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Superconducting ratio-frequency (SRF) cavities, cooled by superfluid helium-4 (He II), are key
components in modern particle accelerators. Quenches in SRF cavities caused by Joule heating from
local surface defects can severely limit the maximum achievable accelerating field. Existing methods
for quench spot detection include temperature mapping and second-sound triangulation. These
methods are useful but also have known limitations. Here we describe a new method for surface
quench spot detection by visualizing the heat transfer in He II via tracking He∗2 molecular tracer
lines. A proof-of-concept experiment has been conducted, in which a miniature heater mounted on
a plate was pulsed on to simulate a surface quench spot. A He∗2 tracer line created nearby the heater
deforms due to the counterflow heat transfer in He II. By analyzing the tracer-line deformation, we
can well reproduce the heater location within a few hundred microns, which clearly demonstrates
the feasibility of this new technology. Our analysis also reveals that the heat content transported in
He II is only a small fraction of the total input heat energy. We show that the remaining energy is
essentially consumed in the formation of a cavitation zone near the heater. By estimating the size of
this cavitation zone, we discuss how the existence of the cavitation zone may explain a decades-long
puzzle observed in many past second-sound triangulation experiments.

I. INTRODUCTION

Superconducting ratio-frequency (SRF) cavities are
key components in many modern particle accelerators
due to their high Q factors [1]. When these cavities are
cooled by superfluid helium-4 (He II) to around 2 K,
electric power injected in the cavities can generate ex-
tremely high electric field that allows charged particles
to be accelerated to high energies over short distances.
The maximum accelerating gradient of typical SRF cavi-
ties is in the range of 25-30 MW/m with a record value of
45 MW/m [2]. This maximum gradient is limited by the
breakdown of the superconductivity of the cavities, a phe-
nomenon known as “quench”. Quenches can be caused by
Joule heating from tiny (i.e., about 1-102 µm in radius)
resistive surface defects on the cavity inner walls (such
as impurities, pits, cracks, scratches) or local phase tran-
sition caused by trapped magnetic fluxes [3]. When the
temperature at the edge of the resistive region exceeds
the superconducting phase transition temperature, sur-
rounding region also becomes normal conducting. This
process then spreads out rapidly over the entire cavity,
causing the stored energy to convert to heat around the
defect area within a few milliseconds [3].
The maximum accelerating gradient of SRF cavities

can be improved by removing the surface defects via me-
chanical grinding, tumbling the cavity, and electron or
laser re-melting [4–6]. In order to locate the surface de-
fects, a multi-channel temperature mapping (T-mapping)
method was first developed [7, 8]. This method requires
a large number of temperature sensors (i.e., over 1000) in
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good thermal contact with the outer surface of the cavity
and is often applied at a cavity accelerating gradient just
below the quench threshold. The continuous Joule heat-
ing from a surface defect raises the local temperature,
which manifests the defect location in the temperature
map. Despite the usefulness of T-mapping, the spatial
resolution is limited by the spacing between sensors (i.e.,
of order 1 cm). Furthermore, the installation of the large
amount of sensors makes the application of this method
an extremely laborious task [6]. An alternative way to
apply T-mapping is to scan the cavity surface using a
rotating arm with just a few sensors arranged in a stripe.
Nevertheless, to allow smooth rotation, a gap between
the sensors and the cavity surface is required, which lim-
its the detection sensitivity [9, 10].

A more convenient non-contacting quench spot detec-
tion method based on second-sound triangulation was
later introduced by a team at Cornell University [11].
This method makes use of the unique properties of He
II. In the superfluid phase below Tλ≃2.17 K, He II can
be regarded as a mixture of two interpenetrating fluids:
a viscous normal fluid that carries all the entropy and an
inviscid superfluid that possesses zero entropy [12]. This
two-fluid system can support two distinct sound modes:
the first sound, i.e., an ordinary pressure-density wave in
which both fluids move in phase, and the second sound,
i.e., a temperature-entropy wave in which the two fluids
move out of phase [13]. When the cavity quenches, the
heat generated in the defect region is conducted promptly
to the cavity outer surface. This heat is then released into
He II, causing the generation and propagation of second-
sound waves, in which a counterflow of the two fluids
can establish [14]. These second-sound waves can be de-
tected using sensors such as oscillating superleak trans-
ducers (OST) [11, 15], resistive temperature detectors
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(RTD) [16], and transition edge sensors (TES) [17]. By
measuring the time-of-arrival of the second-sound waves
at three or more such sensors and implementing trian-
gulation, the surface defect can in principle be located.
However, a mystery was observed in many second-sound
triangulation experiments. In order for the triangulation
to converge to the cavity surface, a second-sound speed
faster than standard literature values must be assumed
[11, 18–23]. This calculated location can have an uncer-
tainty of 5-10 mm from the actual defect location [24],
making it difficult for subsequent inspection of the sub-
millimeter defect [25, 26]. Various models have been pro-
posed to explain the puzzling fast second sound, such as
spreading of the heat in the cavity walls [19, 21, 27], pos-
sible delay in detecting the start of the quench [19, 20],
and nonlinear effect that affects the second-sound shock
speed at high heat fluxes [22, 28]. However, none of these
models can offer a convincing explanation that system-
atically accounts for various observations [6, 22, 23].
In this paper, we discuss a new non-contacting method

