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Mohammed Benzaouia,1 Grgur Tokić,2 Owen D. Miller,3 Dick K. P. Yue,2 and Steven G. Johnson4

1Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
2Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA

3Department of Applied Physics and Energy Sciences Institute, Yale University, New Haven, CT 06511, USA
4Department of Mathematics, MIT, Cambridge, MA 02139, USA

In this paper, we develop an approximate wide-bandwidth upper bound to the absorption en-
hancement in arrays of metaparticles, applicable to general wave-scattering problems and motivated
here by ocean-buoy energy extraction. We show that general limits, including the well-known
Yablonovitch result in solar cells, arise from reciprocity conditions. The use of reciprocity in the
stochastic regime leads us to a corrected diffusion model from which we derive our main result: an
analytical prediction of optimal array absorption that closely matches exact simulations for both
random and optimized arrays under angle/frequency averaging. This result also enables us to pro-
pose and quantify approaches to increase performance through careful particle design and/or using
external reflectors. We show in particular that the use of membranes on the water’s surface allows
substantial enhancement.

I. INTRODUCTION.

One of the most influential theoretical results for solar-
cell design has been the ray-optical Yablonovitch limit
[1–8], which provides a bound to how much surface tex-
turing can enhance the performance of an absorbing film
averaged over a broad bandwidth and angular range.
In this paper, we obtain approximate broad-band/angle
absorption limits for a case in which the traditional
Yablonovitch result is not useful: dilute arrays of “meta-
particles”(synthetic absorbers/scatterers). Known limits
bound the absorption at every wavelength [9, 10], but
they tend to be loose when considering large bandwidths
since coherent effects average out [5, 11]. Here, we find
limits on the absorption for arrays of particles that can
be described by the radiative-transfer equation (RTE)
[12, 13]. In particular, we show that an isotropic diffu-
sive regime is optimal for maximizing absorption. This
allows us both to obtain analytical upper bounds (Eqs. 7,
10) and identify the ideal operating regime of absorbing
metaparticle arrays.

In optics contexts, scattering particles can be used to
enhance absorption in thin-film or dye-sensitized solar
cells [15–18]. Most previous work focused on numerical
optimization using the full-wave equations [15, 16] or, in
the case of dye-sensitized solar cells, RTE for random
arrays [17, 18]. In Ref. 19, approximate analytical
estimations of absorption enhancement were given in
cases of optically-thin/thick layers under assumptions
of weak absorption, normal incidence and isotropic
differential cross section. In this work, we were actu-
ally motivated by arrays of buoys designed to extract
energy from ocean waves [20–23] depicted in Fig. 1.
Previous numerical-optimization work [14, 24–26], in
particular a recent extensive computational study on
large arrays [14, 26], showed promising results through
the design of buoy positions. The question we are
trying to answer in this work is more general: given

FIG. 1. Upper left: We bound absorption for very general
arrays of “particles”, including arrays of buoys that extract
energy from ocean waves. Upper right: Ocean surface dis-
placement η for a cylindrical buoy array [14] where A is the
amplitude of waves incident from left (arrow). Lower: Sketch
of RTE system.

the absorbing/scattering properties of an individual
metaparticle, is there a limit on the total enhancement
and how can it be reached? The Yablonovitch limit
cannot be applied to all metaparticle arrays since it
requires an effective-medium approximation, which is
only accurate for either dilute weakly interacting dipolar
particles [27] or for strongly interacting particles with
sufficiently subwavelength separation [28], neither of
which is true of the ocean-power problem. Moreover, the
Yablonovitch limit is independent of the precise nature
of the scattering texture, whereas in our case the whole
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point is to extrapolate the array properties from the
individual-scatterer properties.

In this paper, we define the interaction factor q(θ)
[29, 30] as the ratio of the power extracted by the ar-
ray to that of the equivalent number of isolated particles
for a given incident angle θ. We first point out that pre-
viously known limits in both solar cells and ocean buoys
arise from reciprocity constraints on the full-wave equa-
tions (Section II). The use of reciprocity in the radiative-
transfer equation leads to a general limit (Eq. 7), valid
for any geometrical configuration in RTE regime, that
is reached through an isotropic distribution of intensity
in the ideal case of small absorption (Section III). This
optimal solution justifies the use of a corrected radiative-
diffusion model (Eq. 10) that predicts the frequency-
averaged performance of random arrays, but also the
angle/frequency-averaged performance of the optimized
periodic array with better than 5% accuracy. This cor-
rected model can be used to estimate the upper bound
on q (which is proportional to the spatially-averaged in-
tensity in RTE framework) even in regimes where the
standard diffusion model is not expected to be accurate.
This result allows us to quickly evaluate the performance
benefits of different metaparticle designs and array con-
figurations, and we show that substantial improvement
is possible if the scattering cross-section is increased (rel-
ative to the absorption cross-section) and/or if partially
reflecting strips are placed on either side of the array
(Section IV). More specifically, we show that the use of
bending membranes on the water’s surface around the
buoys significantly increases the interaction factor. We
finally use the corrected radiative-diffusion model to find
optimal parameters that maximize q.

II. RECIPROCITY

The original intuition behind the ray-optical
Yablonovitch limit is that the optimal enhancement
is achieved through an isotropic distribution of light
inside the device [1, 2]. This can be thought of as a
reciprocity condition. Reciprocity [13] implies that rays
at a given position cannot emerge in the same direction
from two different paths. In consequence, if a given
point in the absorber is to be reached from as many ray
bounces as possible, the rays must be entering/exiting
that point from all angles. More formally, we show in
Appendix-A that reciprocity can be applied to the full
Maxwell’s equations in order to relate the enhancement
to the density of states (accomplished in another way by
Ref. 10), leading to:

〈q〉 =

∫
4π

q(θ)f(θ)dΩ ≤ 4π

n

〈ρd〉
ρv

max
θ
f (1)

where 〈q〉 refers here to the absorption enhancement com-
pared to the single pass, averaged over both polarizations
and over a directional spectrum f(θ) with normalized flux

(
∫
4π
| cos θ|f(θ)dΩ = 1), 〈ρd〉 is the average density of

states in the device, ρv the free space density of states and
n the index of the absorbing medium. The previous equa-
tion becomes an equality in the case of isotropic incidence
and small absorption. Yablonovitch limit can then be re-
covered in bulk media (ρd = n3ρv) for an incident field
confined to a cone of aperture 2θi (f = 1

π sin θ2i
δ(θ < θi)):

〈q〉 ≤ 4n2

sin θ2i
.

