multi-electron systems.

In a VQE simulation, the size of the explored subspace is directly connected to the circuit depth required to reach a certain accuracy. Assuming error free gates and using the minimal basis set of atomic orbitals typically used in quantum chemistry [36], we estimate the circuit depth required to achieve chemical accuracy in a VQE simulation of the molecules \(\text{H}_2, \text{LiH}, \text{BeH}_2 \) and \(\text{H}_2\text{O} \) (see Fig.1) [37]. Heuristic non excitation-conserving circuits, based e.g. on CNOT gates [24, 38], can in principle achieve chemical accuracy for these molecules. However, the required circuit depth becomes prohibitively large for molecules bigger than \(\text{H}_2 \) as the circuit runtime exceeds the best relaxation times \(T_1 \sim 100 \mu s \) currently available in superconducting hardware. On the other hand, circuits based on excitation-conserving exchange-type gates require a much shorter circuit depth and achieve chemical accuracy for all studied cases within the \(T_1 \) limit without further amendments (Fig.1). Clearly, the wanted excitation-preserving two-qubit gate could be decomposed into the available universal gate set [39, 40], e.g. using CNOT gates. But this comes at the expense of an at least tenfold increase in circuit depth (Fig.1) that can be avoided by using application specific hardware and gates. We note that additional reduction schemes can be used to minimize the number of qubits as demonstrated in Ref. [24] for \(\text{H}_2, \text{LiH}, \text{BeH}_2 \) and as discussed in the following for the proof-of-principle determination of the eigenspectrum of \(\text{H}_2 \).

III. EXCHANGE TYPE GATES IN A TUNABLE COUPLER ARCHITECTURE

An exchange-type gate primitive can naturally be realized in a tunable coupler architecture (Fig. 2) [29, 30, 41].

[Figure 1: Circuit depth required to achieve chemical accuracy for the ground state energy with a VQE algorithm for the \(\text{H}_2, \text{LiH}, \text{BeH}_2 \) and \(\text{H}_2\text{O} \) molecules. Non excitation-conserving circuits based on CNOT gates (red squares) are compared to excitation-conserving circuits based on exchange-type gates (blue circles) and a decomposition thereof into CNOT’s (yellow triangles). In some cases, only a lower boundary to the circuit depth could be estimated (empty symbols). Bounded by the \(T_1 \) time in the currently available hardware, only circuits within the grey region can be practically implemented without error mitigation or reduction schemes (see text).]
The device consists of two fixed-frequency transmon qubits Q1 and Q2 linked via a tunable coupler (TC), i.e. a frequency-tunable transmon [37]. An exchange-type coupling between the computational qubits Q1 and Q2 is achieved by parametric modulation of the TC frequency \(\omega_c(t) = \omega_0 \sqrt{\cos(\pi \Phi(t)/\Phi_0)} \) [29, 30]. Modulating a magnetic flux \(\Phi(t) = \Phi_{DC} + \delta \cos(\omega_c t + \varphi_0) \) with \(\omega_c = \omega_1 - \omega_2 \) through the SQUID loop of the TC implements the effective Hamiltonian [30]

\[
\hat{H}_{\text{eff}} = -\frac{\Omega_{\text{eff}}}{4} [\cos \varphi (XX + YY) - \sin \varphi (YX - XY)]
\]

with the set of Pauli operators \(\{X, Y, Z\} \equiv \{\sigma_x, \sigma_y, \sigma_z\} \). It describes an exchange-type interaction between |00\rangle and |01\rangle at a rate \(\Omega_{\text{eff}}(\Phi_{DC}, \delta) \) (Fig. 2(c)). In the following, \(\Phi_{DC} = 0.195 \Phi_0 \) if not stated otherwise. The resulting two-qubit gate operation is described by the unitary operator

\[
\hat{U}_{\text{EX}}(\theta, \varphi) =
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & e^{i\varphi} \sin \theta/2 & e^{i\varphi} \sin \theta/2 & 0 \\
0 & e^{-i\varphi} \sin \theta/2 & e^{-i\varphi} \sin \theta/2 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Here, \(\theta = \Omega_{\text{eff}} \tau = \pi \tau_\tau \) is controlled by the length \(\tau \) of the tunable coupler drive pulse and \(\tau_\tau = 170 \) ns is the length of an iSWAP gate, which completely transfers an excitation from one qubit to the other. The phase \(\varphi = \varphi_0 \) is controlled by the phase \(\varphi_0 \) of the tunable coupler drive.

