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Strong magnetic field gradients can produce a synthetic spin-orbit interaction that allows for high fidelity
electrical control of single electron spins. We investigate how a field gradient impacts the spin relaxation time
T1 by measuring T1 as a function of magnetic field B in silicon. The interplay of charge noise, magnetic field
gradients, phonons, and conduction band valleys leads to a maximum relaxation time of 160ms at low field,
a strong spin-valley relaxation hotspot at intermediate fields, and a B4 scaling at high fields. T1 is found to
decrease with lattice temperature Tlat as well as with added electrical noise. In comparison, samples without
micromagnets have a significantly longer T1.

I. INTRODUCTION

The Zeeman-split spin states of a single electron spin in a
large magnetic field can naturally be used to define a qubit
[1, 2]. For spins trapped in semiconductor quantum dots, sin-
gle qubit rotations can be achieved through electron spin res-
onance [3, 4]. Spin rotations can also be electrically driven
in the presence of an intrinsic spin-orbit field [5–7] or a syn-
thetic spin-orbit field generated by a micromagnet [8, 9]. Us-
ing nearest neighbor exchange coupling, as first demonstrated
in GaAs devices [10], two-qubit operations have been recently
implemented in silicon with high fidelity [11–13].

Silicon has become a favored material for spin-based quan-
tum computing due to seconds-long spin relaxation times T1
[14, 15] and the ability to extend spin coherence times T2
through isotopic enrichment [4, 16–20]. By using electric
dipole spin resonance (EDSR) in a field gradient, single spin
rotations with fidelities>99.9% have been obtained [9]. How-
ever, the added control enabled by the micromagnet can limit
T2 [9] and may reduce T1 [12, 13]. It is therefore necessary to
understand how magnetic field gradients impact T1.

Through over a decade of theoretical and experimental
work in GaAs [2, 21–30], it is well known that spin relaxation
is governed by a combination of electron-phonon coupling to-
gether with hyperfine and spin-orbit interactions. Theory for
GaAs predicts a B5 dependence of T−1 at high fields, where
spin-orbit coupling dominates, and a softer B3 dependence at
low fields, where the hyperfine interaction dominates. TheB5

dependence was confirmed in early experiments [28, 29] and
only recently was the low field B3 dependence observed [30].

In contrast, the theoretical background in Si/SiGe is much
less well developed. Part of the complication stems from the
small energy scale associated with the valley states in Si/SiGe
quantum dots, typically 20 − 300µeV. The valley physics is
further complicated by the fact that a range of valley splittings
can be observed in a single device [31] and in some cases the
valley splitting can be gate-voltage-tuned [15]. There are rel-
atively few experimental measurements of single spin relax-
ation in Si-MOS [15, 32, 33] and Si/SiGe [34, 35]. In addition
to phonon-mediated relaxation [36], the presence of valley
states can lead to spin relaxation “hot-spots” when the valley
splitting EV is comparable to the Zeeman energy EZ [15, 37].
However, the addition of a micromagnet to spin qubit devices
may result in new relaxation pathways, as electrical noise will
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lead to uncontrolled motion of the electron in the field gradi-
ent, and give rise to a randomly fluctuating magnetic field.

In this paper, we examine the impact of a synthetic spin-
orbit field on single spin relaxation in Si. To better isolate
the effect of a micromagnet, we compare T1 on devices fab-
ricated with and without Co micromagnets. We find signifi-
cantly faster spin relaxation in the micromagnet device over
a 6 T range of magnetic field. Consistent with measurements
on Si-MOS devices, we observe spin relaxation hotspots at
intermediate fields [15]. However, there is an unexpected sat-
uration of T1 at low magnetic fields in the micromagnet device
[32] and an overall weak power-law scaling at high fields on
both devices. T1 decreases with temperature and added elec-
trical noise, suggestive of a spin-relaxation mechanism involv-
ing charge-noise-induced motion in a spin-orbit field.