A similar procedure can be followed in the ocean-buoy
problem. By applying the appropriate reciprocity re-
lation derived from the wave equation, the Haskind–
Hanaoka formula [31], to the absorption of an optimal
array of buoys [29], one can bound the interaction factor
〈q〉 for a given directional spectrum f(θ) (

∫
2π
f(θ)dθ=1)

by [9, Appendix-B]:

〈q〉 =

∫
2π

q(θ)f(θ)dθ ≤ M

kσa
2πmax

θ
f (2)

where k is the wavenumber, σa the single-buoy absorp-
tion andM the number of degrees of freedom for the buoy
motion (1–6, e.g. 1 for only heave motion). This result
implies that for isotropic incidence, we have 〈q〉 ≤ 1 at
the resonance frequency (the frequency at which the sin-
gle buoy reaches its maximum absorption M/k), while it
can in principle be larger at other frequencies. Although
this sets a general limit valid at any frequency for any
structure, we show in the following that it is not tight
when considering the frequency-averaged performance.

III. RTE LIMITS

We consider a two-dimensional array of scatter-
ing/absorbing particles distributed inside a region S
bounded with a curve C (Fig. 1).

In the case of dilute and non-structured arrays, co-
herent scattering effects average out. This allows one to
use the radiative-transfer equation (RTE) that only in-
volves specific intensity I(r, θ), and that is applicable to
ensemble averages of random arrays at a single frequency
[12, 13]:

eθ · ∇rI = −ρσeI + ρσs

∫
dθ′p(θ, θ′)I + ε (3)

where σs, σa and σe denote respectively the scattering,
absorbtion and extinction cross sections of the individual
particles (σe = σs + σa), p the normalized differential
cross section, ρ the particles’ density, eθ the unit vector
with direction θ and ε internal sources.

We conjecture that a similar averaging of coherent
effects arises from averaging over frequency and/or an-
gle, and below we demonstrate numerically that this al-
lows RTE to make accurate predictions even for a small
number of random samples or for optimized periodic ar-
rays. This is similar to optical light trapping where
Yablonovitch model can predict the frequency/angle-
average performance of textured solar cells even though it
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cannot reproduce the exact spectral or angular response
[5, 11].

A. General limit

Similarly to our previous discussion of reciprocity-
based limits from the wave equation, we now use reci-
procity constraints on RTE to obtain general limits on
the interaction factor q.

One can first define a surface Green’s function
Gs(r, θ; r

′, θ′) [32] giving I(r, θ) for an incident field
Ii(ri, θi) = δ(θi − θ′)δ(ri − r′) and no internal sources
ε = 0. Similarly, a volume Green’s function Gp(r, θ; r

′, θ′)
can be defined as the intensity I(r, θ) obtained with
no incident field Ii = 0 and a point source ε(ri, θi) =
δ(θi − θ′)δ(ri − r′).

We recall that the flux density F is defined as∫
2π
Ieθdθ. Conservation of energy [12] then leads to∫

C
F · noutdr = Pe − Pa where Pe and Pa are the gener-

ated and absorbed power respectively. For a unit source,
we have Pe =

∫
S
ε(r, θ)drdθ = 1 so that:∫

C

∫
eθ·nout>0

Gp(r, θ; r
′, θ′)(eθ · nout)drdθ = 1− Pa (4)

To bound this last expression, we need a lower -bound
for Pa. By noting that the intensity at any point is
larger than the single pass value (obtained after extinc-
tion without multiple scattering), we have:

Pa = ρσa

∫
S

∫
2π

Gp(r, θ; r
′, θ′)drdθ

≥ ρσa
∫
S

e−ρσe|r−r
′|

|r− r′|
δ[angle(r− r′)− θ′]dr

=
σa
σe
Hρσe(r

′, θ′)

(5)

where Hρσe(r
′, θ′) defined in the previous equation can

be interpreted as the power absorbed by a medium with-
out scattering and with an absorption coefficient ρσe in
the presence of a unit source at the point r′ emitting in
direction θ′.

Finally, we relate Gs to Gp through reciprocity using
Gp(r, θ; r

′, θ′)|eθ · nout| = Gs(r
′, π− θ′; r, π− θ) [32]. We

conclude from Eq. (4) and Eq. (5) after a simple change
of variable that:∫
C

∫
eθ·nout<0

Gs(r
′, θ′; r, θ)drdθ ≤ 1− σa

σe
Hρσe(r

′, π− θ′)

(6)
with equality always realized in the absence of absorp-
tion.

Since the interaction factor in RTE is given by q =

〈
∫ 2π

0
I(r′, θ′)dθ′〉r′/Ii where Ii is the incident intensity

and 〈.〉r′ is the average over r′ in S, we can therefore
bound the interaction factor q for a given directional

 

FIG. 2. Upper: Frequency-averaged interaction factor qs
vs incident angle θ for Nx × Ny = 3 × 30 arrays of buoys
from exact solution [14] (solid lines), compared to standard-
diffusion (black dashed lines), corrected-diffusion (red dashed
lines) and radiative-transfer (RTE with Monte Carlo simu-
lation, dots) models. (q = array absorption / isolated-buoys
absorption.) The average buoy spacings (randomly chosen via
a Gamma distribution) are dx/h = 1.73, dy/h = 3.63, with h
= ocean depth (the density is ρ = 1/dydx). Numbers in leg-
end are qs averaged over θ for a typical ocean-wave directional
spectrum cos2s θ with s = 4 [33]. Inset: q vs. wavelength at
θ = 0, where shaded regions is one standard deviation from
mean value (blue line) for 100 random structures. Lower:
〈q〉 for over isotropic incidence. Results compared to limit in
Eq. (7).

spectrum f(θ) [fraction of power incident from angle θ]:

〈q〉 =

∫
C

∫
2π

∫
eθ·nout<0

f(θ)〈Gs(r′, θ′; r, θ)〉r′drdθ′dθ

≤ 2π

[
1− σa

σe
h(ρσe)

]
max
θ
f

(7)

where h(ρσe) = 〈Hρσe(r
′, θ′)〉r′,θ′ ≥ 0. In the case of a
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“slab” of thickness d, we can show that [Appendix-C]:

h(x) = 1− 2

π

1− e1(xd)

xd
, ei(x) =

∫ π/2

0

e−x secα cosi αdα

(8)
Note that the bound in Eq. (7) reaches its maximal

value 2πmax f in the limit of small absorption. This
maximal value, which does not assume optimal single-
buoy absorption, generalizes then the previous ocean-
buoy bound, giving 〈q〉 ≤ 1 for isotropic incidence f =
1/2π at any wavelength in RTE regime. In addition,
〈q〉 = 1 is always realized in the small absorption limit.
This special case is sometimes referred to as Aronson’s
theorem [34].