for quench spot detection by visualizing quench-induced
thermal counterflow in He II using a He∗2 molecular
tracer-line tagging technique developed in our laboratory
[29–31]. A proof-of-concept experiment has been con-
ducted, in which a miniature heater mounted on a plate
in He II was utilized to simulate a surface quench spot.
A He∗2 tracer line created nearby the heater deforms as
a result of the transient counterflow. The experimental
techniques are discussed in detail in Sec. II. In Sec. III,
we present the analysis results. We show that by analyz-
ing the tracer-line deformation, the heater location can
be determined with an uncertainty of only a few hun-
dred microns. Our analysis also reveals that the heat
transported through He II is just a small fraction of the
total input heat energy. We show, in Sec. IV, that the
remaining energy is largely consumed in the formation
of a cavitation zone near the heater. The creation and
collapsing of vapor bubbles inside the cavitation zone can
convert the heat energy to acoustic energy. By estimat-
ing the size of the cavitation zone, we propose a model
that explains the puzzling faster second sound and gives
estimated excess second-sound velocities in quantitative
agreement with the observations in triangulation experi-
ments. We also discuss how our visualization technique
may be advanced for practical SRF cavity quench spot
detection. A brief summary is given in Section V.

II. EXPERIMENTAL TECHNIQUES

The optical cryostat used in our proof-of-concept ex-
periment is shown schematically in Fig. 1. An aluminum
cubic helium cell with an inner side length of 3 inches is
connected to a pumped helium bath whose temperature
was maintained at 1.85 K, typical of the operation tem-
perature of SRF cavities, by regulating the vapor pres-
sure in the bath. To examine the relevant heat transfer
processes in a real quench event, we note that the energy
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FIG. 1. A schematic of the experimental setup (not to scale).

stored in a SRF cavity (i.e., of order 1-10 J) is converted
to heat in a few milliseconds [3]. As the heat is conducted
to the cavity outer surface, the heated region can expand
to an area of order 1-10 cm2 with the hottest spot at
the area center. Therefore, the instantaneous heat flux
into He II is of order 102-103 W/cm2 [22]. In order to
simulate this heat flux in our experiment, we utilize an
array of 5×5 miniature thick-film resistors (surface area
Ah=0.8×0.8 mm2) installed on an insulated Printed Cir-
cuit Board (PCB). The resistance of these resistor heaters
was measured to be 49.7±0.3 Ω at 1.85 K. A rectangular
voltage pulse with a duration of 1-4 ms and an adjustable
amplitude up to 10 V can be applied to a selected heater,
giving rise to a heat flux into He II up to 315 W/cm2 at
the heater surface. The size of our heaters is relatively
small compared to the size of the heated area on cavity
outer surface. Nevertheless, this heater size is common
among quench spot testing experiments and simulations
[22, 32–34] and is also desired for testing the resolution
of our flow-visualization based detection method.

The heat ejected into He II leads to the generation of
a second-sound shock wave followed by a thermal coun-
terflow of the two fluids (see detailed discussions in Sec.
III). In order to visualize the flow of the normal fluid
that carries the heat content in He II, we adopted our
He∗2 molecular tracer-line tagging technique [30]. A 35-fs
pulsed laser beam at 800 nm with a repetition rate of 5
kHz and a pulse energy of about 60 µJ was focused to
pass through the helium cell. Due to the strong instan-
taneous laser field, some helium atoms are ionized along
the fs-laser beam path in the focal region. The recombi-
nation of the electrons and helium ions then leads to the
formation of metastable He∗2 triplet molecules [35]. These
molecules form tiny bubbles in He II (i.e., 6 Å in radius
[36]) and have a lifetime of about 13 s [37]. Above 1 K,
they are completely entrained by the viscous normal fluid
since Stokes drag easily dominates other forces for small
molecules. This line of He∗2 molecular tracers can then
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FIG. 2. Typical images showing (a) a baseline created at
h=2.13 mm above the heater, and (b) a deformed tracer line
following a heat pulse of q0=287 W/cm2 and ∆t = 2 ms.

be driven to produce 640 nm fluorescent light by a 5-ns
pulsed imaging laser at 905 nm [38]. The imaging laser
in our experiment has a repetition rate of 500 Hz and
is shaped into a laser sheet (thickness: 1 mm, height: 5
mm) that covers the entire region traversed by the tracer
lines. The fluorescence is captured by an intensified CCD
(ICCD) camera mounted perpendicular to the tracer-line
plane. Typically, 5-6 imaging pulses are used to produce
good quality images. This flow visualization technique
has been successfully utilized in our quantitative studies
of quantum turbulence in He II [31, 39–43].