II. MEASUREMENT

We measure T1 as a function of external magnetic fieldBext

on two devices (see Fig. 1) fabricated from the same Si/SiGe
wafer used in previous experiments [31, 38] . Electrons in the
Si quantum well are laterally confined using an overlapping
aluminum gate architecture [31]. Device 1 consists of a dou-
ble quantum dot (DQD) and an additional 250 nm thick Co
micromagnet [12]. Device 2 is a linear array of nine dots with
no micromagnet [39]. Single spin qubits are defined in the up-
per half of each device and charge detection is performed by
measuring the current through a charge detector located in the
lower half of the device (IS for Device 1, and IS1

or IS2
for

Device 2). All measurements are performed in a dilution re-
frigerator and Bext is applied along the [110] crystallographic
direction.

We begin by presenting measurements from Device 1. The
charge stability diagram is shown in Fig. 1(c) and is obtained
by differentiating the charge sensor current IS as a function of
the gate voltages VL and VR. The DQD is tuned to the one-
electron regime, where spin relaxation measurements can be
performed in the left dot near the (0,0)-(1,0) charge transition
or in the right dot near the (0,0)-(0,1) charge transition, far
detuned from the (1,0)-(0,1) transition, allowing the treatment
as isolated quantum dots. Here (NL,NR) refers to the number
of electrons in the left and right dots. Before measuring T1,
the micromagnet is magnetized by ramping the external field
up to Bext = 6 T.

The spin T1 of a single electron is measured using a three-
step “Elzerman” pulse sequence, as illustrated by points (A),
(B), and (C) in Fig. 1(c) [40]. The device is first emptied of
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FIG. 1. False color scanning electron micrographs of the devices used for the T1 measurements. (a) DQD device containing an additional Co
micromagnet (hashed region) for EDSR. (b) 9 dot device without a micromagnet. (c) Charge stability diagram acquired using the DQD. The
pulse sequence used to measure T1 is overlaid on the data. The T1 measurement starts with an empty DQD at position (A), loads a random
spin and waits for a time τ at point (B), and determines the final spin state at point (C) using spin-to-charge conversion.

electrons at point (A), after which a random spin electron is
loaded into the left dot by abruptly pulsing to point (B). After
waiting for a time τ , the spin state is read out through spin
to charge conversion at point (C). The pulse sequence is com-
pleted by pulsing back to (A). Similarly, the right dot spin T1
is measured near the (0,0)-(0,1) charge transition (points A′,
B′, and C′).

Repeating the pulse sequence for varying wait times τ al-
lows measurement of the spin-up probability P↑(τ). We ex-
tract T1 by fitting P↑(τ) to the form P↑(τ) = a exp(−τ/T1)+
b [41], where a and b depend on the initialization and readout
fidelities of the spin-up state [14, 30, 35]. The readout visibil-
ity prohibits measurements below 0.15 T. We therefore mea-
sure between 0.15 T and 6 T (the maximum field of our vector
magnet).

III. RESULTS AND DISCUSSION

Spin relaxation data from Device 1 are shown in Fig. 2,
where we plot T−11 (Bext) for the left and right dots. We ob-
serve three magnetic field regimes, where T1 shows qualita-
tively different behavior. For Bext < 300 mT, T1 saturates
around 65 ms for the left dot and 160 ms for the right dot. In
the intermediate field regime, where 0.3 T < Bext < 1 T, we
observe a dramatic peak in T−11 for both dots, where T−11 >
1 kHz. This is consistent with a spin-relaxation hotspot due
to spin-valley mixing when EZ is comparable to EV [15].
Above Bext ∼ 1 T, the relaxation rates follow a power law
with T−11 ∝ B

4.0(3.8)
ext for the left (right) dot. In general, a

high-field power law dependence is expected, but with a larger
exponent (B5

ext in GaAs and B7
ext in Si/SiGe) [21, 37].

To better isolate the effect of the micromagnet on T1 we
have characterized Device 2, which is fabricated on the same
heterostructure as Device 1, but has no micromagnet. The ac-
cumulation gates for Device 2 are designed to create a linear
chain of 9 tunnel coupled quantum dots, whose charge states
can be read out using three proximal quantum dot charge sen-
sors. Details on the fabrication of Device 2 and data showing
single electron occupancy through charge detection are pre-
sented in Ref. [39]. Since our devices operate in accumulation
mode, Device 2 can be used to measure T1 of a single elec-
tron confined in a dot formed beneath any of the nine plunger
gates [labeled P1, P2, etc. in Fig. 1(b)]. To illustrate the mode

