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We present a design for a superconducting, on-chip circulator composed of dynamically modulated
transfer switches and delays. Design goals are set for the multiplexed readout of superconducting
qubits. Simulations of the device show that it allows for low-loss circulation (insertion loss < 0.35
dB and isolation > 20 dB) over an instantaneous bandwidth of 2.3 GHz. This design improves on
the bandwidth of previous superconducting circulators [1–3] by more than an order of magnitude,
making it ideal for integration with broadband quantum limited amplifiers [4–7].

I. INTRODUCTION

Sophisticated signal-processing often requires that
Lorentz reciprocity—the scattering symmetry of an
electromagnetic system under exchange of source and
detector—be broken. In particular, directionally-routing
propagating electromagnetic modes without adding noise
or incurring loss is vital for quantum information process-
ing with superconducting circuits.

Although Maxwell’s equations place no restrictions on
the bandwidth over which lossless non-reciprocity can oc-
cur, synthesis of low-loss on-chip circulators and gyrators
has mostly been limited to narrow-band devices [1–3, 8]
(fractional bandwidth < 1%). Ferrite circulators [9] pro-
vide octave bandwidths, but their large magnets make
them difficult to miniaturize or integrate with supercon-
ducting circuits. Given the large number of qubits re-
quired for fault-tolerant quantum computation [10], and
the standard use of non-reciprocity in qubit readout, cir-
culator performance metrics such as loss, added noise,
bandwidth, dynamic range, and size must be simultane-
ously optimized.

To address this optimization problem, we propose the
superconducting implementation of a recent concept for
broadband circulation based on active modulation and
delay [11–15]. The approach requires that the delay be
commensurate with the modulation frequency, but im-
poses no constraints on the frequency of the input signal.
This aspect is responsible for the concept’s bandwidth,
allowing for operation all the way down to dc [15]. It
improves on previous designs [16–19] for broadband ac-
tive circulators by engineering the desired circulation in
a hardware efficient manner, which may in principle be
lossless. Such schemes are complementary to supercon-
ducting travelling-wave isolators, which provide an alter-
nate path to compact broadband non-reciprocity [20].

When modeled as a superconducting integrated cir-
cuit, simulations with realistic parameters show our de-
sign allows for low-loss circulation (< 0.35 dB) with oc-
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tave bandwidth. At the same time, estimates indicate
compression powers on the order of of hundreds of picow-
atts or greater. With respect to bandwidth and linear-
ity, this represents an order of magnitude improvement
over other near-lossless superconducting circulators [1–
3], well-suited for integration with broadband quantum-
limited amplifiers [4–7].

II. THEORY OF OPERATION

The proposed circulator is composed of two transfer
switches connected by a pair of delay lines (Fig. 1a).
The transfer switches have four ports, and are dynam-
ically modulated with period T , toggling between their
“through” and “crossed” states. Figure 1b shows how the
two switches are periodically actuated by square waves
with a relative phase of θ = π/2. The delays are chosen
to have duration τ = T/4.

To see how the circulation is created, consider how a
right-propagating wave packet (e.g. a signal-burst inci-
dent on ports 1 or 3) will be scattered by the network.
Figure 1c shows how the two switches will route the inci-
dent signal, depending on the portion of the modulation
period in which it arrives. For example, if the signal ar-
rives in the first quarter-period of the modulation (the
yellow time-window), the left (blue) transfer switch will
be in its through state. But by the time the signal exits
the delay line, the right (red) transfer switch will be in
its crossed state. Signals incident on port 1 are there-
fore routed to port 2, and signals incident on port 3 are
routed to port 4. This process may be continued for the
entire modulation period. One observes that the port-to-
port signal-routing is independent of the incident signal’s
arrival time, despite the fact that the signal may travel
along different paths before exiting the network.

The non-reciprocal character of the network may be
verified by repeating this analysis for left-travelling wave
packets (e.g. signals incident on ports 2 or 4), as depicted
in Fig. 1d. Again, the port-to-port signal-routing is inde-
pendent of the signal’s arrival time: signals incident on
port 2 are always routed to port 3, and signals incident
on port 4 are always routed to port 1. The scattering of
the network is not invariant upon exchange of source and
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FIG. 1. Circulation with actively modulated transfer switches and delays. (a) A four-port circulator is constructed
from two dynamically modulated transfer switches and a pair of delay lines. The left (blue) switch is shown in the crossed state,
and the right (red) switch is shown in the through state. The delay is set to one quarter of the modulation period τ = T/4.
(b) The left and right switches are modulated with period T and a relative phase of π/2. For visual clarity, the modulation
period is divided into quarter-period intervals indicated by the pastel background colors. (c) The schematics depict the way
the switches will route a right-propagating signal, depending on its arrival time. Signals incident on port 1 are always routed to
port 2, and signals incident on port 3 are routed to port 4. Note that these are not “snap-shots” of the switches’ configurations,
as the signal is delayed by a quarter-period of the modulation as it propagates through the network. (d) The same depiction as
(c), but for left-travelling waves incident on ports 2 or 4. To keep the device’s orientation the same as in (b), time flows from
right to left in this diagram.

detector. It forms a four-port circulator.
This graphical time-domain representation of the

circulator may be complemented by a quantitative
frequency-domain analysis in which all m sidebands (de-
tuned by integer multiples of the modulation frequency
Ω = 2π/T ) are treated as ports of the network. The
scattering of a signal incident on the first physical port
may then be expressed as

