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Abstract: Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient 

superconductor logic family; the energy dissipation of an AQFP gate can be arbitrarily reduced 

through adiabatic switching. In addition to high energy efficiency, AQFP logic has the 

advantage that it can easily introduce stochastic processes by exploiting naturally occurring 

thermal fluctuations. In this paper, we propose using AQFP logic to implement an 

amoeba-inspired problem solver (APS), which is a stochastic local search method to explore 

solutions to combinatorial optimization problems such as the Boolean satisfiability problem 

(SAT). We designed a superconductor amoeba-inspired problem solver (SAPS) using AQFP 

logic, which finds solutions to a simple logical constraint satisfaction problem in the manner of 

APS, and fabricated it using a Nb integrated circuit fabrication process. Experimental results 

showed that the probability distribution of the stochastic processes in AQFP logic can be 
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controlled by the magnitude of bias current and that SAPS finds solutions using a small number 

of iterations when a moderate bias current is applied. The present results indicate the possibility 

of using AQFP logic to build hardware dedicated to the implementation of stochastic local 

search algorithms to solve combinatorial optimization problems such as SAT. 

I. Introduction  

Superconductor logic can perform logic operations in an energy-efficient manner by taking 

advantage of its physical features: zero dc resistance, magnetic flux quanta, and the Josephson 

effect. Over the last several decades, many types of superconductor logic families have been 

proposed and demonstrated [1,2]. Rapid single flux quantum (RSFQ) logic [3] is one of the 

most developed logic families; RSFQ microprocessor prototypes have been designed and 

demonstrated by Tanaka et al. [4,5] Moreover, the extensive study of RSFQ logic has 

contributed to the invention of very energy-efficient logic families, such as energy-efficient 

RSFQ (ERSFQ) logic [6], reciprocal quantum logic (RQL) [7], and low-voltage RSFQ 

(LV-RSFQ) logic [8]. The Cryogenic Computing Complexity (C3) project [9] funded by IARPA 

has recently been developing very low-power microprocessors using ERSFQ logic and RQL 

while developing submicron fabrication technology [10]. 

 Adiabatic quantum-flux-parametron (AQFP) logic [11], which is one of the 

energy-efficient superconductor logic families, is adiabatic logic based on the 

quantum-flux-parametron (QFP) [12]. The switching energy (energy dissipation per switching 

event) of a single AQFP gate can be arbitrarily reduced [13] through adiabatic switching [14,15], 

in which the potential energy profile evolves from a single-well shape to a double-well shape 

such that the logic state can change quasi-statically. Followed by the establishment of a design 

environment for AQFP logic [16,17], we have demonstrated complex AQFP logic circuits such 
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as 8-bit carry look-ahead adders [16,18] and register files [19] to develop low-power 

microprocessors. We have also conducted research on information thermodynamics [20], which 

studies information processing from a thermodynamics perspective, by the calculation of the 

heat emitted from and absorbed by AQFP logic. In previous work [21], we demonstrated 

Landauer’s principle [22] numerically by showing that the probability distribution of logic states 

(logical entropy H) in AQFP gates is associated with thermodynamic entropy S and that the 

change in logical entropy ΔH is accompanied by heat absorption Q such that ΔH = βQ in the 

quasi-static limit, where β is the inverse temperature. 

 The previous demonstration revealed that stochastic processes can be introduced into 

AQFP gates through heat absorption, which paves the way for the use of AQFP logic to 

implement stochastic local search algorithms for combinatorial optimization problems. 

Simulated (or quantum) annealing [23,24] is one of the most well-known local search 

algorithms; several types of hardware that implement simulated or quantum annealing have 

recently been proposed and are attracting much attention [25,26]. The Ising model can be used 

to apply annealing to many combinatorial optimization problems that find minima of objective 

functions [27]; however, this requires the careful scheduling of temperature, or the magnitude of 

fluctuation, because the variables can stabilize even at local minimum states, which do not 

satisfy all constraints. On the other hand, the amoeba-inspired problem solver (APS) [28,29] is a 

stochastic local search algorithm that is dedicated to solving the Boolean satisfiability problem 

(SAT) but does not require the scheduling of fluctuation. APS was formulated by Aono et al. 

and is inspired by the complex spatiotemporal dynamics of a single-celled amoeba of the true 

slime mold Physarum polycephalum [28], which deforms into the optimal shape to maximize 

favorable nutrient absorption and minimize the risk of being exposed to aversive light stimuli. 