By adjusting the position of the fs-laser beam, we can
create a He∗2 tracer line nearly in parallel to the PCB at
a height h right above a chosen heater. Without turning
on the heater, an image of the tracer line can be taken as
a reference (i.e., the baseline). A typical baseline image
is shown in Fig. 2 (a). The thickness of the baseline is
about 100 µm, which matches the thickness of the fs-laser
beam in the focal region. The time delay between the cre-
ation and imaging of the baseline (i.e., the drift time td)
is set to zero. Indeed, when there is no flow in He II,
the baseline remains straight at its original position re-
gardless of the duration of the drift time. In the tests for
locating the heater, we first create a tracer line and then
turn on the heater by applying a voltage pulse of duration
∆t. The instantaneous heating power Q̇0 (and hence the

heat flux q0=Q̇0/Ah) can be controlled by varying the
voltage on the heater. An initially straight tracer line
deforms due to the normal-fluid flow accompanying the
heat transfer. After a typical drift time td of 20-30 ms, we
send in the imaging pulses to visualize the deformed line.
Fig. 2 (b) shows an example image of the deformed tracer
line following a heat pulse of q0=287 W/cm2 and ∆t=2
ms. As we shall discuss in Sec. IV, in our experiment the
heat is transported in He II essentially by second-sound
waves, which propagates at a speed c2 = 19.5 m/s at 1.85
K [44]. It takes less than 1 ms for the second-sound waves
to pass across the entire tracer line. Indeed, when td is
greater than 2-3 milliseconds, the tracer-line deformation
is observed to be independent of td.
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FIG. 3. Schematics showing the transient heat transfer pro-
cesses from a point heat source in He II. (a) At time t less
than the heat pulse duration ∆t, a cavitation zone forms near
the heater. (b) At t > ∆t, some heat is carried out by the
propagating second-sound zone.

III. ANALYSIS AND RESULTS

Apparently, the deformation of the tracer lines con-
tains important information about the heater location
and the heat content transported through He II. In or-
der to extract this information, a detailed understanding
of the relevant heat transfer processes in He II and the
expected motion of the tracer lines is needed.

A. Transient heat transfer in He II

It is known that heat transfer in He II is via a coun-
terflow of the two fluid components, i.e., the normal fluid
flowing away from the heat source carrying all the heat
content while the superfluid moving in the opposite di-
rect to compensate the fluid mass [14]. The heat flux q
is related to the normal fluid velocity vn as q = ρsTvn,
where ρ and s are the helium density and specific entropy,
respectively. When the heat flux is above a threshold of
order 10−2 W/cm2 [45], quantized vortex lines are pro-
duced in the superfluid [46], each carrying a single quan-
tum of circulation κ ≈ 9.97 × 10−4 cm2/s around its
angstrom-sized core [47]. A mutual friction between the
two fluids arises due to scattering of the thermal excita-
tions off the vortices [46]. For a transient heat transfer
from a point heat source in He II (see the schematics
in Fig. 3), the heat content is transported by a second-
sound zone propagating at the speed c2 [14]. The thick-
ness of the second-sound zone is about c2∆t, within which
a counterflow can establish.
It is worthwhile noting that Shimazaki et al. observed
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that in one-dimensional (1D) transient heat transfer of
He II through a circular pipe, the injected heat is carried
uniformly in the second-sound zone at low heat fluxes
[48]. As the heat flux increases, the vortex-line den-
sity L (i.e., vortex-line length per unit volume) increases.
Above a threshold heat flux (i.e., about 5 W/cm2 for
∆t of a few milliseconds), the interaction between the
second-sound waves and the dense vortices can strongly
distort the temperature profile in the second-sound zone,
leading to the so-called “limiting profile” with the for-
mation of a second-sound shock front [48, 49]. In this
situation, a significant fraction of the heat is converted
to vortex energy, which releases diffusively as the tangle
decays. Nevertheless, as we shall show in Sec. IV, the
heat energy that goes to the vortices in our experiment is
negligible. This is because, unlike in the 1D heat transfer
case, the heat flux drops rapidly away from a point heat
source, and so does the vortex-line density.
Another process that is relevant to transient heat

transfer in He II is film boiling at high heat fluxes [14].
The threshold heat flux for film boiling to occur in satu-
rated He II depends on the duration of the applied heat
pulse. For a heat pulse of a few milliseconds, this thresh-
old is about 15 W/cm2 [48–50]. In our experiment, the
instantaneous heat flux from the heater surface is much
higher than the film boiling threshold. Therefore, at
t < ∆t, a cavitation zone must form in the vicinity of
the heater, as depicted in Fig. 3 (a). Outside this cavi-
tation zone, some heat energy can be carried out by the
propagating second-sound zone.