The equality in Eq. (7) is reached for:∫
C{eθ·nout<0}

Gs(r
′, θ′; r, θ)dr =

[
1− σa

σe
Hρσe(r

′, θ′)

]
δ(θ−θm)

(9)
where θm = arg max f . This means that the interac-
tion factor should be equal to zero for any incident an-
gle different from θm. In the ideal case of small absorp-
tion, the optimal Gs becomes independent of θ′, which
corresponds to isotropic interior intensity, similar to the
Yablonovitch model. Therefore, in order to explore opti-
mal solutions of RTE, we solve it under the assumption
of nearly isotropic intensity, which is well known to lead
to a diffusion model [12, 13, 32]. We emphasize that not
all RTE systems are diffusive, but our result above shows
that the optimal 〈q〉 is attained in an isotropic diffusive
regime.

B. Radiative-diffusion model

Unless otherwise stated, we restrict ourselves to scat-
terers distributed inside a slab of thickness d (Fig. 1).

In addition to RTE parameters and reflection coeffi-
cients at the boundaries (Ri), the radiative-diffusion so-
lution uses an asymmetry factor (µ) [35, Appendix-F] of
the single particle (Fig. 3). The intensity is then given
by I = Iri + Id: Iri is the reduced intensity, solution
of cos θ∂xIri = −ρσeIri, and Id is the diffuse intensity
approximated by U(x) + 1

πF(x) · eθ where U verifies a
diffusion equation with flux-matching boundary condi-
tions [Appendix-D]. By defining the cross sections per
unit of length as υs,a,e = ρdσs,a,e, the model predicts an
interaction factor q of:

q(θ) = q0(θ)

(
η

[
D

ξ(υd)

ξ(υe sec θ)
+ C

]
+ 1

)
(10)

where υ2d = γυa(υe−υsµ) is the diffusion coefficient [γ =
2 (resp. = 3) in 2D (resp. 3D)], ξ(x) is the function (1−
e−x)/x, C = γ[υs(υe+µυa)]/[υ2d− (υe sec θ)2], D is given
by the boundary conditions, q0(θ) is the reduced factor
and η is an additional correction term that we discuss
later. General formulas for q0(θ) and D are given in

Appendix-E, but in the absence of reflecting walls (Ri =
0) they simplify to q0(θ) = ξ(υe sec θ) and:

D = −
C(1 + e−υe sec θ) + β (C+γp1 cos2 θ)

(1−p1) cos θ (1− e−υe sec θ)
(1 + e−υd) + β υd

υe(1−p1) (1− e
−υd)

,

(11)
where p1 = σsµ/σe and β = π/4 (resp. = 1) in 2D (resp.
3D).

Equation (10) with η = 1 is obtained from the stan-
dard diffusion model. However, it is also known that
the diffusion solution is inaccurate for small thicknesses
[36–38]. A major problem is that it does not guarantee
〈q〉 = 1 for isotropic incidence and negligible absorption,
even though we previously mentioned that this is the case
for any solution of RTE. The reason behind this problem
is that the term Iri is not isotropic even for an isotropic
incidence. For large thicknesses, however, the contribu-
tion of the term Iri becomes negligible and the diffuse
term Id can ensure an isotropic solution. This simply
means that the higher order terms in the expression of
Id cannot be neglected for small thicknesses. In order to
keep the simplicity of the diffusion solution, we suppose
that the effects of higher order terms can be incorpo-
rated by the introduction of a scalar term in the diffuse
intensity ηId instead of Id. η is then defined so as ensure
the condition 〈q〉 = 1 for isotropic incidence and zero
absorption. This procedure is somewhat similar to the
approach in Ref. 37 except that we use a constant factor
η since we are interested in the total q and not the spa-
tially resolved I. In order to define η, we study the limit
of negligible absorption for which υd → 0, C → −2 cos2 θ
and D → cos2 θ(1−e−υe sec θ)+ π

4 cos θ(1−e−υe sec θ). Af-
ter simplification, the condition 〈q〉 = 1 allows to define
η as:

η =
π
2 −

1
υe

[1− e1(υe)]

β + π
8 γ −

2γ
3υe
− βe1(υe) + γ

2 e2(υe) + γ
υe
e3(υe)

.

(12)
We note that, as expected, η → 1 for an absorber that
is thick compared to the extinction length. From our
discussion above, this corrected radiative-diffusion model
can now be used to estimate the upper bound on the in-
teraction factor even in regimes where the standard diffu-
sion model is not expected to be accurate (optically thin
or large absorption).

IV. OCEAN-BUOY ARRAYS

A. Example

We now present a validation of the accuracy of Eq. (10)
in a model of ocean-wave energy converter (WEC) con-
sisting of a truncated cylinder in heave motion (Fig. 1).
The isolated-buoy properties can be obtained analytically
[39–41] and are depicted in Fig. 3: they are designed
[14] to have an absorption resonance that matches the
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typical Bretschneider spectrum [42] of ocean waves. We
choose the array density based on an earlier optimized pe-
riodic 3-row WEC arrangement [14]. For this density, we
then compare the exact numerical scattering solution cal-
culated for both random and optimized-periodic arrays
(using the method from Ref. 14) to both the analytical
radiation-diffusion q from Eq. (10), with and without the
correction η, and the numerical solution of RTE model
by a Monte Carlo method [43].