To benchmark the efficiency of the exchange-type gate primitive, we perform quantum process tomography (QPT) of \(\hat{U}_{\text{EX}} \) as function of \(\varphi \) for a fixed \(\theta = \pi \). The overlap of the measured process matrix \(\chi_{\text{meas}}(\varphi) \) with an ideal process matrix \(\chi_{\text{ideal}} \) yields the gate fidelity \(F = \text{Tr}(\chi_{\text{meas}}(\varphi)\chi_{\text{ideal}}) \). If the measured process matrices are compared with the ideal process matrix of a \(\hat{U}_{\text{EX}}(\pi, \varphi) \) operation, the gate fidelity is constant over \(\varphi \) with an average of \(F = 94.2 \pm 1.5\% \) [Fig. 3(a)]. However, if the measured process matrices are compared with the ideal process matrix of \(\hat{U}_{\text{EX}}(\pi, 0) \), equivalent to an iSWAP gate operation, the gate fidelity is phase dependent. A fit with the analytic expression

\[
F_{\text{ana}} = F_0 |e^{-2i(\varphi - \varphi_0)}(1 + e^{i(\varphi - \varphi_0)})^4|
\]

yields a maximum gate fidelity of \(F_0 = 93.2 \pm 0.5\% \) achieved for \(\varphi_0 = 3 \pm 5 \) mrad (Fig. 3(b)). Similarly, a comparison with the ideal process matrix of \(\hat{U}_{\text{EX}}(\pi/2, \varphi) \) and \(\hat{U}_{\text{EX}}(\pi, \pi) \) yields a maximum gate fidelity at \(\varphi_0 = 1.574 \pm 0.007 \) rad and \(\varphi_0 = 3.155 \pm 0.006 \) rad, respectively. It should be noted that the gate fidelity estimation via QPT is subject to state preparation and measurement (SPAM) errors. Other techniques like randomized benchmarking are robust against such SPAM errors, but are mostly limited to gates from the Clifford group. For an iSWAP as a two-qubit gate primitive, we find an error per gate of 3.7% via randomized benchmarking [37].

Furthermore, we perform QPT of \(\hat{U}_{\text{EX}} \) as function of \(\theta \), i.e. for different lengths \(\tau \) of the drive pulse on the tunable coupler. Comparing the measured process matrices with the ideal process matrix of \(\hat{U}_{\text{EX}}(\theta, \varphi_{\text{opt}}) \) yields gate fidelities ranging from \(F = 96 \pm 2.5\% \) (for small \(\theta \)) to \(F = 91 \pm 1.5\% \) (for large \(\theta \)) (Fig. 3(a)). Here, the phase \(\varphi_{\text{opt}} \) is calibrated to maximize fidelity. The observed decrease of gate fidelity with increasing \(\theta \), i.e. longer pulse length \(\tau \), can be fitted to an exponential function with a decay time of 6.7 \(\mu \)s, close to the measured relaxation time \(T_1 = 6.3 \mu \)s of the TC.

IV. COMPUTATION OF MOLECULAR ENERGY SPECTRA

To demonstrate the usefulness of this gate, we now compute the ground state and the three excited states of molecular hydrogen. Using a parity mapping transformation [33], we map the fermionic second-quantized Hamiltonian of molecular hydrogen to the two-qubit Hamiltonian

\[
\hat{H}_{\text{H}_2} = \alpha_0 II + \alpha_1 ZI + \alpha_2 IZ + \alpha_3 ZZ + \alpha_4 XX
\]

where \(\alpha_i \) denote pre-factors that are classically computed as a function of the bond length of the molecule in the STO-3G basis [42] using PyQuante [37, 43].