B. Deformation of He∗

2 tracer lines

To evaluate the deformation of a He∗2 tracer line, let
us consider a line segment at an initial distance r0 from
the miniature heater. As the second-sound shock front
arrives at this line segment, it starts to move at the
local normal fluid velocity vn. If we assume that the
heat transfer is isotropic towards all directions from the
heater, vn is always along the radial direction and there-
fore the radial displacement of the line segment dr in time
dt is given by:

dr = vn · dt =
q(r)

ρsT
· dt (1)

where q(r) = Q̇s/(2πr
2) is the heat flux across the hemi-

sphere of radius r, with Q̇s being the instantaneous rate
of heat transfer over the entire hemispherical surface. By
integrating Eq. 1, one can derive the final distance rf of
the line segment from the heater as:

r3f = r30 +
3

2πρsT

∫ t0+∆t

t0

Q̇sdt = r30 +
3Qs

2πρsT
(2)

where t0 is the time that the second-sound zone first ar-
rived at the line segment, and Qs denotes the total heat
energy carried by the second-sound zone.
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FIG. 4. Examples of curve fittings to deformed tracer lines
created at different initial height h above the heater.

The assumption that the heat transfer is isotropic to-
wards all directions holds true only if the heater size is
small (i.e., approximately a point heat source) and that
the effect of the PCB can be ignored. Note that due
to the no-slip boundary condition of the normal fluid on
the PCB, the heat flux within a boundary layer from the
PCB surface must be different from that in bulk He II.
The thickness of this boundary layer increases along the
radius of the PCB and can be estimated to be about
300 µm near the edge of the PCB [51]. Therefore, any
relevant effect can be safely neglected.

Based on Eq. (2), the profile of a deformed tracer line
can be computed from a given initial baseline, if we know
the position x0 of the heater on the PCB and the total
heat Qs carried by the second-sound zone. In our analy-
sis, we first adopt an algorithm developed by Pulkkinen
et al. [52] to extract the locations of the baseline and
the deformed line from the fluorescence images. We then
set x0 and Qs as two adjustable parameters to evolve
the baseline profile so that a least squares fitting to the
deformed line profile can be made. Typical examples of
curve fittings to the deformed tracer lines based on their
corresponding baselines are shown in Fig. 4. One can see
that this simple model very well reproduces the deformed
line profiles. Fig. 4 also shows that the deformation of
the tracer line becomes weaker when it is created at a
larger distance h from the heater. The minimum line de-
formation that can be resolved is comparable to about
half the thickness of the tracer line. For a heat pulse of
q0=287 W/cm2 and ∆t = 2 ms, we estimate that the
maximum distance of the tracer line from the heater can
reach hmax≃5 mm. Nevertheless, we note that based on
Eq. (2), the displacement of the tracer line depends on
the total heat transported through He II instead of the
instantaneous heat flux on the heater surface. In a real
quench event, the heat deposited in He II is comparable
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FIG. 5. Fitting results of the heater location x0 versus (a)
heat flux q0 at a fixed pulse duration, and (b) pulse duration
∆t at a fixed heat flux. h=1.98 mm for these measurements.

to the total energy stored in the cavity (i.e., of order 1-10
J [3]), which is two to three orders of magnitude larger
than the heat produced by our miniature heater (i.e., of
order 10 mJ). Therefore, we would expect resolvable line
deformation even for tracer lines created at a few cen-

timeters away from a real cavity surface.