In Fig. 2 (upper plot), our corrected model agrees to
< 2% accuracy with exact solutions for random arrays
at θ < 80◦, as long as the results are frequency-averaged.
The importance of frequency averaging is shown by the
q frequency spectrum shown in the inset for θ = 0◦. For
an ensemble of random structures, this spectrum exhibits
a large standard deviation (gray shaded region), due to
the many resonance peaks that are typical of absorption
by randomized thin films [3, 5], but the frequency av-
erage mostly eliminates this variance and matches our
predicted q(θ). Precisely such an average over many res-
onances is what allows the Yablonovitch model to ac-
curately predict the performance of textured solar cells
even though it cannot reproduce the detailed spectrum
[5, 11].

At first glance, our model does not agree in Fig. 2
with the performance of the optimized periodic array
from Ref. 14: the periodic array, which was optimized for
waves near normal incidence, is better at θ near 0◦ and
worse elsewhere. However, when we also average over
θ (from a typical ocean-wave directional spectrum [33]),
the result (shown as a parenthesized number in the legend
of Fig. 2) matches Eq. (10) within 5%. If we average over
all angles assuming an isotropic distribution of incident
waves, the results match within 1%. Similar results have
been observed for thin-film solar cells, in which an opti-
mized structure can easily exceed the 4n2 Yablonovitch
limit for particular incident angles, but the Yablonovitch
result is recovered upon angle-averaging [4, 5, 8, 11].

Finally, we note in Fig. 2 (lower plot) that RTE re-
sults respect indeed the bound in Eq. (7) for isotropic
incidence. In particular, we confirm that random arrays
achieve 〈q〉 = 1 for small absorption (i.e. small wave-
length in our case). The periodic array, on the other
hand, doesn’t satisfy this relation unless it is frequency
averaged. We also mention that the limit Eq. (7) is very
loose for anisotropic incidence and cannot be reached
without using external reflectors as discussed in Section
IV-B below.

B. Larger interaction factor

Given this model, we can now explore ways to increase
the interaction factor q. By examining the dependence
of q in Eq. (10) on the parameters (Fig. 4), we find that
for a fixed scattering-to-absorption ratio σs/σa, q reaches
a maximum qmax for an intermediate value of scattering
per unit length ρdσs, whereas it increases monotonically
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FIG. 3. Properties of a single truncated-cylinder wave en-
ergy converter (WEC) in heave (vertical) motion, with radius
a = 0.3h and draft H = 0.2h where h is the ocean depth. The
WEC has an isotropic response with respect to the direction
of the incident field. Left: Scattering and absorption cross
sections of a single buoy normalized to the cylinder diame-
ter (σ/2a). The ocean spectral energy density (energy per
horizontal surface) is chosen as Bretschneider [42] with res-
onant frequency matching that of the body and is shown in
units of ρgH2T (ρ is the water density, g the acceleration of
gravity, T the mean wave period and H the significant wave
height). Right: Asymmetry factors, defined as the average of
cosφ and cos 2φ for the two-dimensional differential scatter-
ing cross section. These parameters enter into the diffusion
equation as µ = (µ1 − µ2)/(1 − µ2) and with σs replaced by
σs(1− µ2) [35, Appendix-F].

with µ. A maximum µ is achieved by increasing µ1 (for-
ward scattering) and decreasing µ2 (lateral scattering).
The optimal value of ρdσs and qmax both increase with
σs/σa; as the single particle absorbs more, the interaction
factor decreases and the optimal configuration requires a
larger spacing between the particles. The maximum q is
then achieved in the limit of small absorption (ρdσa � 1)
and large scattering (ρdσs � 1) for which we obtain a
perfect isotropic diffuse intensity.

From Fig. 3, we see that we have σa/σs ≈ 1 at the
resonance of the WEC. In this case, the enhancement
is expected to be smaller than 1 around the resonance
and optimal structures will tend to have a large spacing
dy. (If the array were optimized for small wavelengths
λ, where σs � σa, then a larger q could be obtained
at those wavelengths, but qs would be worse because
the optimal spacing in this case is too small for good
performance at the resonance.) Still, multiple scatter-
ing significantly improves the broadband performance of
our array: our 〈q〉 ≈ 0.99 is larger than the 〈q0〉 ≈ 0.78
that is obtained from RTE in absence of multiple scat-
tering (reduced factor q0). The performance is still lower
than the 1.65 that would be obtained for σs � σa in
the ideal isotropic regime discussed below, essentially be-
cause σa/σs is too small and the structure is too thin
(as for example quantified by the transport mean-free
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path d/ltr = υs(1− µ) ≈ 0.5 for 2a
λ & 0.3) to practically

achieve an isotropic diffuse intensity.
Alternatively, we show that q can be enhanced by

putting partially reflecting strips around the array. Sim-
ilar to light-trapping by total internal reflection [1, 2],
one possibility is to use a strip of a lower-“index” [31]
medium (compared to the array’s ambient medium) on
either side of the array. In the ocean-buoy problem, this
can for example be achieved by either a depth change
or the use of a tension/bending surface membrane which
can lead to near-zero index [44, 45]. This modifies equa-
tions (2–4) with additional reflection coefficients Ri, as
given in Appendix-E.

In Fig. 4, we show the effect of an increase in the scat-
tering cross section and/or the index contrast for the
same array studied before. By combining both effects,
a large (> 3) spectral interaction factor can be achieved
at normal incidence. At the same time, waves incident at
large angles will be reflected out, so that the interaction
factor integrated over isotropic incidence is still smaller
than 1. For a given directional spectrum and scattering
cross section of a single buoy, the optimal interaction fac-
tor is achieved for a specific value of the index contrast
as can be seen in Fig. 4 (right).

Finally, it is instructive to look at the ideal case of
small absorption and large scattering, for which Eq. (10)
simplifies to:

q(θ) = [1−R1(θ)]
( π

4α
+ cos θ

)
cos θ (13)

where R1 is the reflection coefficient of the front-
surface and α = (1 − r1)/(1 + r2) with ri =∫ π/2
−π/2R1(θ) cosi(θ)dθ/

∫ π/2
−π/2 cosi(θ)dθ. Equation (13)

still gives 1 when averaged over isotropic incidence, but
the interaction factor is larger near normal incidence.
Without reflectors (R1 = 0), the maximum value of q
at normal incidence is 1 + π

4 , and the previous direc-
tional spectrum gives 〈q〉 ≈ 1.65. This maximum value
of q(0) does not reach the arbitrarily large enhancement
allowed by Eq. (7). However, q(0) can still be made suf-
ficiently large by including a reflector designed for trans-
mission near normal incidence and reflection elsewhere
(since α→ 0).