of operation of Device 2, the inset of Fig. 1(b) shows a COM-
SOL simulation of the electron density in the Si quantum well.
Here a single quantum dot is defined under plunger gate P2.
With the exception of barrier gates B2 and B3, the remain-
ing plunger and barrier gates of the array are positively biased
to accumulate a channel of electrons that connects to a two-
dimensional Fermi sea, permitting full measurement of dot 2.
T1 measurements can be performed on other dots in the ar-
ray by simply reconfiguring the gate voltages, where the low
cross-capacitance between neighboring gates guarantees local
control over the confinement potentials and comparability be-
tween the measurements [31].

Figure 3 shows T−11 (Bext) for dots 2, 5 and 6 in Device 2.
Overall, the relaxation rates are slower in Device 2, especially
at low magnetic fields. Specifically, T1 approaches 5 s at Bext

= 400 mT, almost two orders of magnitude greater than data
from Device 1 at the same Bext. Here, the T1 measurements
are restricted to Bext ≥ 400 mT, as T1 exceeds several sec-
onds and the measurements become very time-consuming at
low field. As with Device 1, we observe a peak in T−11 at in-
termediate fields in dot 2. However, no relaxation hotspot is
observed in dots 5 and 6, presumably due to a valley splitting
that lies below the minimum Zeeman energy EZ = 110µeV
for these data sets. For Bext > 2 T, T−11 ∝ Bp

ext, with p ex-
hibiting dot-to-dot variations and generally falling in the range
4 < p < 6. Additional Device 2 data are shown in [41].

We fit the data from both devices to a three component func-
tion:

T−11 (ωZ) = T−11,sat + (cJωZ + cphω
5
Z)FSV(ωZ) + cpω

p
Z . (1)

The first term T−11,sat is an empirical magnetic field-
independent relaxation rate that captures the low field satu-
ration observed in experiment and ωZ = EZ/h̄ is the Larmor
precession frequency. The second term in Eqn. 1 accounts
for spin-valley relaxation at the hotspot and includes a John-
son noise term cJωZ and a phonon noise term cphω

5
Z , where

cJ and cph are scaling pre-factors. These noise terms have
been included in previous analyses of spin relaxation rates in
Si-MOS devices [15, 33]. The behavior near the hotspot is
captured by

FSV(ωZ) = 1−
[
1 +

∆2

(EV − h̄ωZ)2

]−1/2
, (2)
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FIG. 2. T−1
1 from the left and right dots in Device 1 (with a Co

micromagnet). T1 saturates at low field in both dots, yielding T1 = 65
ms (160 ms). Spin-relaxation hotspots are observed at intermediate
fields of Bext = 0.47 T (0.68 T) for the left (right) dot. For Bext > 1
T, T−1

1 ∝ B
4.0(3.8)
ext for the left (right) dot.

which is parameterized by EV and the spin-valley mixing en-
ergy ∆ [37]. The final term in Eqn. 1 reproduces the high field
behavior with power law exponent p and scaling pre-factor cp
as free parameters to account for the observed variations be-
tween dots and devices.

Fits to the Device 1 data are shown by the dashed lines
in Fig. 2. To account for the additional field contribution
from the micromagnet we set ωZ = gµBBtot/h̄ with Btot =
Bext +Bm and Bm = 140 mT, where g = 2 is the g-factor in
silicon and µB is the Bohr magneton. While the external field
and the micromagnet field will generally add to the total field
as ~Btot = ~Bext + ~Bm, based on the symmetry of the design
[12] and the centered alignment of the quantum dots with re-
spect to the gap of the micromagnet, we expect ~Bext ‖ ~Bm

and therefore the simplified addition of magnitudes. From
the low field behavior we extract T−11,sat = 15.3 Hz (6.3 Hz)
for the left (right) dot. The spin-valley contribution to the
total relaxation rate agrees well with the data in the vicinity
of the hotspots and allows us to extract valley splittings of
EV = 70µeV (95µeV) when taking into account the field
added by the micromagnet. These valley splittings are consis-
tent with values obtained through magnetospectroscopy and
dispersive readout on similar devices [31, 42]. At high fields
we find power law exponents p = 4.0±0.1 (3.8±0.1). Here the
strong spin-valley hot-spot contribution to the spin relaxation
rate limits the precision of p.