SAT is a problem to determine if all the given logical constraints (Boolean formula) can be 
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satisfied and is classified as a nondeterministic polynomial time (NP)-complete problem, which 

implies that all NP problems, including many practical real-world problems, can be reduced to 

SAT [30]. In general, APS can find solutions to SAT with a fewer number of iteration steps than 

conventional algorithms because APS updates multiple variables in parallel during each 

iteration whereas conventional algorithms change a single variable during each iteration [29]. 

Therefore, it is meaningful to develop hardware that can find solutions to SAT quickly by 

implementing APS. The key challenge to achieve hardware for the implementation of APS is to 

introduce stochastic processes into logic devices, but this is achievable in AQFP logic.  

 Here, as a proof-of-concept, we demonstrate a superconductor amoeba-inspired 

problem solver (SAPS) that can find solutions to a simple logical constraint satisfaction problem 

in the manner of APS. SAPS is composed of basic AQFP logic gates such as buffers and NOR 

gates. In SAPS, stochastic processes are introduced to AQFP gates via thermal fluctuation, 

where the amount of heat absorption, or the magnitude of entropy change, is controlled by the 

bias current applied to the AQFP gates. Followed by a basic explanation of AQFP logic and APS, 

we show the detail of SAPS and demonstrate it at 4.2 K in liquid He. The measurement results 

indicate that SAPS can find solutions through stochastic processes and that the solutions are 

quickly found when moderate bias current is applied. 

II. Adiabatic quantum-flux-parametron (AQFP) logic  

Figure 1(a) shows a schematic of an AQFP gate. When the excitation current Iex ramps up and a 

magnetic flux Φex is applied to the gate, either of the two Josephson junctions J1 and J2 switches, 

depending on the polarity of the input current Iin. As a result of the junction switching, the 

output current Iout is generated through the mutual inductance Mout = kout(LqLout)0.5. The direction 

of Iout shows the logic state of the gate: positive Iout (negative Iout) represents a logic 1 (a logic 0). 
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Figure 1(b) shows the time evolution of the potential energy of the AQFP gate for a positive Iin 

while switching, where Φex = MexIex and Mex = kex1(LqL1)0.5+kex2(LqL2)0.5. AQFP gates are 

generally symmetrical; thus, we assume that L1 = L2 and kex1 = kex2. The figure shows that the 

profile of the potential energy evolves from a single-well shape into a double-well shape as Φex 

increases. Positive Iin tilts the potential energy toward a logic 1, so that the state of the gate (the 

blue particle in the figure) switches gradually to a logic 1. This switching process is almost 

deterministic if the magnitude of Iin is sufficiently large. On the other hand, if Iin is not large, 

then the state could switch to a logic 0 due to thermal fluctuation, as shown in Fig. 1(c), where 

the color strength of the particles represents the probability of being in each state. In this case, 

the AQFP gate absorbs heat Q from the thermal bath, and the logical entropy of the gate changes 

by ΔH = βQ (> 0) [21]. In this way, stochastic processes can be introduced to AQFP gates 

through heat absorption. It is noteworthy that the magnitude of Q, or ΔH, can be controlled by 

the magnitude of Iin because it determines the shape of the potential energy during a switching 

process. 

 

(a) 
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(b) 

 

(c) 

Fig. 1. (a) Schematic of an adiabatic quantum-flux-parametron gate. When the excitation current Iex is applied, either 

of the two Josephson junctions J1 and J2 switches, depending on the polarity of the input current Iin, and the output 

current Iout is generated. (b) Time evolution of the potential energy with large Iin during a switching process. The 

potential energy is significantly tilted, so that the switching process is almost deterministic. (c) Time evolution of the 

potential energy with small Iin during a switching process. In this case, the AQFP gate can switch stochastically to 

both logic states 0 and 1 because of thermal fluctuation; the AQFP gate absorbs heat Q and increases entropy, thereby 

changing the probability distribution inside the potential well. 