C. Surface membrane

We now use a specific example to demonstrate a larger
interaction factor q using surface membranes surrounding
the WEC array. For large scale applications, such mem-
branes could be designed to have the desired properties
by connecting floating pontoons with elastic elements of
appropriate stiffness.

A thin bending membrane on the water surface changes
the “refractive index” (∼ k/ω) through the following dis-
persion relation (e.g. Ref. 46):

ω2 = gk tanh(kh)
1 + Cb(kh)4

1 +m · kh tanh(kh)
(14)

FIG. 4. Upper: Dependence of q(0◦) on parameters in absence
of reflecting boundaries. In the left plot, we take σs/σa = 5.
In the right plot, we show the optimal ρdσs and qmax for dif-
ferent values of σs/σa and µ. Lower: Effect of a change in the
index contrast and scattering cross section on the bandwidth-
averaged factor qs for the same array in Fig. 2. We tune the
index n1 along a strip surrounding the array, with n0 being the
index of the array’s ambient medium. We suppose that the
WEC has new scattering cross section σ̃s, but keep the same
absorption cross section. Left: qs at normal incidence. Right:
qs averaged over θ with a directional spectrum of cos2s θ and
s = 4.

where ω is the frequency, g the acceleration of gravity,
k the wavenumber, Cb is a dimensionless bending coef-
ficient, m is the mass of the membrane relative to the
mass of the water beneath it and h is the water depth.
We simply assume m = 0 in the following.

At a fixed ω, the membrane decreases k (decreases the
“index”) compared to the surrounding medium. This
change of index leads to a reflection off the membrane’s
edges. In particular, total internal reflection traps the
water waves similarly to light trapping in solar cells,
which increases the interaction factor q. The reflection
coefficient, which depends on ω, Cb, the incident angle
and the membrane’s width w, can be computed by ap-
plying appropriate boundary conditions on either side of
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FIG. 5. Upper: 〈qs〉 with a directional spectrum of cos2s θ
and s = 4 for different values of Cb1 and Cb2 correspond-
ing to the front and back membranes respectively. Each
point is obtained after optimizing over the membranes’ thick-
nesses. Lower: Frequency-averaged interaction factor qs vs
incident angle θ for the previously studied array using ad-
ditional membranes with parameters (Cb1, Cb2) = (0.048, 2)
and w1 = w2 = 1.6h.

the membrane and using a transfer-matrix method as re-
viewed in Appendix-G. We note that evanescent modes
need to be included because of the change in dispersion
relations.

The index contrast increases with Cb (increasing stiff-
ness), which increases the range of angles undergoing to-
tal internal reflection, making a more effective mirror.
Since no waves are coming from the rear of the array,
the optimal membrane behind the array should be a per-
fect reflector (Cb → ∞, limited only by the attainable
practical Cb).

We can now use our corrected diffusion model to pre-
dict the upper-bound for the previously studied array as
we change Cb. For each value of Cb1 and Cb2 representing

the front and rear membranes, respectively, we find the
optimal membrane widths that maximize the radiative-
diffusion bound. The resulting optimized 〈qs〉 values are
shown are shown in Fig. 5 (upper plot). We first note that
the frequency/angle-averaged interaction factor 〈qs〉 in-
creases significantly (> 1.8) compared to the 〈qs〉 = 1.00
without the membranes. We also confirm that 〈qs〉 in-
creases with Cb2 (rear membrane) as expected. On the
other hand, there is an optimal value for Cb1 depending
on the directional spectrum f(θ). For a focused incident
field, only angles near normal incidence matter so that
Cb1 can be increased allowing more of the waves scat-
tered by the WECs to be trapped. On the other hand,
for a broad directional spectrum, a large value of Cb1 pre-
vents waves incident from wide angles from reaching the
WECs.

For our array, supposing for example that the max-
imal attainable value of Cb2 is equal to 2, the optimal
value for Cb1 is 0.048 with optimal widths equal to 1.6h
for both the front and rear membranes. The frequency-
averaged interaction factor qs for the optimal parameters
is shown in Fig. 5 (lower plot). Our predicted bound (red
dashed line = corrected diffusion) is indeed larger than
the actual performance of the array as modeled by RTE
(orange dots). That is mainly due to the relatively small
scattering cross section compared to the absorption cross
section. As illustrated in the inset of Fig. 5 at small wave-
lengths where σs is large (Fig. 3), we see that an increase
in the scattering cross section leads to arrays with per-
formance closer to the radiative-diffusion bound.

We finally mention that in the case of using a perfect
back-reflector, 〈qs〉 can reach a value of 2.26 for Cb1 =
0.06 and w1 = 1.65h.

V. CONCLUSION.

We believe that the angle/frequency-averaged limits
presented in this paper provide guidelines for future de-
signs to achieve a large q factor which may open the path
for the realization of large arrays of buoys for efficient
ocean energy harvesting. In particular, the use of exter-
nal reflecting elements such as surface membranes seems
a promising approach. The results are also applicable to
other problems where multiple scattering effects are used
to achieve enhancement, including scattering particles in-
side an absorbing layer. One can, for example, recover
the standard Yablonovitch-4n2 result from our approach
in an appropriate limit [Appendix-H], but the real power
of our result is that it allows to study the effect of single-
metaparticle properties, angle of incidence and reflecting
boundaries.
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Appendix A: Enhancement from reciprocity of
Maxwell’s equations

Although the end result is not new, we wish to empha-
size that the underlying ideas of the Yablonovitch and
LDOS limits are closely tied to reciprocity. This is an al-
ternative to the derivation in Ref. 10, which differs in that
it directly uses the reciprocity (or generalized reciprocity)
from Maxwell’s equations. As was also emphasized in
Ref. 10, the result also applies to linear nonreciprocal
systems, since the density of states of transposed-related
materials is the same (Gε(r, r) = Gtεt(r, r) [13]).