Sm
11 = 0, (1)

Sm
21 =

1

2
(δm,0 − rm),

Sm
31 = 0,

Sm
41 =

1

2
(δm,0 + rm),

rm ≡ − 4

π2

∑

k

ejkΩτ ej(m−k)θ

(m− k)k
,

where the sum on k runs over all odd integers, j is the
imaginary unit, δµ,ν is the Kronecker-delta, and m is
an index denoting effective ports at different frequen-
cies, which is taken to be zero at the frequency of the

input signal (e.g. m = −2 denotes the scattering of sig-
nals detuned from the input by −2Ω). The term rm
describes the transmission of an odd-excitation of the
network’s first and third ports: its interference with the
transmission of an even excitation creates the desired cir-
culation. Such a representation is useful in quantifying
the effect of imperfections and in evaluating the device’s
linearity. (Absent nonidealities, Eq. (1) yields perfect
four-port circulation when Ωτ = π/2, θ = ±π/2, for
which rm = ±δm,0). Appendix A includes the full multi-
frequency scattering matrix derivation, and extension of
Eq. (1) to include the effects of group delay dispersion,
finite modulation bandwidth, and loss.

The device’s sensitivity to these non-idealities depends
on the modulation rate Ω: Equation (1) shows that group
delay dispersion becomes problematic when an Ω/(2π)
shift in frequency causes a delay variation on the scale
of τ . Similarly, a finite bandwidth Ωb of the square-wave
modulation truncates the sum in Eq. (1) at kmax = Ωb/Ω.
Both of these considerations prejudice the design in favor
of longer delays and modulation rates which are much
smaller than the frequencies of the circulated signals.



3

Slow modulation also facilitates filtering, allowing sup-
pression of spurious coupling between the modulation
and signal lines.

The benefits of slow modulation, however, do not come
without a price. Slow modulation is only possible with
long delays, which in the context of integrated circuits
typically entails greater loss and circuit size and/or re-
duced bandwidth. In a superconducting design space,
though, vanishing conductive losses make long, low-loss,
broadband delays possible [21–24], and circuit size is the
only remaining penalty. We leverage this fact in the pro-
posed implementation.

III. PROPOSED SUPERCONDUCTING

IMPLEMENTATION

The modular nature of the proposed circulator reduces
the challenge of designing a low-loss, broadband circu-
lator to the problem of designing low-loss, broadband
transfer switches and delays. We address these in succes-
sion, and then present simulations of the full device. The
final design assumes certain constraints: design goals an-
ticipate use in superconducting qubit readout, in particu-
lar, with broadband near-quantum-limited amplifiers [4–
6]. Furthermore, to allow for robust, wafer-scale pro-
duction, we work in the design space allowed by optical
lithographic fabrication. It bears emphasizing, however,
that the concept’s modularity means it is not specific to
such a construction. Existing transfer switch or delay
designs may also be used [25].

A. Transfer switch

To construct a fast superconducting transfer switch,
we arrange two pairs of nominally identical and tunable
inductors in a symmetric lattice (bridge) topology (see
Fig. 2a). The pairs of inductors tune in a coordinated
fashion, allowing the switch to toggle between its through
and crossed states (inset of Fig. 2a).

Constructing the switch with purely reactive elements
allows it to be completely free of dissipation. Limiting in-
sertion loss, however, requires impedance matching. Syn-
thesis of a matching network is simplified if the bridge
can be strongly imbalanced—that is, if the impedance of
the through elements may be made much larger than the
impedance of the crossed elements and the characteristic
impedance Z0, or vice versa. In this limit, the Bode-Fano
criterion [26, 27] for the switch is approximately that of
a series RL circuit [28]:

−
∫

∞

0

ln |Γ(ω)|dω < π
R

L
. (2)

Here R is taken to be Z0 = 50 Ohms, Γ(ω) is the reflec-
tion coefficient, and L is the small inductance in the net-
work (lt in the switch’s through state, lc in the crossed
state). A broadband match may then be obtained for
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FIG. 2. Transfer switch with tunable inductors. A sym-
metric lattice of tunable inductors forms a transfer switch.
(a) When the inductors are tuned such that lt ≪ lc, the
switch is in its through state. Tuning lc ≪ lt realizes the
switch’s crossed state. Parallel capacitances c are used to
match the switch to a characteristic impedance Z0. (b) Calcu-
lated scattering parameters of the network in (a) parametrized
by Eq. (3), with l0 = 0.94 nH, c = 270 fF, ǫ = 2.5 × 10−2.
Solid lines are exact solutions. Dashed lines are the approx-
imations to first-order in ǫ given in Eq. (B5). Insertion loss
is < 0.03 dB between 4 and 8 GHz. Gray rectangle shows
the Bode-Fano criterion (Eq. (2)) between 2 and 10 GHz.
Its proximity to S11 attests to the efficacy of the single-pole
matching network.

sufficiently small L. For example, limiting reflections to
Γ = −20 dB over an 8 GHz band requires that L be
less than approximately 1 nH. We make this match in
a simple, symmetrical way, with shunting capacitors c
sandwiching the inductor L (Fig. 2a).