III. Amoeba-inspired problem solver (APS)  

There are multiple versions of APS; however, an iteration of APS generally includes the 

following three procedures. (1) The logic states of all the variables are observed. (2) The 

variables are simultaneously updated such that the variables that satisfy given constraints hold 

their values, and those that do not satisfy constraints are flipped; this is the reason why APS 
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does not require the scheduling of fluctuation. (3) The update of the variables fails stochastically 

(i.e., the variables are stochastically flipped, regardless of given constraints), which is required 

to avoid deadlocked states, where variables keep evolving but never reach a solution [31]. The 

variables eventually stop changing as procedures 1 through 3 are iterated, which ensures that the 

states of the variables correspond to a solution, that satisfies all the constraints [29]. Here, we 

treat a simple logical constraint satisfaction problem that we call the NOR problem [31]: find a 

vector x = (x1, x2, x3, …, xN) such that the variables satisfy xi = NOR(xi-1, xi+1), where xi ∈ {0, 1} 

and i ∈ {1, 2, 3, …, N}. In APS, the solutions to the NOR problem can be found by updating the 

variables in accordance with the following equations: 

iܺሺݐ  1ሻ ൌ ሻݐi‐1ሺݔ   ሻതതതതതതതതതതതതതതതതതതതതത,                                                                                                ሺ1ሻݐi1ሺݔ

ݐiሺݔ  1ሻ ൌ ቐ iܺሺݐ  1ሻതതതതതതതതതതതത     with a probability ଵ if ݔiሺݐሻ ൌ 1 and iܺሺݐ  1ሻ ൌ 0iܺሺݐ  1ሻതതതതതതതതതതതത     with a probability ଶ if ݔiሺݐሻ ൌ 0 and iܺሺݐ  1ሻ ൌ 0iܺሺݐ  1ሻ     otherwise,                                                                                  ሺ2ሻ 

where xi(t) shows the state of xi at the current iteration t, Xi(t+1) shows the intermediate state for 

updating xi, and xi(t+1) shows the state of xi at the next iteration t+1. Equation 1 corresponds to 

procedure 2 in APS: xi(t) holds its value when it satisfies the given constraint and is flipped 

otherwise. For instance, Xi(t+1) = 1 if xi-1(t) = 0, xi(t) =1, and xi+1(t) = 0; Xi(t+1) = 0 if xi-1(t) = 1, 

xi(t) =1, and xi+1(t) = 0; and Xi(t+1) = 1 if xi-1(t) = 0, xi(t) =0, and xi+1(t) = 0. Equation 2 

corresponds to procedure 3 in APS: the change from 1 to 0 fails with a probability p1, and the 

conservation of 0 fails with a probability p2. Figures 2(a) and (b) show some examples of the 

time evolution of the variables for N = 6, where the initial state is x = (0, 0, 0, 0, 0, 0). Figure 

2(a) shows the case for p1 = 0 and p2 = 0. Stochastic processes are not introduced, so that the 

variables alternate between the two states x = (0, 0, 0, 0, 0, 0) and x = (1, 1, 1, 1, 1, 1), i.e., the 

variables are deadlocked and cannot reach a solution. Figure 2(b) shows the case for p1 > 0 and 

p2 > 0. Unlike the case of Fig. 2(a), the change from 1 to 0 and the conservation of 0 fail 
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stochastically. These stochastic processes are highlighted in red. At iterations 2 and 4, the 

change from 1 to 0 fails, which breaks the deadlocked state and leads to a satisfied state, or a 

solution x = (1, 0, 1, 0, 1, 0), at iteration 5. The solution satisfies all the constraints; for instance, 

x3 satisfies x3 = NOR(x2, x4). The satisfied state continues for a while because Eq. 1 does not 

change the variables. However, the conservation of 0 fails stochastically in accordance with Eq. 

2, so that the satisfied state is eventually broken, thereby starting a search for another solution. 

In Fig. 2(b), the conservation of 0 fails at iteration 8, and another solution x = (0, 1, 0, 0, 1, 0) is 

found at iteration 9. In this way, APS can find multiple solutions during a time evolution, which 

is important in some applications such as the simulation of chemical reactions [32]. Figure 2(c) 

shows the simulated performance of APS solving NOR problems: the average iteration number 

to find a solution over 500 trials as a function of the problem size N, where the initial state is x = 

(0, 0, 0, …, 0), and the probabilities of stochastic processes are p1 = 0.2 and p2 = 1/(2N). Note 

that p1 and p2 are kept constant during a solution search because APS does not require the 

scheduling of fluctuation. p2 works only to break satisfied states and to find multiple solutions; 

therefore, p2 is set to a small value 1/(2N) in this simulation so that it does not affect the search 

speed significantly. The fitting curve in Fig. 2(c) is 5.47lnN+2.88, which indicates that APS can 

find solutions quickly using simple procedures. Although the procedures shown in Eqs. 1 and 2 

are applicable only to the NOR problem, APS has undergone several modifications to solve 

general SAT, the details of which are given in the literature [28,29,31]. 
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(c) 