Here for simplicity, we consider a reciprocal system in
the derivation. We have then:∫
S∞

[Ea×Hb−Eb×Ha] · k̂ dS =

∫
V

[Ea ·Jb−Eb ·Ja]dV

(A1)
If we choose (Ja = 1

jµω êsδr0 , Einc
a = 0) and (Jb = 0,

Einc
b = ejkk̂0·rêb), then Ea = ¯̄GE(r0, r0)ês.
The far field term can be written as Es

a =

fs(k̂) e
jkr

r êa, Hs
a = 1

η (k̂ × Es
a) with η =

√
µ0

ε0
, and sim-

ilarly for the far-field of the scattered field “b”, so that:∫
S∞

[Es
a ×Hs

b −Es
b ×Hs

a] · k̂ dS = 0.

We then expand the integrand of the left term in A1
to obtain:∫
S∞

[Es
a ×Hinc

b −Einc
b ×Hs

a] = −1

η

∫
fs(k̂)ejkr(1+k̂·k̂0)

[(êa · êb)(1− k̂ · k̂0) + (êa · k̂0)(êb · k̂)]rdk̂

(A2)

The integral can be evaluated using the method of sta-
tionary phase [47]. The function g(θ, φ) = 1 + k̂ · k̂0 =
1 + cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0) has two extrema

at ±k̂0. The integrand is null at the first, so only the
second matters. The Hessian matrix at −k̂0 is given by:[
1 0
0 sin θ20

]
. We then conclude that the integral we want

to evaluate is equal to:

− 1

η
j

1

sin θ0/2

1

kr
[2(êa · êb))− (êa · k̂0)(êb · k̂0)]

fs(−k̂0)r sin θ0 = − j
η

4π

k
(êa · êb)fs(−k̂0)

(A3)

where êa is evaluated at −k̂0.
We finally conclude from A1 that:

−ês ·Eb(r0) = 4π(êa · êb)fs(−k̂0) (A4)

which is the reciprocity relation relating the far field of a
point source at r0 in the direction −k̂0 to the field at r0
due to an incoming plane wave from the same direction.

Now, we use the Poynting theorem to compute the far
field of the point source:

1

η

∫
|fs(k̂)|2dk =

∫
Re[Ea ×H∗a] · k̂dS

≤ −
∫
Re[J∗a ·Ea]

= Im[Ea(r0) · ês]
1

ωµ

(A5)

At this point we are able to combine A4 and A5 to find
our main result about the enhancement. We consider an
incoming angular distribution f(k̂0) with a normalized

flux (
∫
4π
| cos θ|f(k̂0)dk̂0 = 1). By integrating over all

coming angles and polarizations of the “b” field, we have:∫ ∑
êb

|Eb|2f(k̂0)dk̂0 =

∫ ∑
êb,ês

|Eb · ês|2f(k̂0)dk̂0

= (4π)2
∫ ∑

êb,ês

|êa · êb|2|fs(−k̂0)|2f(k̂0)dk̂0

= (4π)2
∫ ∑

ês

|fs(−k̂0)|2f(k̂0)dk̂0

≤ (4π)2
max f

k

∑
ês

Im[Ea(r0) · ês]

= (4π)2
max f

k
Tr[Im ¯̄GE(r0, r0)]

= (4π)2
max f

k

πc2

ωn2
ρd(r0)

(A6)

which relates rigorously the enhancement and the local
density of states.

We can use this result to compute the absorbed power
and deduce the enhancement compared to the single pass
for a cell of surface S and effective thickness d. We have:

〈Pabs〉 =
1

2
ωε′′ε0

∫
V

∫ ∑
êb

|Eb|2f(k̂0)dk̂0

≤ 1

2
ε′′ε0(4π)2

πc3

ωn2
max f

∫
V

ρd

(A7)

The total incident power, taking into account the two
polarizations, is given by 1

2η

∫
f(k̂0)| cos θ|dk̂0 × 2× S =

S
η , and the normalized single pass absorption is αd =
ε′′

n
ω
c d. The enhancement is then given by:

〈q〉 =
〈Pabs〉
Pincαd

≤ 4π

n

〈ρd〉
ρv

max f (A8)

where ρv = ω2

2π2c3 is the free space density of states. This
inequality becomes an equality in the case of negligible
absorption and isotropic incidence (f = 1

2π ).

For a bulk dielectric, we have ρd = n3ρv so that 〈q〉 ≤
2n2 for isotropic incident light which is the standard limit
in the absence of a back reflector.
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Appendix B: Interaction factor from reciprocity in
ocean waves

In this section we review the result in Ref. 9 and em-
phasize that it is also a consequence of reciprocity, which
shows the similarity with the LDOS limit in solar cells.

The problem of ocean wave energy extraction using
oscillating bodies is formally equivalent to the problem
where there are discrete sources of which the amplitude
can in principle be controlled externally (velocity of the
body that can be controlled through an external mechan-
ical mechanism). Considering the effect of the incoming
wave and interaction between bodies, the total absorp-
tion can be written as a quadratic function in terms of
the amplitudes of the different sources as in [29] for ex-
ample. Maximizing the absorption allows to find the op-
timal amplitudes as a function of the scattered field and
the radiated fields from the sources. This gives [29]:

Pmax =
1

8
Fe
∗(θ)R−1Fe(θ) (B1)

where Fe(θ) is the force applied on the bodies for an
incident wave from the direction θ and R is the resistance
matrix (radiation damping matrix).

One would try to see the effect of the reciprocity re-
lations discussed before on the maximum absorption in
this context. The exact equivalent of Eq. (A4) is al-
ready known in the ocean waves problem as the Haskind-
Hanaoka formula that relates the force applied on a body
due to an incident wave to the radiated field when the
the body acts as a source [31]. It leads to:

Fe,i(θ) = −4

k
ρogAcgAi(θ + π) (B2)

where A is the amplitude of the incident wave, Ai is
the far-field amplitude of the radiation mode i, k is the
wavenumber, cg is the group velocity, ρo is the water
density, and g is the gravity of Earth.