To quantify the needed imbalance, we analyze the
switch in its “through” position and parametrize the pairs
of tunable inductors as

lt = l0,

lc =
l0
ǫ
. (3)
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Here ǫ is a small parameter that describes the degree to
which the bridge can be imbalanced. A standard cir-
cuit analysis (see Appendix B) allows expansion of the
switch’s scattering parameters in powers of ǫ. We find
that the amplitude of both reflection and unwanted trans-
mission (e.g. transmission to isolated ports of the switch)
scale to leading order as ǫ, provided the impedance of the

resonator Zr =
√

l0
2c is equal to Z0, and the capacitive

corner-frequency fc ≡ (Z0c)
−1 is much larger than the

maximum frequency of operation (≈ 10 GHz). When
l0 ≈ 1 nH, this may be accomplished with c ≈ 200 fF.
Fine tuning of the inductance and capacitance may then
be used to adjust the passband of the switch around the
center frequency ω0 = 1/

√
2l0c. Made in this way, the

imbalanced switch is effectively an RLC oscillator with
quality factor of order one.

As the switch’s isolation and return loss depend di-
rectly on ǫ, implementing inductors which may be tuned
over a wide range is a critical task. We suggest two ways
in which small ǫ values may be realized.

The first uses laddered arrays of Josephson junctions
which are flux-biased close to frustration. Devices made
in this way have demonstrated ǫ ≤ 2 × 10−2 [29, 30].
The second uses dc-SQUIDs with small, high-aspect ra-
tio loops (≃ 5 µm × ≃ 100 nm). These may be fabricated
with optical lithography by orienting the loop such that
its normal vector is parallel to the chip’s surface. We
expect ǫ < 2.5 × 10−2 to be possible with such a de-
sign. (For more details, see Appendix C). Implemented
in either fashion, the tunable inductors may then be ar-
ranged in a bridge geometry and tuned with a pair of flux
controls, as in Refs. [3, 31–33].

Figure 2b shows the magnitudes of the calculated scat-
tering parameters of our switch design, optimized for the
4 to 8 GHz band given ǫ = 2.5 × 10−2. Between 4 and
8 GHz, insertion loss is < 0.03 dB, isolation exceeds 25
dB, and reflections are less than −26 dB. The impedance
match is therefore comparable to the Bode-Fano limit
for an RL circuit (shaded gray rectangle). The switch’s
group delay dispersion is non-zero, but as the total delay
provided by the switch is approximately the inverse of
its bandwidth (and Q ≈ 1), it imparts a delay which is
small relative to that of the delay lines.

Imbalancing an inductive bridge to this degree puts
constraints on the junction’s plasma (self-resonance) fre-
quency ωp. When the tunable inductors are flux-biased
into their high-inductance state, their Josephson induc-
tance changes by a factor of 1/ǫ, decreasing the plasma
frequency of the unbiased junction by a factor of

√
ǫ.

To ensure that this reduced plasma frequency is always
greater than the circulator’s operation band, we require
ωp > 2π × √

ǫ × 10 GHz in the unbiased junctions. For
a niobium trilayer process where ωp is a known function
of the junction critical current density Jc [34, 35], the
above constraint defines a minimum Jc. Given a mini-
mum feature size of 2 µm, the minimum junction critical
current is then set at I0 = 9 µA. Finally, the target array

inductance of l0 ≈ 1 nH can be achieved by cascading
N ≈ 40 of the SQUIDs in series.

An auxiliary benefit of this large plasma frequency re-
quirement comes in the device’s linearity. Ultimately,
the power-handling of the circulator will depend on how
the tunable inductors are implemented and the precise
value of the junction critical currents, so an involved cal-
culation is deferred for future work. Estimates may be
made, however, by comparison with previous measure-
ments. Switches fabricated with laddered arrays of 35
µA junctions have reported 1-dB compression points at
−53 dBm [30], and circulators made with arrays of 1.92
µA junctions in dc-SQUIDs have reported compression
at −90 dBm [3]. Assuming power-handling scales with
the square of junction critical currents, a design with
I0 = 9 µA junctions would not saturate until input power
reached between −75 and −65 dBm.

For use in the proposed active circulator, it is not
enough for the transfer switches to perform statically:
they must also be fast. In principal, the only physical
constraint on the switching speed is the junction self-
resonance frequency. In practice, however, further re-
striction of the modulation bandwidth can limit the ex-
tent to which photons in the flux control lines couple into
the circuit and emerge as noise in the operation band.

In particular, in the regime where the modulation rate
Ω is much less than the 4 to 8 GHz operating frequencies,
it is advantageous to limit the modulation bandwidth to
half of the minimum operating frequency. This provides
ample separation between the modulation band (1/T to 2
GHz) and the signal band (4 to 8 GHz), which facilitates
filtering. It also ensures that modulation tones which
spuriously couple into the signal lines will be below the
signal band, even if they are mixed up in frequency by the
second transfer switch. Further discussion of the control
waveforms’ effect on the circulator’s output spectrum is
given in Appendix D.

B. Delay lines and optimal modulation rate

Modulating the transfer switches slowly requires a
broadband and low-loss delay on the scale of ns, many
microwave periods long. Furthermore, this delay must
be relatively free of dispersion. These considerations sug-
gest the use of a transmission line delay which supports a
TEM or quasi-TEM mode, such as a coplanar waveguide
(CPW). Such a line may be tightly meandered to realize
the desired broadband delay in a compact manner.