C. Analysis results

We have conducted the heater detection tests at vari-
ous heat fluxes q0=Q̇0/Ah and pulse durations ∆t. The
values of x0 and Qs can be determined through the curve
fittings as we previously discussed. The results are col-
lected in Table I. Fig. 5 shows typical derived heater
location x0 in comparison with the actual center posi-
tion of the heater (i.e., xh=7.46 mm). For each test, we
normally repeat our measurement 10 times so that the
result uncertainty can be estimated. The fact that the
obtained x0 is always within a few hundred microns from
the actual heater location, regardless of the applied heat
flux q0 and the pulse duration ∆t, clearly proves the fea-
sibility of this visualization-based non-contacting quench
spot detection technology.
In Fig. 6, we show the ratio of the heat energy Qs

carried by the second-sound zone to the total heat gen-
erated by the heater Q0 = Q̇0∆t as a function of q0 and
∆t. This ratioQs/Q0 appears to be weakly dependent on
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FIG. 6. The ratio of the heat energy Qs carried by the
second-sound zone to the total heat generated by the heater
Q0=Q̇0∆t as a function of (a) heat flux q0 and (b) pulse du-
ration ∆t. h=1.98 mm for these measurements.

q0 and nearly independent of ∆t. The knowledge about
the exact values of Qs, which is not available from typ-
ical second-sound triangulation measurements, provides
us a clue about the origin of the “fast” second sound
evinced in those triangulation experiments (see detailed
discussions in Sec. IV). From Table I, we also note that
under the same heater conditions, the fit values for Qs

at h=1.02 mm appear to be much smaller than those ob-
tained at larger h. This is likely due to the fact that the
miniature heater can no longer be treated as a point heat
source when the tracer line is placed too close.

IV. DISCUSSIONS

A. Partition of the heat energy

Since the heat Qs transported through He II by the
second-sound zone is only a fraction of the total heat
Q0 generated by the heater, a natural question one may
raise is: where does the remaining energy go? Indeed, a
similar phenomenon was observed in earlier experiments
on 1D transient heat transfer of He II through uniform
pipes [48, 50, 53]. It was observed that the heat carried
by the second-sound zone dropped significantly at heat
fluxes greater than about 5 W/cm2. This observation
was interpreted as due to the energy consumed in the
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TABLE I. Results of the curve fittings at various experimental conditions.

h q0 ∆t td x0 Qs Qs/Q0 rc
(mm) (W/cm2) (ms) (ms) (mm) (mJ) (mm)
1.02 144 2 20 7.64 ± 0.42 0.17 ± 0.10 9.05% 0.30
1.02 215 2 20 7.30 ± 0.18 0.24 ± 0.06 8.35% 0.35
1.02 287 2 20 7.25 ± 0.13 0.29 ± 0.15 8.02% 0.39
1.98 78 5 20 7.66 ± 0.14 0.68 ± 0.11 29.43% 0.38
1.98 108 5 20 7.63 ± 0.23 1.12 ± 0.24 32.50% 0.49
1.98 144 5 20 7.77 ± 0.24 1.20 ± 0.18 26.07% 0.50
1.98 179 5 20 7.30 ± 0.23 1.70 ± 0.31 29.70% 0.60
1.98 215 5 20 7.34 ± 0.29 1.43 ± 0.19 20.85% 0.55
1.98 251 5 20 7.20 ± 0.24 1.78 ± 0.33 22.18% 0.61
1.98 287 1 20 7.51 ± 0.32 0.36 ± 0.15 19.52% 0.62
1.98 287 2 20 7.50 ± 0.27 0.75 ± 0.21 20.35% 0.63
1.98 287 3 20 7.33 ± 0.22 1.17 ± 0.30 21.25% 0.64
1.98 287 4 20 7.24 ± 0.26 1.73 ± 0.24 23.58% 0.68
1.98 287 5 20 7.11 ± 0.23 1.76 ± 0.20 19.20% 0.61
1.98 287 6 20 7.24 ± 0.27 1.96 ± 0.19 17.82% 0.59
1.98 287 7 20 7.16 ± 0.20 2.48 ± 0.34 19.27% 0.61
1.98 287 8 20 7.24 ± 0.22 2.40 ± 0.39 16.31% 0.56
2.13 287 2 20 7.46 ± 0.38 0.89 ± 0.21 24.42% 0.69
2.13 287 2 30 7.52 ± 0.18 0.98 ± 0.33 26.92% 0.72
2.13 287 2 40 7.38 ± 0.10 0.93 ± 0.30 25.59% 0.70
3.31 287 2 20 7.05 ± 0.41 0.85 ± 0.19 23.30% 0.67

formation of a dense vortex tangle and the film boiling
in front of the heater.
The time evolution of the vortex-line density L in a

counterflow is governed by the Vinen’s equation [46]:

dL

dt
= αvnsL

3/2
− βκL2, (3)

where vns=(ρ/ρs)vn=q/ρssT is the relative velocity of
the two fluids, and α and β are dimensionless param-
eters with known values [44]. In a steady-state heat
transfer, the equilibrium vortex density is given by L0 =
(α/βκ)2v2ns. The time τ taken for the line density to
grow to the equilibrium value depends on the heat flux q
as τ=aq−n, with a and n being temperature-dependent
constants [54, 55]. For a heat flux of order 10 W/cm2,
τ ≃ 0.3 ms. Therefore, in transient heat transfer at high
heat fluxes with a duration longer than 1 ms, it is reason-
able to assume the equilibrium line density L0 in relevant
analysis. The energy E associated with a random tangle
of vortices per unit mass of He II is given by [56]:

E ≈
ρsκ

2

4πρ
Lln

(

l

ξ0

)

, (4)

where l = L−1/2 is the mean vortex-line spacing and
ξ0 ≃ 1Å is the healing length for He II. Combining Eqs.
(3) and (4), one can derive an equation for the change

in rate of the vortex energy Ė = Ėg − Ėd, where the

generation term Ėg takes the form:

Ėg = αvnsL
3/2 ρsκ

2

4πρ

[

ln

(

l

ξ0

)

− 0.5

]

. (5)

This generation term essentially accounts for the rate of
energy that goes from the second-sound zone to the for-
mation of vortices per unit mass of He II. Therefore, the
heat flux q(r) in the second-sound zone must satisfy:

d [q(r)A]

dr
= −ĖgA/ρ, (6)

where A is the cross section area at r, i.e., 2πr2 in our
experiment or a constant in those 1D tube heat transfer
experiments. Eq. (6) allows one to evaluate the heat

transfer rate Q̇ = q(r)A associated with the propagating
second sound front at a distance r from the heat source.
The calculation results for both our experiment and the
1D heat transfer case are shown Fig. 7. It is clear that in
our experiment, L drops rapidly with r since the heat flux
q decreases nearly as 1/r2. Significant temperature gra-
dient can exists only within a thin thermal layer where L
is high. The heat energy carried by the 2nd sound zone
suffers no noticeable attenuation. On the other hand,
in the 1D heat transfer case, the vortex density remains
high even at tens of centimeters away from the planar
heater. The heat energy carried by the second-sound
zone is constantly converted to vortex energy. This vor-
tex energy then decays into heat that slowly diffuses out
[14], which causes a broad temperature rise following the
second-sound zone, as observed in some 1D heat transfer
experiments [48].
Accepting the conclusion that the vortex effect is neg-

ligible in our experiment, the only other mechanism that
can consume the heat energy is the formation of the cav-
itation zone. The heat energy deposited near the heater
surface can vaporize the helium atoms and lead to the
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power, i.e., Q̇0 = qc · 2πr
2
c .

nucleation and growth of small vapor bubbles. In those
1D heat transfer experiments [48], it is suggested that
the fraction of the heat energy consumed by this process
increases with increasing the heat flux q0 from the heater
surface and can reach about 50% at q0=40 W/cm2. Con-
sidering the much higher heat fluxes from the miniature
heater surface in our experiment, it is not surprising to
see that over 70% of the heat energy goes to the vapor
bubbles.
We may make an order of magnitude estimation of the

growth rate of the vapor bubbles. Considering a hemi-
spherical vapor bubble that sits on the surface of the
heater, if we assume that the injected heat is all utilized
to vaporize the helium atoms, the growth of the bubble
radius R is then governed by [57]:

Lvρv
d

dt

(

2π

3
R3

)

= πR2q0, (7)

where Lv and ρv are the helium latent heat and the va-
por density in the bubble, respectively. According to
Eq. (7), Ṙ = q0/2Lvρv. For the heat flux used in our
experiment or in typical cavity quenching (i.e., 102-103

W/cm2), the bubble surface velocity Ṙ can exceed the
first-sound speed in He II (i.e., c1=230 m/s at 1.85 K
[44]), which leads to the emission of strong first-sound
shock waves due to the finite compressibility of He II. As
a vapor bubble grows, the combined effects of buoyancy,

shear lift, and contact pressure force may detach the bub-
ble from the heater surface [58]. Without the heat input,
the bubble starts to shrink. Due to the existence of the
heater surface nearby, the bubble collapses asymmetri-
cally, leading to the formation of a micro-jet that can
penetrate the bubble and impinge on the heater surface
[59–61]. This process can again lead to strong first-sound
emission. Therefore, the heat energy consumed by the
vapor bubbles in the cavitation zone can essentially con-
vert to acoustic energy carried by the first sound. Indeed,
sound bursts and associated pressure spikes accompany-
ing film boiling in He II have been observed experimen-
tally [62, 63]. Since the first-sound waves only cause the
fluid parcels in He II to oscillate around their equilib-
rium positions, there is barely any detectable effect using
either our flow visualization technique or those second-
sound sensors.