The Device 2 data shown in Fig. 3 are also well fit by Eqn.
1. We extract a valley splitting EV = 106µeV in dot 2,
but neglect the spin-valley contribution in dots 5 and 6, as
no hotspots are observed in these data sets. For all three dots,
we find negligible saturation constants T−11,sat. Based on the
longest observed relaxation time on this device, we estimate
T−11,sat < 0.2 Hz. Finally, at high fields we observe a variety
of power law exponents with p = 5.5, 4.0 and 4.7 for dots 2,
5 and 6.

While the data are well fit by Eqn. 1, it contains empiri-
cal fit parameters. We therefore seek to constrain our fits by
turning to existing theoretical models. Relaxation is expected
to be dominated by spin-orbit and spin-valley coupling, both
of which have been considered in detail for Si quantum dots
and can be distinguished by their characteristic magnetic field
dependence [36, 37, 43]. Spin-orbit coupling leads to spin
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FIG. 3. T−1
1 for dots 2, 5 and 6 of Device 2 (no micromagnet). No

saturation in T1 is observed down to Bext = 0.4 T, where T1 = 5 s.
Dot 2 exhibits a relaxation hotspot at Bext = 0.915 T. At high fields,
T−1
1 ∝ B5.5

ext (dot 2), B4.0
ext (dot 5) and B4.7

ext (dot 6).

relaxation through coupling to higher orbital states and is de-
scribed by the functional form

T−11,SO ∝
ω2
Z

ω4
d

S(ωZ), (3)

where ωd is the orbital confinement frequency and S(ωZ) is
the electrical noise spectrum at frequency ωZ [2, 37]. The
spin-valley contribution is described by

T−11,SV(ωZ) ∝ S(ωZ)FSV(ωZ), (4)

with FSV as previously defined. Both rates are dependent
on the noise spectrum S(ωZ), which can have contributions
from Johnson noise, charge noise, and phonons [37]. John-
son noise, which may be caused by charge fluctuations in the
resistive leads of the quantum dots, results in a noise spec-
trum SJ(ωZ) ∝ ωZ coth(h̄ωZ/2kBTe), where Te is the elec-
tron temperature [37, 44]. Charge noise, often related to the
occupation and ionization of nearby charge traps [45–47],
yields Sch(ωZ) ∝ Te/ωZ . Phonons, which can couple to
the electron through electric fields generated by crystal lattice
deformations [15, 36, 37], have a strong energy dependence
Sph(ωZ) ∝ ω5

Z coth(h̄ωZ/2kBTlat).
In the low temperature limit (kBTe � h̄ωZ) valid in

our measurements, coth(h̄ωZ/2kBTe) ≈ 1 and the spin-
valley relaxation contributions mediated by Johnson noise and
phonons explain the relaxation hotspots in the data. However,
it is not possible to clearly identify the combination of existing
spin-orbit and spin-valley relaxation theories with the consid-
ered noise terms accounting for the low field saturation of T1
in Device 1 and the high field scaling of T1 in both devices.

To gather further insight into the mechanisms that lead to
the behavior at low and high fields, we take two additional
data sets. We first examine the low field saturation of T1 in
the right dot of Device 1. We begin by measuring the res-
onance frequency of the electron spin in the right quantum
dot at external fields Bext = 250(500) mT resulting in fR =
10.2(17.9) GHz, corresponding to Btot = 360(640) mT.
This confirms that the external field continues to dominate at
low fields, indicating that the low field behavior is of physical
origin and not an artifact due to the magnetic field contribution
from Bm. The observed saturation could conceivably be due
to charge-noise-induced motion in a large transverse magnetic
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FIG. 4. Effects of noise and temperature on T1. (a) In the low field
regime (Bext = 0.25 T) on Device 1, where T1 saturates, we drive
gate R with white noise with power spectral density SRF. We find
T−1
1 ∝ SRF (dashed line). (b) With Bext = 1.5 T on Device 2, we

measure T1(Tlat). Taking into account the minimum electron tem-
perature, T0 = 115mK, we find that T−1

1 ∝ Te =
√
T 2
0 + T 2

lat.