The primary sources of dispersion in such a structure
are the resonant modes associated with the ground plane
and the bends in the path of the CPW. To account for
these, we conducted numerical simulations of meandered
CPWs using a planar method-of-moments solver. These
show 1 ns delays may be achieved over the entire 2 to
10 GHz band, with return loss better than 30 dB and
fractional group velocity dispersion < 3 × 10−4 per 80
MHz. Dispersion at this level would cause 0.05 dB of
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circulator insertion loss (see Appendix A). (Dispersion
from the quasi-TEM nature of the CPW mode, and the
frequency-dependence of niobium’s surface inductance,
are irrelevant on this scale [36, 37].)

At temperatures and frequencies where the thermal
and photon energies are much less than the supercon-
ducting gap, dissipation in a CPW is dominated by di-
electric loss in the substrate. For a signal with frequency
ω propagating for a time τ = π/(2Ω), the attenuation a
from the surrounding dielectric is

a = exp

(

− ωτ

2Qi

)

. (4)

Here Qi is the internal quality factor of the CPW, which
depends on the loss tangent of the substrate and its par-
ticipation in the propagating mode. Coplanar waveg-
uides fabricated on silicon routinely demonstrate quality
factors > 105 [38], making the dissipation from a 1 ns
delay less than 3 mdB for signals in our band.

To estimate the physical size of such a delay and the
resulting circuit, we note that for a CPW on silicon where
microwaves travel more slowly than the vacuum speed of
light c0, the needed delay line has length d ≈ πc0/(5Ω).
Assuming a minimum lithographic feature size of 2 µm,
a 50 Ohm CPW may be as narrow as 10 µm, and a
reasonable value for the meander pitch is p = 60 µm.
The switches themselves require less than 1 mm2, so the
entire layout may fit on a chip with area 2dp + 2 mm2,
as illustrated in Fig. 3a.

Selecting a precise value for the modulation frequency
Ω therefore amounts to balancing competing effects:
slower modulation minimizes the loss associated with dis-
persion and finite modulation bandwidth, but increases
dielectric losses and circuit size. Figure 3b summarizes
these trade-offs. The blue trace shows circuit size (left
axis), while the red traces shows the various loss channels
(right axis), calculated with Eq. (4) and the methods de-
scribed in Appendix A. A modulation rate of Ω = 2π×80
MHz (d ≈ 37.5 cm) is estimated to keep the circulator’s
insertion loss below 0.1 dB while allowing the device to
fit on a 7 mm by 7 mm chip.

C. Simulated Performance

To predict the performance of the proposed super-
conducting circulator we conduct time-domain numer-
ical simulations of the design. The delays are mod-
eled as ideal transmission lines which provide a delay of
τ = π/(2Ω) = 3.125 ns (commensurate with Ω = 2π× 80
MHz). The transfer switches are modeled by the lumped-
element network depicted in Fig. 2a, with several non-
idealities included:

First, each inductor is replaced by an array of N = 46
inductors in series, each of which is assumed to be tunable
by an external signal Φe, via the relation

l(Φe) =
l0

√

ǫ2 + (1− 2ǫ) cos2 (Φe)
+ lg. (5)
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FIG. 3. Optimal modulation rate. (a) A possible layout
for the proposed circulator. Delay lines occupy the majority
of the chip’s area. (b) Estimated chip area (left axis, blue
trace) and total insertion loss (right axis, thick red trace) as
a function of the modulation frequency. Contributions to the
insertion loss from dispersive, dielectric, and finite modulation
bandwidth effects are also shown. These assume a fractional
group velocity dispersion of 3×10−4 per 80 MHz, an internal
quality factor of Qi = 105, and a modulation bandwidth of
Ωb/(2π) = 2 GHz .

This functional form is chosen to replicate the flux-
dependence of an asymmetrical dc-SQUID’s induc-
tance [39], and make contact with Eq. (3) in the lim-
its Φe → 0 and Φe → π/2. We fix Nl0 = 1.02 nH and
ǫ = 2.5×10−2, and the geometric inductance is chosen to
be Nlg = 207 pH. Second, alongside each of these tunable
inductors we place a parallel capacitance of cJ = 180 fF
to mimic the self-capacitance of the junctions. Lastly, the
tunable inductors are modulated by two approximately
square-wave signals with frequency Ω = 2π×80 MHz. We
model the finite modulation bandwidth by synthesizing
the bias signals from the sum of the first 25 Fourier com-
ponents of a square-wave, such that the bias waveform
has no spectral weight above Ωb/(2π) = 25Ω/(2π) = 2
GHz.

Figure 4a shows the first column of the simulated net-
work’s scattering parameters. Between 5.9 and 8.2 GHz,
the circulator’s isolation exceeds 20 dB. Insertion loss in
the same band is less than 0.3 dB. Accounting for loss
caused by disperion in the CPW delays (which is not
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FIG. 4. Simulated performance. Time-domain numerical
simulations of the circulator, with transfer switches formed
from symmetric lattices of tunable inductors modulated at
Ω = 2π×80 MHz. (a) First column of the simulated scattering
matrix, when the device is configured for counter-clockwise
circulation. The horizontal line at −20 dB is a guide to the
eye. (b) Power spectrum of the signal emerging from the
circulator’s second port, when the circulator is driven by a 6
GHz tone incident on its first port. Power is normalized to
the incident signal power Pinc. The thin black trace shows
the same quantity in a simulation with infinite modulation
bandwidth.

present in the time-domain simulation), the total loss of
the device is expected to be less than 0.35 dB across this
band.