To compute the ground state at a given bond length, we use a VQE algorithm as described in [24]. In our case, the respective trial states are of the
form $|\psi(\theta, \varphi)\rangle = a(\theta, \varphi)|01\rangle + b(\theta, \varphi)|10\rangle$ and can be realized in a single step with the exchange-type gate primitive $\hat{U}_{\text{EX}}(\theta, \varphi)$. A simultaneous perturbation stochastic approximation (SPSA) algorithm [44] then searches for a state $|\psi(\theta_{\text{opt}}, \varphi_{\text{opt}})\rangle$ that minimizes the energy of the molecule $E(\theta_{\text{opt}}, \varphi_{\text{opt}}) = \langle \psi(\theta_{\text{opt}}, \varphi_{\text{opt}})|\hat{H}_{\text{H}_2}|\psi(\theta_{\text{opt}}, \varphi_{\text{opt}})\rangle$ for a given bond length [37]. By changing the parameters α_i in Eq. 4 and running the VQE again for the modified Hamiltonian, we compute the ground state energy of molecular hydrogen as a function of the bond length (Fig. 4).

Furthermore, we compute the excited states of molecular hydrogen following the equation of motion (EOM) approach [37]. Using a variational method, we obtain a pseudo-eigenvalue system of equations which describes the excitations of the system. The matrix elements of this pseudo-eigenvalue system correspond to expectation values of a modified Hamiltonian with the ground state. For each bond length, we measure these matrix elements using the ground state $|\psi(\theta_{\text{opt}}, \varphi_{\text{opt}})\rangle$ computed previously with VQE and solve the pseudo-eigenvalue system classically. The solution of this eigenvalue problem then yields the excited state energies. For each bond length, we perform five runs of the experiment and plot the minimum value for the ground state energy and the median value for all excited state energies (symbols in Fig 4(a)). Comparing this experimental solution with the exact solution from the diagonalization of \hat{H}_{H_2}, the dashed line represent the solution including decoherence effects. (b) Accuracy for ground and excited state energies as function of bond length. The symbols correspond to the accuracy of the measured ground and excited state energy determined with respect to the exact solution, while the dashed lines correspond to the expected accuracy including decoherence effects (see text). The depicted ground (excited) state energy is the minimum (median) value from a set of 5 measurements. The errorbars depict the range between the 1st and 3rd quantile (excited states only). The blue shaded area represents the region of chemical accuracy from 0 to 6.5 mHa.

Figure 3. Quantum process tomography of the chemistry gate $\hat{U}_{\text{EX}}(\theta, \varphi)$. (a) Gate fidelities F as a function of φ for $\theta = \pi$. The bottom panel shows the gate fidelities calculated from the overlap of the measured process matrices $\chi_{\text{meas}}(\varphi)$ with the ideal process matrix χ_{ideal} of a $\hat{U}_{\text{EX}}(\pi, \varphi)$ (blue dots), iSWAP (orange triangles), $\hat{U}_{\text{EX}}(\pi, \pi/2)$ (red squares) and $\hat{U}_{\text{EX}}(\pi, \pi)$ (green diamonds) gate operation. The top panel shows the gate fidelities with respect to $\hat{U}_{\text{EX}}(\pi, \varphi)$. Black dashed lines depicts the average gate fidelity for $\hat{U}_{\text{EX}}(\pi, \varphi)$ (see text). Colored dashed lines are a fit to equation 3. (b) Gate fidelities F as a function of θ where the phase φ_{opt} is tuned to maximize QPT fidelity. Dashed line is a fit with an exponential decay function with a decay time of 6.7 μs.