Fig. 2. Solving NOR problems using APS. (a) Time evolution for N = 6 without stochastic processes. Every process is 

deterministic; therefore, the variables cannot find a solution, or become deadlocked. (b) Time evolution for N = 6 

with stochastic processes. The variables can break the deadlocked state because of stochastic processes, which leads 

to multiple solutions. (c) Simulated performance of APS solving NOR problems for p1 = 0.2 and p2 = 1/(2N). The 

average iteration number to find a solution was calculated over 500 trials for each problem size N. The fitting curve is 

5.47lnN+2.88. 

IV. Superconductor amoeba-inspired problem solver (SAPS)  

We design SAPS using AQFP logic that can solve a small-scale NOR problem (N = 4). Figure 

3(a) shows a schematic of SAPS, which is based on the amoeba-inspired semiconductor circuit 

demonstrated by Kasai et al. [33] The AQFP logic gates in Fig. 3(a) are based on the buffer 

shown in Fig. 1(a) and are driven by a four-phase excitation mode using a pair of ac excitation 

currents and a dc-offset current. The details of AQFP logic gate design and excitation methods 
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are given in the literature [16,34]. Logic operations are performed along the excitation phases φ1 

through φ4 with a phase separation of 90°. The logic states of the buffers in phase φ4 represent 

the states of the variables x1 through x4. SAPS implements the three procedures of APS as 

follows. (1) The buffers in phase φ1 observe the variables x1 through x4. (2) The NOR gates 

update all the variables simultaneously in accordance with Eq. 1, Xi = NOR(xi-1, xi+1). (3) 

Stochastic processes are introduced by the bias current Ib (> 0), which applies an offset input 

current to the buffers in phase φ4. Both Ib and the signal current that represents a logic 1 

(positive Iout in Fig. 1(a)) have the same polarity; therefore, logic 1s propagate deterministically 

from the buffers in phase φ3 to those in phase φ4. On the other hand, logic 0s (negative Iout in Fig. 

1(a)) propagate stochastically from the buffers in phase φ3 to those in phase φ4 because Ib 

reduces the magnitude of the signal current that represents logic 0s between phases φ3 and φ4. 

The buffers in phase φ4 absorb heat and increase logical entropy, as shown in Fig. 1(c); therefore, 

xi is updated in accordance with Eq. 2. For simplicity, p1 = p2 in this circuit configuration 

because both p1 and p2 are determined by the amplitude of Ib. In this way, the variables x1 

through x4 evolve in the manner of APS. SAPS is scalable because the problem size can be 

increased by repeating the same circuit structure, as shown in Fig. 3(d), which illustrates SAPS 

for N = 8. While the previously reported amoeba-inspired circuit [33] used circuit parameter 

variations to avoid deadlocked states, SAPS utilizes thermal fluctuation to avoid deadlocked 

states, which enables multiple solutions independent of initial states to be found, as will be 

shown later. SAPS includes 12 Josephson junctions per variable, excluding the peripheral 

circuits for readout. Assuming the average energy dissipation is 5 zJ per junction [16], the 

power consumption of SAPS for N variables is only 0.3N (nW) for a 5 GHz operation. 

 Figure 3(b) shows the possible states of SAPS. In the experiment, SAPS starts 

searching for solutions from the initial state x = (0, 0, 0, 0). SAPS undergoes state transition 
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from the initial state to the deadlocked state, where the variables alternate between the two 

combinations x = (0, 0, 0, 0) and x = (1, 1, 1, 1) due to the logical constraint xi = NOR(xi-1, xi+1) 

represented by the NOR gates. If the update of a variable fails due to thermal fluctuation, then 

the variables can break the deadlocked state and switch to one of the satisfied states x = (0, 1, 0, 

1) and x = (1, 0, 1, 0), which are the solutions to the NOR problem. The given logical 

constraints are satisfied, so that the variables keep the same logical values for a while after 

reaching a satisfied state. The variables can return to the deadlocked state again due to thermal 

fluctuation, and therefore multiple solutions can appear without initialization of the variables, 

which is one of the features in APS [31]. 