The primary performance limitation is the finite mod-
ulation bandwidth: if the simulation is repeated with
infinite modulation bandwidth and all other parameters
held fixed, isolation is greater than 20 dB between 4 and
8.5 GHz, and insertion loss is improved to better than
0.1 dB. Power emerging out of the circulator’s other three
ports (at the input frequency) accounts for 0.03 dB of this
loss. We attribute the final 0.05 dB to the dispersion of
the switches.

The simulated 0.2 dB of insertion loss that results
from an Ωb = 2π × 2 GHz modulation bandwidth is
greater than the 0.07 dB expected from the analysis in
Appendix A. The discrepancy arises from the sensitive
dependence of the inductance on the control signal near
the Φe = π/2 operating point (at Φe = π/2, dl/dΦe di-
verges). While the rising-edge of the finite bandwidth
flux signal approaches (and then overshoots) its target
value of π/2, the efficacy of the switches is diminished

until the control flux settles.
The ripple in the scattering parameters has a free spec-

tral range of 2Ω, and is caused by small reflections at the
second transfer switch. As these reflections take two ex-
tra passes through the delay lines, they experience an
additional delay of 2τ = π/Ω before interfering with the
un-reflected signal.

Despite the coordinated modulation used to create cir-
culation, the majority of the transmitted power is un-
changed in frequency. The orange trace in Fig. 4b shows
the spectral content of the signal exiting the circulator’s
second port, when the first port is driven by a 6 GHz
tone. Most of the power (−0.28 dB) emerges at 6 GHz.
Sidebands detuned from 6 GHz by multiples of 2Ω/(2π)
are also visible. The largest of these sidebands is less than
−27 dB. For reference, the thin black trace also shows the
same simulation with infinite modulation bandwidth. Al-
though they are suppressed by over 45 dB, modulation
sidebands are still present in the spectrum. They are
caused by the finite isolation of the transfer switches.

IV. DISCUSSION

We have described the theory of operation for a broad-
band and low-loss circulator based on active modulation
and delay. The device may be understood as a network
of two simple components: transfer switches and delays.
Design of a superconducting implementation was pre-
sented and discussed in terms of the optimal modulation
rate Ω, a key design parameter. The device was then sim-
ulated numerically: isolation is greater than 20 dB while
insertion loss is less than 0.35 dB over a bandwidth of 2.3
GHz. Based on comparison with demonstrated Joseph-
son junction based circuits, its 1-dB compression point is
expected to be greater than −75 dBm.

The proposed circulator therefore represents a ma-
jor advance in on-chip non-reciprocity, improving on the
bandwidth and power-handling of other near-lossless de-
vices [1–3] by an order of magnitude. These gains be-
come especially powerful when the broadband circulator
is combined with a linear and broadband near-quantum
limited amplifier [5, 7]. Such a quantum microwave re-
ceiver, which would be linear at input powers 102 times
greater than a typical qubit readout tone, and opera-
ble over a bandwidth 103 times greater than a typical
readout-cavity’s coupling rate, could allow for the simul-
taneous readout of many qubits in an on-chip package.

Finally, the active nature of the proposed circulator
affords new functionalities relative to passive ferrite cir-
culators: its sense of circulation can be dynamically re-
configured, or the circuit can be statically biased to act
as a reciprocal switch. Such capabilities could find ap-
plications in pulsed measurement schemes, where they
would enable routing protocols which could not be real-
ized using only passive ferrite circulators.

Acknowledgment The authors thank Jiansong Gao,



7

Bradley Moores, and Xian Wu for helpful discussions.
E.I.R acknowledges support from the ARO QuaCGR fel-
lowship. This work is supported by the ARO under con-
tract W911NF-14-1-0079 and the National Science Foun-
dation under Grant Number 1125844.

Appendix A: Circulator scattering parameters

Analysis of the network in Fig. 1a is simplified by sep-
arately considering even and odd excitations of the net-
work’s left and right sides. Let the matrix U describe the
unitary transformation between the numbered port basis
and the basis of left/right and even/odd excitations:

U =
1√
2











1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1











. (A1)

We assume that both the switches and delay lines are
impedance matched. We also initially assume loss-
less, distortion-less delays and infinite switch-modulation
bandwidth. These last three assumptions are relaxed at
the conclusion of the derivation.

Even excitations are unaffected by the state of the
switches. As all of the network’s components are
impedance matched by assumption, common mode ex-
citations are unaltered as they propagate through the
network. The scattering matrix for the even mode exci-
tations Se is therefore:

Se =

(

0 1

1 0

)

. (A2)

To analyze the network’s odd dynamics, we introduce
a vector whose entries describe the spectral content aω
at the sidebands of the modulation frequency Ω:

aω =
(

. . . aω+Ω aω aω−Ω . . .
)t

. (A3)

Here the superscript t indicates transposition. We choose
to index this infinite-dimensional vector with positive and
negative indices, and designate the term aω as the 0 in-
dex.