B. Origin of the “fast” second sound

The conclusion that a large fraction of the heat en-
ergy is utilized in the creation of the cavitation zone has
motivated us to propose a possible explanation for the
seemingly fast second sound observed in many triangula-
tion experiments. The formation of the cavitation zone
is a very fast process, considering the rapid growth of
the vapor bubbles as estimated in the previous section.
The second-sound waves are indeed emitted from the sur-
face of the cavitation zone instead of the heater surface.
Therefore, for a second-sound sensor placed at a distance
S from the heater surface, the actual distance traveled by
the second sound is S′=S−rc, where rc denotes the size of
the cavitation zone and is typically much smaller than S.
As a consequence, the shorter travel time of the second-
sound waves leads to a higher measured speed as given
by c′2 ≃ c2(1 + rc/S). This simple idea is supported by
the experimental observation that the fast second sound
can be observed only in quench-spot experiments with
high heat fluxes such that film boiling (i.e., cavitation)
does occur near the hot spot [22, 64].
To evaluate the excess velocity ∆c2=c′2−c2, let us first

estimate rc. If we assume that the cavitation zone has a
hemispherical surface with a radius rc and that the heat
flux on this surface is about the threshold for film boiling
(i.e., 15 W/cm2 [48]), rc can be estimated based on:

Q̇s

2πr2c
=

Qs/∆t

2πr2c
= 15 W/cm

2, (8)

The calculated rc values for our experiment are listed in
Table I. rc appears to be nearly independent of the pulse
duration ∆t but increases with increasing the heat flux
q0 from the heater surface as shown in Fig. 8 (a). Since
∆c2=(c2/S)rc, this result agrees with the trend observed
in previous triangulation experiments that the measured
second-sound speed increases with increasing the heat
flux [21, 22]. More interestingly, since r2c scales with Q̇s
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(and hence Q̇0) according to Eq. 8, for a given heat flux
q0, r

2
c then scales with the heater area Ah. If we consider

the triangulation results reported in Refs. [22, 65] and
scale r2c based on their heater size Ah=15 mm2, we can
indeed compute the excess velocity ∆c2 for their OST
sensor placed at S=5 cm from their heater surface. The
results are shown in Fig. 8 (b). The blue triangles are
triangulation data extracted from Fig. 5 in Ref. [65].
Amazingly, our predicted ∆c2 agrees quantitatively with
the triangulation experimental observations. We must
note that in reality the cavitation zone does not take a
perfect hemispherical shape, especially when the heater
size is large and the heat flux is small. This is probably
why the triangulation data in Fig. 8 (b) show relatively
large difference from our predictions at small heat fluxes.
Nevertheless, the overall excellent agreement between our
model prediction and the triangulation observations pro-
vides a strong support for the validity of our model.

C. 3D quench spot detection for real SRF cavities

In the proof-of-concept experiment presented in Sec.
II, we create the He∗2 tracer lines in the vertical plane
above a chosen miniature heater. The deformation of
the tracer line only provides us the position information
of the heater along the line where the vertical plane inter-

ICCD camera-1

Vacuum

ICCD camera-2 fs-laser 

beams

Im
aging laser

SRF cavity

Cavity mounted on a 

rotating holder in He II

Quench spot

FIG. 9. Schematic diagram showing the 3D quench spot de-
tection scheme for real SRF cavities using a tracer-line grid.

sects with the PCB. In order for quench spot detection on
the 2D surface of a real SRF cavity, our technique needs
to be advanced. For instance, a simple extension of the
current method could be to create two orthogonal tracer
lines near the surface. The deformations of the two lines
will then provide us complimentary information about
the hot-spot location along two orthogonal directions. A
more preferable and accurate detection scheme that we
would like to propose is shown in Fig. 9.

Instead of creating two tracer lines, we may first shape
the fs-laser beam into a laser sheet and then pass it
through a screen with parallel thin open slots to create
an array of tracer lines. This can be done since the max-
imum pulse energy of our femtosecond laser (i.e., 4 mJ)
is far greater than necessary for the creation of a single
tracer line (i.e., 60 µJ [30]). Overlapping two such tracer-
line arrays can form a tracer-line grid, which has already
been demonstrated in molecular tagging experiments in
water [66]. We may create such a tracer-line grid near
a cavity surface and implement 3D imaging using two
ICCD cameras placed at different angles [67]. Once a
quench event is detected through monitoring the dissipa-
tion of the RF field in the cavity [11], we can send in the
imaging laser pulses to visualize the tracer-line grid. Due
to the heat transfer from the quench spot to He II, a local
deformation of the grid is expected. The analysis of this
deformation will likely involve more fitting parameters.
For instance, we may assume a Gaussian temperature
profile in the hot area on the outer surface of the cavity.
Then, besides the center position of the hot area and the
transported heat in He II, other parameters such as the
width of the Gaussian profile and the curvature radius of
the surface may also be needed in the convolution of the
initial grid profile to its final deformed profile. Finally, a
scanning procedure may be implemented. By mounting
the cavity on a rotating holder, we may use the same
tracer-line grid to scan across the entire surface of the
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cavity so as to identify all surface defects.