Figure 4. Experimental VQE solution for the ground state and EOM solution for the excited states of molecular hydrogen using a tunable coupling architecture. (a) Ground (G) and excited state (E_1, E_2, E_3) energies as function of bond length. The symbols depict the experimental VQE solution, the solid lines represent the exact solution from the diagonalization of \hat{H}_{H_2}, the dashed line represent the solution including decoherence effects. (b) Accuracy for ground and excited state energies as function of bond length. The symbols correspond to the accuracy of the measured ground and excited state energy determined with respect to the exact solution, while the dashed lines correspond to the expected accuracy including decoherence effects (see text). The depicted ground (excited) state energy is the minimum (median) value from a set of 5 measurements. The errorbars depict the range between the 1st and 3rd quantile (excited states only). The blue shaded area represents the region of chemical accuracy from 0 to 6.5 mHa.
Curvature (defined here by 6.5 mHa as in [8]). In order to understand this behavior, we study the influence of decoherence effects on the accuracy. Using the decoherence rates and solving a Lindblad-type master equation via QuTIP [37, 45], we obtain ground and excited state energies which now deviate from the exact solution due to decoherence effects (dashed lines in Fig. 4(a) and (b)). The numerical simulations are in good agreement with the experimental data indicating that decoherence has a strong influence on the measured accuracy in our experiment. In particular, the short coherence time $T_{2,TC} = 20 \text{ ns}$ of the tunable coupler in the present hardware is identified as the main cause of inaccuracy. Our simulations indicate that tunable couplers with coherence times of $T_{2,TC} > 500 \text{ ns}$ would enable us to reach chemical accuracy and gate fidelities of $F_{\text{EX}} > 98.9\%$ for an exchange-type gate in the present architecture, which exhibits a ZZ crosstalk between qubit of $\zeta = (\omega_{11} - \omega_{10} - \omega_{01} + \omega_{00})/2\pi = -144 \text{ kHz}$ [37]. We note that errors in the optimization and measurement of the ground state $|\psi(\theta_{\text{opt}}, \varphi_{\text{opt}})\rangle$ can induce additional errors in the excited state energies. For comparison, we evaluate ground and excited state energies using the QSE method described in [25, 32]. Due to the linear response expansion in the qubit space, additional spurious states appear in the molecular spectrum and a larger spread in the measured accuracies is observed for the QSE method [37]. In contrast, no spurious states appear in EOM calculations and the accuracy spread is reduced. A detailed analysis of the different errors affecting the excited state calculation is beyond the scope of this work and will be discussed elsewhere [46].

Furthermore, we evaluate the scalability of our computational methods to larger molecular systems. Using the Qiskit Aqua package [47], we estimate the number of Pauli strings $O_1(O_1 \cdots O_\text{N})$ ($O = \{I, X, Y, Z\}$ and N the number of qubits) required to calculate the ground and excited state energies to be $O(N^4)$ and $O(N^8)$ respectively, i.e. a polynomial increase in the number of measurements [46]. As for the hardware components we note that the tunable coupler elements can be regarded as transmon-type qubits with demonstrated scalability up to 20 qubits [20, 22, 48] and future systems approaching 100 qubits. In such architectures, larger molecules like water could be computed. Since the circuit depth of algorithms based on exchange-type gates is shorter than ones based on CNOT gates, gate errors can be up to an order of magnitude higher to reach chemical accuracy [37].

V. CONCLUSION

In conclusion, we demonstrate a gate-efficient way to simulate molecular spectra on a tailor-made superconducting qubit processor using exchange-type two-qubit gates. With the choice of excitation-preserving exchange-type gates, tunable in both amplitude and phase, we preserve the number of excitations in the system and achieve the reduction of the VQE entangler to a single gate primitive. This enables the efficient computation of the molecular ground state, which can subsequently be used to efficiently calculate the molecule’s excited states using an EOM approach. In the present case, the accuracy of the computation is still limited by the coherence time of the tunable coupling element. However, error mitigation schemes [49, 50] or minor improvements to the coherence of the coupler would allow us to reach chemical accuracy. Our findings show that adapting quantum algorithms and hardware to the problem at hand is a key requirement to perform quantum simulation on a larger scale. In particular, exchange-type gates are a promising choice to compute the energy spectra of larger molecules like water on near-term quantum hardware.

ACKNOWLEDGMENTS

We thank the quantum team at IBM T. J. Watson Research Center, Yorktown Heights, in particular the fab team, Jerry Chow, David McKay and William Shanks for insightful discussions and the provision of qubit devices. We thank R. Heller and H. Steinmayer for technical support. We thank S. Hoel for designing a teaser image for this article. This work was supported by the DARPA LogiQ program under contract W911NF-16-1-0114-FE and the ARO under contract W911NF-14-1-0124.

[29] David C. McKay, Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta, “Universal gate for fixed-frequency qubits via a

[17] “See supplemental material at [url filed in by editor] for additional information.”

[23] Richard P. Muller, “Python quantum chemistry, version 2,”.