Let us define the modulation of a single transfer switch
which is square-wave biased with phase φ as H(t) ≡
sign [sin(Ωt+ φ)]. By Fourier decomposition,

H(t) =
2

jπ

∑

n

ejnφejnΩt − e−jnφe−jnΩt

n
, (A4)

where the sum runs over positive odd integers.
Written in this way, the action of a switch on the vector

aω can be expressed as a matrix. In element-wise form,
this matrix may be defined piece-wise as

Hmn(φ) =

{

0 if m− n even,
2ej(m−n)φ

jπ(m−n) if m− n odd.
(A5)

The action of the delay lines is represented by a diag-
onal matrix with elements

Dmn = ejmΩτ δm,n. (A6)

We may now calculate the action of the full cascaded
network, formed by a left switch with φ = 0 (represented
by the matrix L ≡ H(0)), a delay (represented by the
matrix D), and a right switch with φ = θ (represented by
the matrix R ≡ H(θ)). This network transforms a right-
propagating differential excitation by the matrix product
RDL. If the right-propagating excitation is a pure tone
with frequency ω, the output of the network at the mth

sideband is

rm ≡ (RDL)m0 = − 4

π2

∑

k

ejkΩτ ej(m−k)θ

(m− k)k
, (A7)

if m is even and 0 if m is odd. Here the sum on k runs
over all (positive and negative) odd integers. The signal
transmitted at the input frequency is therefore

(RDL)00 =
4

π2

∑

k

ejk(Ωτ−θ)

k2
, (A8)

which is 1 when Ωτ − θ = 0.
For a left-propagating wave, the action of the network

is given by the reverse-ordered product, LDR. For a
pure tone at ω,

lm ≡ (LDR)m0 = − 4

π2

∑

k

ejkΩτ ejkθ

(m− k)k
, (A9)

when m is even. The spectral weight at the input fre-
quency is

(LDR)00 =
4

π2

∑

k

ejk(Ωτ+θ)

k2
, (A10)

which is 1 when Ωτ + θ = 0.
The scattering matrix for the odd mode excitations So

is therefore:

So =

(

0 lm

rm 0

)

. (A11)

Note that this scattering matrix describes the way the
network scatters an incident signal among its physical
ports, as well as effective ports indexed by m, which rep-
resent signals at sidebands of the modulation rate Ω.

Finally, to recover the full scattering matrix in the
numbered port basis we perform the inverse transforma-
tion, S = U−1Se,oU. Here, Se,o is a block-diagonal ma-
trix with diagonal entries Se and So. This yields:

S =
1

2
× (A12)











0 δm,0 + lm 0 δm,0 − lm

δm,0 − rm 0 δm,0 + rm 0

0 δm,0 − lm 0 δm,0 + lm

δm,0 + rm 0 δm,0 − rm 0











,
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which reduces to the ideal scattering matrix for a four-
port circulator when the operation condition Ωτ = π/2 =
±θ is satisfied. It also provides additional information
about how the network adds sidebands when this crite-
rion is violated.

The above frequency-domain analysis makes a conve-
nient starting-point for studies of group delay disper-
sion, frequency-dependent loss, and finite modulation
bandwidth. To account for group delay dispersion and
frequency-depdendent loss, the delay matrix elements be-
come

D′

mn = amejmΩτmδm,n. (A13)

The frequency-dependence of the delay and attenuation
in the line are now accounted for by the terms τm and
am.

To handle finite modulation bandwidth, we assume
that for “intermediate” biasing, the symmetric lattice is
approximately balanced. In this configuration, the even-
mode scattering matrix is unchanged from Eq. (A2),
and the odd-mode scattering matrix is perfectly reflec-
tive (the two-by-two identity matrix), with some overall
undetermined phase. The full network therefore scatters
incident signals promptly, dividing their power equally
between all ports. In this limit, finite modulation band-
width may be treated by truncating the sum in k.

Together, these three effects give revised expressions
for lm and rm which we denote l′m and r′m:

l′m = − 4

π2

kmax
∑

k

ak
ejkΩτkejkθ

(m− k)k
, (A14)

r′m = − 4

π2

kmax
∑

k

ak
ejkΩτkej(m−k)θ

(m− k)k
.

When kmax is finite, l′m and r′m have magnitudes which
are less than 1, and Eq. (A13) is amended in two ways.
First, the diagonal elements in the even and odd rows
become l̃m/2 and r̃m/2, respectively. These parameters
are constrained by conservation of energy to have mag-
nitudes |l̃m| =

√

1− l2m and |r̃m| =
√

1− r2m. Second,
the transmission elements which were perfectly vanishing
become −l̃m/2 in the odd rows and −r̃m/2 in the even
rows.

Results from this revised expression are plotted in
Fig. 5, which shows the design’s sensitivity to group de-
lay dispersion in the network’s delay lines (a-b) and the
finite modulation bandwidth of its transfer switches (c-
d). For each case, the insertion loss (a,c) and isolation
(b,d) are plotted.

Appendix B: Transfer switch scattering parameters

Here we derive an analytic expression for the scatter-
ing matrix of the four-port transfer switch in Fig. 2a.
This switch has two types of inductors, lt and lc, along
with capacitors c and ports of characteristic impedance

1
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FIG. 5. Performance in the presence of non-idealities.