V. SUMMARY

We have conducted a proof-of-concept experiment to
demonstrate the feasibility of a flow-visualization based
non-contacting technology for SRF cavity quench spot
detection. By examining the deformation of a thin He∗2
molecular tracer line created in He II nearby a miniature
heater following a short heat pulse, we were able to recon-
struct the heater location within a few hundred microns.
The actual heat transported through He II by the prop-
agating second-sound zone is found to be only a small
fraction of the total injected heat energy. Our analysis
shows that the remaining heat energy is essentially con-
sumed in the formation of a cavitation zone surrounding
the heater. The size of this cavitation zone is estimated
based on the knowledge obtained about the transported
heat. This information has allowed us to propose a new

explanation for the decades-long puzzle observed in pre-
vious second-sound triangulation experiments regarding
heat transfer at speeds higher than literature values. The
excellent quantitative agreement between our predicted
excess second-sound velocity and those measured in tri-
angulation experiments provides a strong support of our
model.
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generative model and a generalized trust region Newton
method for noise reduction,” Comput. Optim. Appl. 57,
129–165 (2014).



11

[53] T. Zhang and S. W. Van Sciver, “Use of the particle
image velocimetry technique to study the propagation of
second sound shock in superfluid helium,” Phys. Fluids
16, L99–L102 (2004).

[54] W. F. Vinen, “Mutual friction in a heat current in liquid
helium II II. Experiments on transient effects,” Proc. R.
Soc. A 240, 128–143 (1957).

[55] T. Shimazaki, M. Murakami, and T. Kanari, “Measure-
ment of characteristic time for quantized vortex tangle
development in He II,” Cryogenics 38, 601–606 (1998).

[56] W. F. Vinen and J. J. Niemela, “Quantum turbulence,”
J. Low Temp. Phys. 128, 167–231 (2002).

[57] A. Prosperetti, “Vapor bubbles,” Annu. Rev. Fluid Mech.
49, 221–248 (2017).

[58] M. K. Gupta, D. S. Sharma, and V. J. Lakhera, “Va-
por bubble formation, forces, and induced vibration: A
review,” Appl. Mech. Rev. 68, 030801 (2016).

[59] W. Lauterborn and H. Bolle, “Experimental investiga-
tions of cavitation-bubble collapse in the neighbourhood
of a solid boundary,” J. Fluid Mech. 72, 391–399 (1975).

[60] A. Vogel, W. Lauterborn, and R. Timm, “Optical and
acoustic investigations of the dynamics of laser-produced
cavitation bubbles near a solid boundary,” J. Fluid Mech.
206, 299–338 (1989).

[61] B. Liu, J. Cai, F. C. Li, and X. L. Huai, “Simulation of
heat transfer with the growth and collapse of a cavitation

bubble near the heated wall,” J. Therm. Sci. 22, 352–358
(2013).

[62] P. Zhang, M. Murakami, and R. Z. Wang, “Study of
liquid column oscillation and vapour bubble oscillation
resulting from film boiling in He II,” J. Phys. Appl. Phys.
34, 3296–3302 (2001).

[63] E. S. Bosque, R. C. Dhuley, and S. W. Van Sciver, “Tran-
sient heat transfer in helium II due to sudden vacuum
break,” AIP Conf. Proc. 1573, 260–267 (2014).

[64] K. Liao, O. Brunner, E. Ciapala, T. Junginger, and
W. Weingarten, “Second sound measurement using SMD
resistors to simulate quench locations on the 704 MHz
single-cell cavity at CERN,” in International Particle Ac-

celerator Conference (N. Orleans, 2012).
[65] T. Koettig, B. J. Peters, S. Avellino, T. Junginger,

and J. Bremer, “Study of temperature wave propagation
in superfluid helium focusing on radio-frequency cavity
cooling,” IOP Conf. Series: Materials Science and Engi-
neering 101, 012164 (2015).

[66] H. Hu and M. M. Koochesfahani, “Molecular tagging ve-
locimetry and thermometry and its application to the
wake of a heated circular cylinder,” Meas. Sci. Technol.
17, 1269–1281 (2006).

[67] D. G. Bohl, M. M. Koochesfahani, and B. J. Olson, “De-
velopment of stereoscopic molecular tagging velocime-
try,” Exp. Fluids 30, 302–308 (2001).