The use of this formula on the maximum absorbed
power by an array of oscillating bodies leads to the
bound on the power absorbed by the array. For a given
incident angular distribution f(θ) normalized so that∫
2π
f(θ)dθ = 1:

〈Pmax〉 =

∫
f(θ)Pmax(θ)dθ

≤ max f

∫
Pmax(θ)dθ

= max f
1

8

∑
i,j

[R−1]i,j

∫
2π

F ∗e,iFe,jdθ

(B3)

Using B2 and the fact that Ri,j =
2
πkρogcg Re(

∫
2π
A∗iAj) [29], we conclude that:

〈σNa,max〉 =

∫
2π

σNa,max(θ)f(θ)dθ ≤ NM

k
2πmax f (B4)

where σNa,max = Pmax/(
1
2ρog|A|

2cg) is the maximum ab-
sorption cross section of the array, N is the number of
buoys and M is the number of degrees of freedom for the
buoy motion (1–6 [29], e.g. 1 for only heave motion).

This result is general and does not depend on assump-
tions on the scatterers. It means that the interaction
factor q = 〈σNa,max〉/N〈σ1

a〉 is bounded by M/(k〈σ1
a〉) for

isotropic incidence. For buoys in heave motion which are
studied in this paper, we have M = 1 and 〈σ1

a〉 = σ1
a

(the absorption cross section of the single buoy does not
depend on the incident angle).

Note that Eq. (B4) is also valid for a single buoy. De-
pending on the symmetries of the buoy, the actual ab-
sorption may be smaller (for an axisymmetric buoy, we
always have kσ1

a ≤ 3 [31]).

It is important to realize that this bound is equal to 1
at the resonance frequency [the k where 〈σ1

a〉 reaches the
maximum M/k from (B4)], while it can in principle be
larger at other frequencies.

Appendix C: General RTE limit for a “slab”

We compute the function h in Eq. (7) for a slab of
thickness d (with perfectly transmitting boundaries). We
assume that the slab is normal to the x -axis.

We first write the integral H using polar coordinates
(r, θ):

Hα(x′, θ′) =

∫ π/2

−π/2

∫ x′
cos θ

0

αe−αrδ(θ − θ′)dθdr

+

∫ π/2

−π/2

∫ d−x′
cos θ

0

αe−αrδ(θ − θ′)dθdr

(C1)

After simplification, we have then:

h(α) =
1

2πd

∫ 2π

0

∫ d

0

Hα(x′, θ′)dx′dθ′

= 1− 2

παd

[
1−

∫ π/2

0

e−αd sec θ cos θdθ

] (C2)

Appendix D: Diffusion equation

Here we reproduce the diffusion equation as in Ref. 12,
13 but adjusting the numerical coefficients for a two-
dimensional medium.

We first separate the intensity as I = Iri + Id where
Iri is the reduced (coherent) intensity and I = Id is the
diffuse (incoherent) intensity. The reduced intensity is
related to the single scattering and obeys: eθ · ∇rIri =
−ρσeIri. So from RTE equation, the diffuse intensity
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obeys:

eθ · ∇rId = −ρσeId + ρσs

∫
dθ′p(θ, θ′)Id + J,

J = ρσs

∫
dθ′p(θ, θ′)Iri

(D1)

Now, considering the diffusion approximation, we
write: Id(r, θ) = U(r) + 1

πF(r) · eθ. This could be seen
as a first order series in θ. We also note that the diffuse
flux is:

∫
Ideθ dθ = F.

In order to obtain U and F we apply the operators∫
dθ and

∫
eθdθ on (D1). This leads to:

∇r · F = −2πρσaU + 2πρσsUri

Uri(r) =
1

2π

∫
dθ Iri(r, θ)

∇rU = − 1

π
ρσtrF +

1

π

∫
dθ J ŝ

(D2)

where σtr = σe(1− p1) and σep1 =
∫
dθ′p(̂s, ŝ′)[̂s · ŝ′], so

that p1 = σsµ/σe where µ is the average of the cosine of
the scattering angle.

Equations (D2) allow to solve for U and F. Combining
them, we obtain a diffusion equation for U :

∇2U − (ρσd)
2U = −2ρ2σtrσsUri +

1

π
∇ ·
∫
dθ J ŝ (D3)

Now we need to add appropriate boundary conditions.
Supposing that we have a reflection coefficient R on the
surface, this should be: Id(r, θ) = R(θ)Id(r, π − θ) for ŝ
directed towards the inside of the medium. However, con-
sidering the assumed formula for Id the condition cannot
be satisfied exactly . A common approximate boundary
condition is to verify the relation for the fluxes:∫

ŝ·n̂>0

Id(̂s · n̂)dθ =

∫
ŝ·n̂<0

R(θ)Id(̂s · n̂)dθ (D4)

where n̂ is the normal to the surface directed inwards.
Using the formula for Id we obtain:

2(1− r1)U +
(1 + r2)

2
F · n̂ = 0 (D5)

where ri =
∫ π/2
−π/2R(θ) cosi(θ)dθ/

∫ π/2
−π/2 cosi(θ)dθ.

Appendix E: General expression for the interaction
factor

We give the expression for q in the presence of re-
flecting boundaries with angle-dependent reflection coef-
ficients Ri (R1 refers to the boundary facing the incident
wave).

Using the same notation as in Section III, we have:

q0(θ) =
(1− R̃1)(1 + R̃2Y )

1− R̃1R̃2Y 2
ξ(υe sec θ) (E1)

with R̃i = Ri(θ) and Y = e−υe sec θ.
D is given through boundary conditions by D =
A+B

1+R̃2Y
, where:[

α1 + β υd
υtr

(α1 − β υd
υtr

)e−υd

(α2 − β υd
υtr

)e−υd (α2 + β υd
υtr

)

] [
A
B

]
= X =

−

[
C(1 + R̃2Y

2)α1 + β υe
υtr

( C
cos θ + γp1 cos θ)(1− R̃2Y

2)

[C(1 + R̃2)α2 − β υe
υtr

( C
cos θ + γp1 cos θ)(1− R̃2)]Y

]
(E2)

with υtr = υe − υsµ, αi = (1 − ri1)/(1 + ri2) and

rip =
∫ π/2
−π/2Ri(θ) cosp(θ)dθ/

∫ π/2
−π/2 cosp(θ)dθ. We recall

that (γ = 2, β = π/4) [resp. (γ = 3, β = 1)] in 2D [resp.
3D].