The effects of group delay dispersion (a-b) and finite modu-
lation bandwidth (c-d) on the circulator’s insertion loss (a,c)
and isolation (b,d), calculated with Eq. (A14)

Z0. To obtain the frequency dependent scattering ma-
trix S[ω], we first calculate the admittance matrix Y[ω]
of this circuit in the manner discussed in Ref. [40] and
references therein:

Y[ω] = AT y[ω]A, (B1)

where A is the incidence matrix describing nodal connec-
tivity of the network, and y is the primitive admittance
matrix describing the voltage current relationship across
each chord of the network.

The circuit described in Fig. 2a has four nodes in ad-
dition to ground (each node labeled by the number of
the port connected to it) and eight chords (chord num-
bers 1 through 4 across the inductors, and chord numbers
5 through 8 connecting the capacitors to ground). The
incidence matrix A is therefore the 8× 4 matrix,

A =































1 −1 0 0

1 0 0 −1

0 −1 1 0

0 0 1 −1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1































, (B2)

and the primitive admittance matrix is the 8×8 diagonal
matrix,
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y[ω] = diag{ 1

jωlt
,

1

jωlc
,

1

jωlc
,

1

jωlt
, jωc, jωc, jωc, jωc}.

(B3)
Substituting Eq. (B2) and Eq. (B3) into Eq. (B1) pro-
vides a straightforward construction of the admittance
matrix, which is readily transformed into the four-port
scattering matrix via the formula [28]:

S[ω] = (I+ Z0Y[ω])
−1

(I− Z0Y[ω]) . (B4)

Here I is the 4× 4 identity matrix.
The analytic expression for S[ω] can now be expanded

in ǫ, the small parameter which describes bridge imbal-
ance. We assume the switch is in its crossed position,
and take lt = l0/ǫ and lc = l0. To further simplify
the result, we also introduce the capacitive time con-
stant τc = Z0c. The network described in Fig. 2a then
functions as a matched crossover switch when the condi-
tion l0/(2c) = Z2

0/
(

1 + ω2τ2c
)

is met—that is, when the

impedance of the resonator
√

l0/(2c) equals the char-
acteristic impedance of the surrounding lines Z0, and
ω2τ2c ≪ 1. Enforcing this condition, the first column
of the switch’s scattering matrix is,

|S11| = ǫ

( |τ2c ω2 − 1|
2τcω

)

+O(ǫ2),

|S21| = |S11|,

|S31| = ǫ

( |τcω + j|2
2τcω

)

+O(ǫ2),

|S41| =
∣

∣

∣

∣

j + τcω

j − τcω
− jǫ

(

(τcω + j)2

2τcω

)∣

∣

∣

∣

+O(ǫ2).

(B5)

Eq. (B5) shows that the switch’s isolation and return loss
scale linearly with ǫ in the limit of large imbalance.

Appendix C: Widely tunable dc-SQUID inductors

In this section we discuss two ways to make the highly
tunable inductors needed for the transfer switch. The
first uses laddered arrays of Josephson junctions, as de-
picted in Fig. 6a. Inductors of this type are demonstrated
and discussed in Refs. [7, 29].

The second uses arrays of dc-SQUIDs formed by two
Josephson junctions arranged in parallel. The tunabil-
ity of a dc-SQUID may be limited by a) the degree to
which the critical currents of the two junctions may be
made identical, and b) the geometric inductance of the
loop [39]. Cascading an array of these elements in se-
ries dilutes the nonlinearity by decreasing the supercon-
ducting phase drop across each junction, thus increasing
power-handling [31].

In an optical lithographic process where the SQUID
is fabricated in the plane of the chip (see schematic in
Fig. 6b), such a loop can be made no smaller than several

(b)

(c)

(a)

�

�

�

�

�

�

�

�

�

top

top

side

FIG. 6. Tunable inductor design. (a) Top view of a lad-
der of alternating rf-SQUIDs, as studied in Refs. [7, 29]. The
linear inductors may be realized either with the geometric in-
ductance of galvanic connections, or with high critical current
Josephson junctions. When biased close to frustration the
impedance of the array can exceed a resistance quantum [29].
(b) Top view of a series-array of dc-SQUIDs, with SQUID
loops in the plane of the chip. The tunability of such arrays
may be limited by the geometric inductance of the SQUID
loops. (c) Side view of a series array of dc-SQUIDs, with
SQUID loops orthogonal to the plane of the chip. In this
"vertical" geometry, the vertical dimension of the loop is set
by the inter-layer spacing, which can substantially reduce the
loop’s geometric inductance [41].

microns on a side. For Josephson junctions with critical
currents on the scale of 10 µA, the geometric inductance
of such a loop is often the limitation on tunability.

That limitation can be removed by orienting the
SQUID “vertically”, such that a vector normal to its loop
is parallel with the chip’s surface (Fig. 6c). The small di-
mension of the loop is now determined by the inter-layer
separation (≈ 100 nm), rather than the minimum feature
size in the optical lithographic process. This decreases
the volume in which the loop can store magnetic energy
by a factor of ≈ 50, reducing its geometric inductance by
the same amount [41].