 

(a) 

 



 

13 

 

 

(b) 

 

 

(c) 
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(d) 

Fig. 3. (a) Schematic of a superconductor amoeba-inspired problem solver (SAPS) that can solve a NOR problem for 

N = 4. The buffers in φ1 observe the variables x1 through x4. The NOR gates in φ2 update the variables in parallel. The 

bias current Ib induces stochastic processes, where logic 1s propagate deterministically, whereas logic 0s are 

stochastically flipped. (b) Possible states of the variables x1 through x4. In the deadlocked state, the variables alternate 

between x = (0, 0, 0, 0) and x = (1, 1, 1, 1) and do not find solutions. With stochastic processes, the deadlocked state 

is stochastically broken, and the variables can switch to satisfied states, where solutions are found. (c) Micrograph of 

SAPS, which was fabricated using the Nb integrated circuit fabrication process. (d) SAPS for N = 8.  

V. Stochastic solution search using SAPS  

We fabricate SAPS and operate it to demonstrate that the solutions to the NOR problem are 

found through the time evolution shown in Fig. 3(b). Figure 3(c) shows a micrograph of SAPS, 

which was fabricated using the National Institute of Advanced Industrial Science and 

Technology (AIST) 2.5 kA/cm2 Nb standard process (STP2) [35]. A pair of excitation currents 
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Iex1 and Iex2 are provided by a function generator, and a dc-offset current Idc is provided by a 

voltage source. The bias current Ib is provided to each buffer in phase φ4 by a common voltage 

source. The logic states of the variables x1 through x4 are converted into voltage signals Vx1 

through Vx4 using dc superconducting quantum interference devices (dc-SQUIDs) [11] that are 

magnetically coupled to the buffers in phase φ4. The SAPS chip was placed inside a liquid He 

dewar in the experiment. Figure 4(a) shows the measurement sequences. Iex1 and Iex2 are 

sinusoidal currents with a phase separation of 90° that power and clock the AQFP gates in SAPS. 

At the beginning, Ib is set to a negative value Ib0 (= -27 μA) to set the variables x1 through x4 to 

the initial state x = (0, 0, 0, 0). After the initialization, Ib increases to a positive value Ib1 to 

introduce stochastic processes, and the time evolution of Vx1 through Vx4 (x1 through x4) is then 

observed. In synchronization with Iex2, x1 through x4 are iteratively updated, and their 

corresponding voltage signals Vx1 through Vx4 appear in the form of unipolar return-to-zero (RZ) 

encoding. Figures 4(b) through 4(d) show typical measurement waveforms for the three 

different values of Ib1, where the frequency of Iex1 and Iex2 is 100 kHz. Figure 4(b) shows the 

time evolution of Vx1 through Vx4 for Ib1 = 0 μA. No positive Ib is applied; therefore, every logic 

operation in SAPS is deterministic, and thus the variables stay in the deadlocked state. Figure 

4(c) shows waveforms for Ib1 = 18.24 μA. SAPS escapes from the deadlocked state and 

switches to satisfied states because a positive Ib flips logic 0s stochastically between φ3 and φ4. 

The variables keep the same logic values for a while after reaching a satisfied state, which 

ensures that the variables form a solution in APS [28]. Both the satisfied states x = (0, 1, 0, 1) 

and x = (1, 0, 1, 0) appear stochastically via the deadlocked state. These indicate that stochastic 

processes due to thermal fluctuation help SAPS break the deadlocked state and find solutions, as 

expected in Fig. 3(b), and that both solutions are found from the same initial state. Figure 4(d) 

shows waveforms for Ib1 = 27.55 μA. In this case, Ib1 is too large, so the variables are fixed to x 
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= (1, 1, 1, 1), which corresponds to the fixed state in Fig. 3(b). 

 

(a) 

 

 

(b) 
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(d) 
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Fig. 4. (a) Sequence of the measurement waveforms of SAPS. Iex1 and Iex2 power and clock the AQFP gates in SAPS. 

Ib initially has a negative value Ib0 = -27 μA to initialize the variables to (0, 0, 0, 0) and increases to a positive value 

Ib1 to introduce stochastic processes. The logic states of the variables x1 through x4 are converted into the voltages 

signals Vx1 through Vx4 for readout. (b) Waveforms for Ib1 = 0 μA. Every logic operation is deterministic, so that the 

variables stay in the deadlocked state. (c) Waveform for Ib1 = 18.24 μA. The moderate bias current introduces 

stochastic processes, so that the variables can switch to the satisfied states stochastically. (c) Waveform for Ib1 = 27.55 

μA. The logic states of the variables are fixed to (1, 1, 1, 1) because the bias current is too large.  