The correction term η, which ensures that the interac-
tion factor for isotropic incidence and zero absorption is
1, is defined as:

η =

π −
2∑
i=1

∫ π/2

0

q
(i)
0 dθ

2∑
i=1

∫ π/2

0

[
q
(i)
0 D

(i)
0 (θ, υe, υtr)

ξ(υe sec θ)
− γ cos2 θq

(i)
0

]
dθ

(E3)
with:

(1+R̃2Y )D0(θ, υe, υtr) =
(α2 + 2β

υtr
)X0,1 + (α1 + 2β

υtr
)X0,2

2β
υtr

(α1 + α2) + 2α1α2

(E4)
where:

X0 =

[
γ cos2 θ(1 + R̃2Y

2)α1 + 2β cos θ(1− R̃2Y
2)

[γ cos2 θ(1 + R̃2)α2 − 2β cos θ(1− R̃2)]Y

]
(E5)

Superscripts for q
(i)
0 and D

(i)
0 refer to the boundary that

is facing the incident wave.

Appendix F: Asymmetry factor

The asymmetry factor usually used in diffusion models
is [12, 13] µ = µ1, where in general µi =

∫
2π

cos(iθ)p(θ)dθ
(where we take p(θ, θ′) = p(θ − θ′)). Since the diffusion
result depends only on υs, υa and µ1, it can be seen as
approximating the differential scattering cross section by:
p(θ − θ′) = 1

2π [1 + 2µ1 cos(θ − θ′)].
The Delta-Eddington approximation [35] allows to in-

corporate the second moment of p by including the for-
ward scattering peak using a “delta function” term so
that: p(θ, θ′) = µ2δ(θ−θ′)+ 1−µ2

2π [1+2µ cos(θ−θ′)] where
µ = (µ1−µ2)/(1−µ2). This approximation matches the
Fourier decomposition of p up to the second term. By in-
corporating this expression in RTE (Eq. 3), one recovers
a second RTE with p replaced by 1

2π [1 + 2µ cos(θ − θ′)]
and σs replaced by σs(1 − µ2). So the diffusion approx-
imation can be made more accurate by replacing µ by
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(µ1 − µ2)/(1− µ2) and σs by σs(1− µ2). This is known
as the Delta-Eddington approximation [35].

In a three-dimensional medium, µi =∫
4π
Pi(cos θ)p(cos θ)dΩ where Pi is the ith Legendre

polynomial.

Appendix G: Reflection coefficient with membranes

We consider a plane wave arriving from medium (1),
that is a free-surface ocean with finite depth h, at angle
θ with respect to the x-axis. We suppose that we have a
thin membrane (2) on the water surface extended from
x = 0 to x = w. Change in the dispersion relation leads
to different wavenumbers kni verifying:

ω2 = gkn1 h tanh(kn1 h) = gkn2 h tanh(kn2 h)(1 + Cb(k
n
2 h)4)

(G1)
where Cb is a bending coefficient of the membrane. k0i
corresponds to a (real) propagating wave while the other
kni correspond to (pure imaginary) evanescent waves.

We first compute the transfer-matrix between medium
(1) and medium (2). We write the velocity potential in
each medium i as:

φi =

N∑
n=0

fn,i(z)
[
αn,ie

iknx,i + βn,ie
−iknx,i

]
eikyy (G2)

where (knx,i)
2 +k2y = (kni )2 and fn,i(z) = Nn,i cosh kni (z+

h) (z = 0 is the water’s free surface). Nn,i =

1/
√

1 +
sinh(2kni h)

2kni h
is defined so as to ensure that

〈fn,i, fn,i〉 =
∫ 0

−h f
2
n,idz = 1. We also note that (fn,1)n

form an orthogonal basis while (fn,2)n are not orthogonal
but still complete (in the limit of N →∞) [46]. Finally,
for a propagating wave incident from medium (1) with
angle θ, we have ky = k01 sin θ.

The boundary condition requires continuity of φ and
∂xφ at x = 0. We write then:

∑
n

fn,1(αn,1 + βn,1) =
∑
n

fn,2(αn,2 + βn,2)∑
n

fn,1(αn,1 − βn,1)iknx,1 =
∑
n

fn,2(αn,2 − βn,2)iknx,2

(G3)

By projecting the previous equations on fn,1, we can

deduce:

2iknx,1αn,1 =
∑
m

[
i(knx,1 + kmx,2)αm,2

+i(knx,1 − kmx,2)βm,2
]
〈fn,1, fm,2〉

2iknx,1βn,1 =
∑
m

[
i(knx,1 − kmx,2)αm,2

+i(knx,1 + kmx,2)βm,2
]
〈fn,1, fm,2〉

(G4)

This allows us to define the transfer matrix as X1 =
M12X2 where Xi = (α0,i, α1,i, ..., β0,i, ...). M21 is subse-

quently defined as M−112 .
We finally write the global transfer matrix as M =

M12MpM21, where Mp is a diagonal matrix that propa-
gates the modes along the membrane and that is defined
as:

Mp,(n,n) = eik
n
x,2w,

Mp,(n+N+1,n+N+1) = e−ik
n
x,2w, 0 ≤ n ≤ N

(G5)

We can now write Xout = MXin where Xin = (I,R) =
(1, 0, ..., r, β1,1...) and Xout = (T, 0) = (t, α1,1, ..., 0, ....).

By writing M =

[
M1 M2

M3 M4

]
, we have:

T = M1I +M2R, 0 = M3I +M4R (G6)

which allows us to compute the transmission and reflec-
tion coefficients as:

R = −M−14 M3I, T = M1I +M2R (G7)

We check of course that |t|2 + |r|2 = 1.

Appendix H: Scattering particles embedded in
low-absorbing layer

We consider scattering particles embedded in a layer
of index n and negligible absorption in the presence of
perfect back-reflector (R2 = 1). In the limit of large
scattering we obtain:

q(θ) = 3 cos2 θ +
2

α1
cos θ (H1)

where θ is the refraction angle (< θc = asin 1
n ) and α−11 =

n2
[
1 +

(
1 + 1

n2

) 3
2

]
.

For isotopic incidence (f = n2

π δ(θ < θc)), we have:

〈q〉 =

∫
4π

q(θ)f(θ)dΩ = 2π
n2

π

∫ θc

0

q(θ) sin θdθ = 4n2

(H2)
In the presence of bulk scattering, the Yablonovitch

limit is indeed maintained for isotropic incidence but can
be overcome at normal incidence.
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