Critical current symmetry is a process dependent
quantity, but for niobium trilayer processes variations
are typically below 5% [35]. Subject to that limitation, a
vertical SQUID with nominal junction critical currents of
10 µA could be tuned by a factor of 40. This is the basis
for our estimate that ǫ ≤ 2.5 × 10−2 would be possible
with such a design.

Appendix D: Cross-talk and added noise

In principle, a circulator based on delays and dynam-
ically modulated switches need not add noise. Firstly,
an ideal circulator functions with unit gain, so noiseless
circulation is permitted by the fundamental theorem for
phase-insensitive amplifiers [42]. Secondly, dynamically
modulated switches may route signals without adding
noise [43]. Nevertheless, the proposed circulator is an
active, flux-actuated device. It may therefore add noise
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via the fluctuations of its control flux.
These variations around the optimal flux bias point

may cause stochastic changes in the circulator’s scatter-
ing parameters. The result is a sort of multiplicative
noise on the circulated signal. This may be mitigated
by thermalizing the bias lines to cryogenic temperatures,
where the Johnson noise is small relative to the ≈ 100 µA
bias currents that generate the flux controls. In similar
flux-modulated circulators, thermalization at 4 K keeps
added noise below half a photon; further reduction is
possible with filtering or thermalization to lower temper-
atures [3].

Cross-talk between the bias lines and the microwave
circuit can also create unwanted photons at the circula-
tor’s output. Effects caused by spurious coupling may
be reduced with careful layout, such as designing flux
lines that are higher-order multipole sources of magnetic
field, to decrease the range over which stray fluxes are
broadcast. But even by itself, the intentional coupling
engineered between the bias lines and the loops of the
SQUIDs may be problematic, as it can allow the time-
varying control flux to drive current out of the circulator’s
ports. Fig. 7a illustrates how this can happen in a sim-
ple model comprised of a dc SQUID with self-capacitance
cJ , inserted into a transmission line of characteristic
impedance Z0. As each transmission line presents a
Z0 path to ground, there exist finite-impedance Ampe-
rian loops that carry current out of the circuit when
dΦe/dt 6= 0 (see Fig. 7b).

In this manner, the flux bias can create photons at a
range of frequencies. To quantify this effect, we numer-
ically integrate the classical equation of motion for the
circuit in Fig. 7b [39], and Fourier transform its steady-
state dynamics to obtain the power spectral density p(f).
We fix the junction assymmetry at 5%, neglect the ge-
ometric inductance of the junctions, and take the the
capacitance to be cJ = 180 fF and the quality factor to
be Q = 3.5. Power-balance then allows expression of the
steady-state photon occupation nss in a cavity irradiated
by this noise source:

nss ≤
p(f)

~ω
. (D1)

We write Eq. (D1) as an inequality to indicate that it
is a kind of worst-case scenario: if any of the flux Φe is
returned within the Amperian loop drawn in Fig. 7b, the
irradiated noise will decrease; it vanishes completely in
the limit where the flux is returned symmetrically within
(and outside of) the Amperian loop.

Fig. 7c shows the steady-state photon number at fre-
quencies between 4 and 8 GHz, for a flux signal comprised
of the first 25 terms in the Fourier series of an Ω = 2π×80
MHz square wave (blue trace). The presence of non-zero
occupation at frequencies above the largest spectral com-
ponent of the modulation (2 GHz) is a signature of the
SQUID’s nonlinearity.

Photon population is well above the ≈ 10−4 threshold
for residual cavity occupation now being approached in

(a) (b)

Φ
�

Φ
�

4 86

�
�
�

� (GHz)

10-4

100

10-8

(c)

FIG. 7. Noise from active flux control. (a) Circuit model
for noise from a dynamically modulated flux Φe. (b) Alter-
nate representation for the circuit in (a). The pink path traces
an Amperian loop which encloses a time-varying flux. The
resulting electromotive force drives current through the resis-
tors. (c) Steady-state photon number vs photon frequency
for the circuit in (b), calculated with Eq. (D1). The three
traces show the resulting occupations when the external flux
Φe(t) is modulated with a Fourier-series approximation of an
Ω = 2π × 80 MHz square wave capped at 2 GHz (olive), a
sigma approximation [44] of an Ω = 2π × 80 MHz square
wave capped at 2 GHz (purple), and a sigma approximation
of an Ω = 2π × 15 MHz square wave capped at 750 MHz
(teal).

circuit QED experiments [45–47], but this may be im-
proved by regulation of the flux control signal’s spectral
content. The purple trace in Fig. 7d shows the same
measurement, now performed with a sigma approxima-
tion [44] of the square wave—essentially a low-pass fil-
tered square wave. The resulting occupancies are sup-
pressed by several orders of magnitude. Reducing the
modulation rate to Ω = 2π × 15 MHz and capping the
modulation bandwidth at 750 MHz provides an addi-
tional reduction in the occupancy (teal trace). The price
of this filtering is paid in loss. Because the switching
time is increased by the 750 MHz cap on the modulation
bandwidth, insertion loss climbs to −0.5 dB.

Ultimately, the above analysis is meant to model how
a junction’s nonlinearity can mix flux control signals up
in frequency, and how these microwave photons are emit-
ted out of the circulator’s ports. This radiation can be
controlled by regulating the modulation spectrum, and
with symmetric arrangement of the bias lines in layout.
Nevertheless, this model is merely an approximation: we
discuss it here to illustrate possible recourse.
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