field gradient. We therefore set Bext = 250 mT and measure
T1 as a function of the white noise power SRF applied to gate
R, coupling to the right dot chemical potential. This artificial
charge noise is generated by an arbitrary waveform generator
and is up-converted to the resonance frequency of the electron
spin fR = 10.2 GHz using the mixing input of a vector signal
generator. We calibrate the applied power by measuring the
Rabi frequency of the right spin as a function of applied mi-
crowave power when using a coherent drive. We then compare
to finite element electromagnetic field simulations to extract
the AC electric field amplitude at the right spin. Knowing the
power of the noise generated by the source, we can then esti-
mate the noise spectral density at the device [41]. As shown
in Fig. 4(a), T−11 increases linearly with SRF.

Since the spin relaxation rate is proportional to the noise
power spectral density we can extract an estimate for the mag-
nitude of the internal noise Sint in the device that leads to
the low power saturation of T1. Specifically, since the in-
ternal and artificial noise are uncorrelated, their noise power
spectral densities add linearly and we expect the relaxation
rate to double when SRF = Sint. By meeting this condi-
tion at T−11 = 12 Hz and SRF = −187 dBm/Hz, we in-
fer the internal noise. This power translates to a voltage
noise SV (fR) = 0.2 nVRMS/

√
Hz at the gate assuming a

high impedance load [41]. Applying 1/f scaling of the noise
source, and factoring in the lever arm conversion between gate
voltage and energy α = 0.13 e, this noise level corresponds to
SV ≈ 20µV/

√
Hz ≈ 3µeV/

√
Hz at 1 Hz, which is consis-

tent with charge noise values reported elsewhere in the litera-
ture [48, 49]. Together with the observed variation of satura-
tion between the two dots and the generally enhanced relax-
ation compared to device 2, this indicates that in the presence
of a magnetic field gradient, T1 sensitively depends on the
local noise environment, the strength of the transverse field
gradient and the valley splitting.

Next, we investigate the mechanism leading to the high
field behavior of T1 in both devices. Based on the consid-
ered theoretical models for first-order relaxation processes,

the low temperature limit still holds up to about T ≈ 1 K
at Bext > 1 T, implying a temperature independence of T1.
However, higher-order processes might show a temperature
dependence at lower T [33, 50]. To reduce the impact of the
known spin-valley contribution, we perform this measurement
in dot 6 of Device 2 where no hotspot is observed. We fix the
magnetic field at Bext = 1.5 T and measure T1 as a function
of the lattice temperature Tlat, which is controlled by heating
the mixing chamber plate of the dilution refrigerator. We fit
the data shown in Fig. 4(b) to the form

T−11 (T ) = c
√
T 2
0 + T 2

lat, (5)

where T0 = 115 mK is the base electron temperature
in Device 2, c is an overall scaling factor, and the term√
T 2
0 + T 2

lat ≡ Te is the effective electron temperature. We
find that the relaxation rate increases linearly with Te, even
though we expect no temperature dependence. While more
studies are needed, this suggests that the high field behavior
is not adequately described by the considered first order pro-
cesses. Together with the observed variation of power laws
and the absence of relaxation hotspots in the data of Device
2, low lying excited valley-states may be accessed in higher-
order relaxation processes.

IV. CONCLUSION

In conclusion, we have measured the spin relaxation time
T1 as a function of magnetic field in Si/SiGe quantum dots. A
micromagnet accelerates spin relaxation over the entire range
of magnetic fields and results in a saturation of the relaxation
time at low magnetic fields. A shorter T1 will adversely im-
pact the readout visibility in large quantum dot arrays where
the measurement time can be a significant fraction of T1 [39].
Our results imply that careful engineering of the micromagnet
will be crucial for improving the performance of quantum dot
devices incorporating micromagnets. This will manifest it-
self in a tradeoff between control speed and spin relaxation by
finding a compromise in gradient field strength, but also devel-
opment of dynamic control of the field gradient, either through
spatial or temporal modulation, allowing in-situ control over
the synthetic spin-orbit field strength. Of course, careful engi-
neering will require a full theoretical understanding of the mi-
croscopic mechanisms responsible for spin relaxation in the
presence of large magnetic field gradients.
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