 

 The measurement sequence shown in Fig. 4(a) was repeated 200 times for each Ib1, 

where one measurement sequence includes 1000 iteration steps, to evaluate how fast solutions 

are found depending on the value of Ib1. Figure 5(a) shows the measured probability of being in 

satisfied states Psat as a function of the iteration number and Ib1. Ib1 determines how much heat 

SAPS absorbs, or how often logic 0s are flipped between phases φ3 and φ4; therefore, the time 

evolution of Psat is strongly dependent on Ib1. The figure shows that Psat increases quickly for Ib1 

around 18.40 μA, which indicates that there is an appropriate amount of heat absorption to find 

solutions. Figure 5(b) shows the time evolution for the probability distribution of the variables 

x1 through x4 for Ib1 = 18.4 μA. While the probabilities of being in x = (0, 0, 0, 0) and x = (1, 1, 

1, 1) drop quickly, those of being in the satisfied states x = (0, 1, 0, 1) and x = (1, 0, 1, 0) 

increase rapidly, which indicates that stochastic processes introduced by Ib1 help SAPS find 

solutions quickly. Moreover, both the solutions appear with similar probabilities, although the 

probabilities of being in x = (0, 1, 0, 1) and x = (1, 0, 1, 0) are not exactly the same due to 

circuit parameter variation. In future work, we will demonstrate a large-scale SAPS to study the 

search speed more comprehensively because the size of the problem treated in this experiment is 

too small for such discussions. 



 

19 

 

 

(a) 

 

(b) 

Fig. 5. Time evolution of the variables in the experiments. (a) Evolution of the probability of being in satisfied states 

Psat. With small Ib1, Psat requires many iterations to achieve high Psat. However, with Ib1 of approximately 18.4 μA, 

Psat reaches 0.5 with less than 10 iterations. (b) Evolution of the probability distribution of each state for Ib1 = 18.40 

μA. The probabilities of being in x = (0, 0, 0, 0) and x = (1, 1, 1, 1) drop quickly, and those of being in x = (0, 1, 0, 1) 
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and x = (1, 0, 1, 0) increase rapidly. Both the solutions x = (0, 1, 0, 1) and x = (1, 0, 1, 0) appear with similar 

probabilities. 

VI. Conclusions 

In this study, we proposed using AQFP logic to implement APS by taking advantage of the ease 

of introducing stochastic processes into the circuit implementation. We designed SAPS using 

basic AQFP logic gates and fabricated it using a Nb integrated circuit fabrication process. SAPS 

was operated at 4.2 K, and it was demonstrated that it can find solutions to a simple logical 

constraint satisfaction problem through the use of stochastic processes induced by thermal 

fluctuation. The experimental results showed that the probability distribution of the logic states 

of AQFP gates can be controlled by the magnitude of the bias current and that SAPS can find 

solutions with a small number of iterations when a moderate bias current is applied. The 

estimated power consumption of SAPS was only 1.2 nW for a 5 GHz operation. These results 

reveal the possibility of very low-power superconductor circuits dedicated to the performance of 

stochastic solution-search algorithms. 

 For our next step, we will modify SAPS such that it can solve not only NOR problems 

but also general SAT. In a previous study [36], we proposed a circuit model called circuit-level 

AmoebaSAT (CL-AmbSAT), which can find solutions to 3-SAT [37] in the manner of APS. 

3-SAT is a NP-complete problem to determine the satisfiability of a formula in the conjunctive 

normal form (CNF) where each clause includes at most three literals. Arbitrary SAT instances 

can be reduced to 3-SAT instances, so that CL-AmbSAT can solve general SAT. Importantly, 

CL-AmbSAT can be incorporated into SAPS because CL-AmbSAT requires basic logic gates 

and stochastic gates that introduce simple stochastic operations, all of which are available in 

AQFP logic. Therefore, we will modify SAPS on the basis of CL-AmbSAT. 
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 Moreover, AQFP logic with stochastic processes might be able to be used in some 

other types of computer systems, such as stochastic resonance [38] and stochastic computing 

[39]. We found that the stochastic processes and gate-level pipelining in AQFP logic are suitable 

to express random bit streams in stochastic computing [40]. These new directions in AQFP logic 

will be investigated in future work. 
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