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The lithium niobate integrated photonic platform has recently shown great promise in nonlinear
optics on a chip scale. Here, we report second-harmonic generation in a high-Q lithium niobate
microring resonator through modal phase matching, with a conversion efficiency of 1,500% W−1.
Our device also allows us to observe difference-frequency generation in the telecom band. Our work
demonstrates the great potential of the lithium niobate integrated platform for nonlinear wavelength
conversion with high efficiencies.

I. Introduction

Optical parametric generation via a quadratic non-
linearity has been extensively studied for the capability
of wavelength conversion through elastic photon-photon
scattering, constituting the basis of various applications
including coherent radiation [1], spectroscopy [2], fre-
quency metrology [3], and quantum information process-
ing [4]. With the ability to strongly confine optical modes
in the micro-/nano-scale, a number of integrated pho-
tonic platforms have been developed for strong nonlinear
optical effects with high efficiencies and low power con-
sumption [5–11].

Among all the integrated nonlinear photonic plat-
forms, lithium niobate (LN) has recently attracted re-
markable attentions, owing to its wide transparency win-
dow and strong quadratic optical nonlinearity. To date,
a variety of nanophotonic systems, including waveg-
uides [12–18], microdisks [19–24], microrings [25, 26],
and photonic crystal cavities [27–29], have been stud-
ied for optical parametric processes in LN. In partic-
ular, cavity-enhanced nonlinear wavelength conversion
has been demonstrated in doubly/triply resonant LN mi-
croresonators through a number of techniques includ-
ing modal phase matching [19, 22, 24, 26], cyclic phase
matching [20, 21, 23], and quasi-phase matching [25].
However, the potential of the LN integrated platform
has not yet been fully explored for efficient nonlinear
parametric processes, and current devices demonstrate
only moderate efficiencies far from what LN can provide.
Here, we report optical parametric generation in a high-Q
Z-cut LN microring resonator through exact modal phase
matching. The device exhibits optical Q’s of ∼105 for the
designed cavity modes in the 1550 and 780 nm bands, and
both modes are well coupled to a single bus waveguide,
enabling us to conveniently measure a second-harmonic
generation (SHG) efficiency of 1,500% W−1. In addi-
tion, by pumping into the mode in the 780 nm band, we
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are also able to observe difference-frequency generation
(DFG) in the telecom band. Our work shows the great
promise of modal-phase-matched LN microresonators for
efficient optical parametric generation.

II. Design and characterization

In order to achieve modal phase matching in a mi-
croresonator, we performed photonic design with a Z-cut
LN thin film, whose optic axis lies vertically, showing
no anisotropy of refractive index in the device plane.
To utilize the largest nonlinear term d33, we designed
for phase matching between the fundamental quasi-
transverse-magnetic mode (TM00) at 1550 nm and a
high-order mode TM20 at 775 nm. For simplicity, we
numerically simulated effective indices of optical modes
in a straight waveguide, as a guideline for microring res-
onators with a relatively large radius, which is 50 µm
in our study. Figure 1(b) presents the simulation re-
sult by the finite element method, which shows that for
a waveguide thickness of 600 nm, modal phase matching
happens for TM00 at 1550 nm and TM20 at 775 nm when
the waveguide width is about 690 nm. For a microring
resonator with the same cross-section, since the Z-cut
LN thin film is isotropic in the device plane, the phase
matching condition is consistently satisfied at any az-
imuthal angle, which is expected to produce strong SHG
as the phase-matched FF light travels around the cavity.

Our device fabrication started from a Z-cut LN-on-
insulator wafer by NANOLN, with a 600-nm-thick LN
thin film sitting on a 3-µm-thick buried oxide layer and
a silicon substrate, and the process was similar to that
of our previous work [29]. Figure 1(c) shows a fabricated
microring resonator, coupled to a pulley waveguide [30,
31], and Fig. 1(d) gives a closer look at the coupling
region. Later device characterization shows that a bus
waveguide top width of ∼200 nm, a gap (measured at
the top surface of the LN thin film) of ∼350 nm, and a
coupling length of ∼20 µm are able to give good coupling
for both the fundamental-frequency (FF) mode and the
second-harmonic (SH) mode.

After fabricating the device, we conducted experiments
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FIG. 1. (a) Experimental setup for device characterization and optical parametric generation. VOA: variable optical attenuator;
WDM: wavelength-division multiplexer; LPF: long-pass filter; OSA: optical spectrum analyzer. (b) Numerically simulated
effective indices of the TM00 mode at 1550 nm and the TM20 mode at 775 nm, as functions of the top width w of a straight
waveguide. Other waveguide parameters are h1=550 nm, h2=50 nm, and θ=75◦. (c) Scanning electron microscopy image of
our LN microring. (d) Zoom-in of the bus-ring coupling region.

to characterize its linear optical properties and demon-
strate nonlinear parametric generation, with the setup
shown in Fig. 1(a). We used two continuous-wave tunable
lasers, one in the telecom band around 1550 nm, the other
in the near-infrared (NIR) around 780 nm. Light from
both lasers was combined by a 780/1550 wavelength-
division multiplexer (WDM), and launched into the on-
chip bus waveguide via a lensed fiber. The bus waveg-
uide coupled light at both wavebands into and out of the
microring resonator, inside which nonlinear optical para-
metric processes took place. A second lensed fiber was
used to collect output light from the chip, and a second
780/1550 WDM was utilized to separate light at the two
wavebands. At the 1550 port of the WDM, a long-pass
filter that passes light with a wavelength over 1100 nm
was used to eliminate residual NIR light, and the telecom
light was further split into two paths, one to an InGaAs
detector for characterization, and the other to an optical
spectrum analyzer (OSA) for spectral analysis of DFG; at
the 780 port, the NIR light was also split into two paths,
one to a Si detector for characterization, and the other
to an OSA for detection of SHG. Variable optical atten-
uators were employed to study power-dependent proper-
ties, and polarization controllers were used for optimal
coupling of the wanted polarization.

In order to obtain the linear optical properties of our
microring resonator, we scanned the wavelengths of both
lasers and measured the transmission spectra near both
1550 and 780 nm, as shown in Fig. 2(a) and 2(b). Our

microring resonator exhibits a single TM mode family
near 1550 nm, and the mode at 1547.10 nm, which is
the FF mode for modal-phase-matched SHG, is almost
critically coupled, with a coupling depth of ∼99% and
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FIG. 2. Transmission spectra of the LN microring near (a)
1550 nm, and (b) 780 nm. TM00 modes around 1550 nm and
TM20 modes around 780 nm are indicated by purple and ma-
genta arrows, respectively, with big arrows showing the phase-
matched modes. (c) and (d) Detailed transmission spectra of
the two phase-matched modes, with experimental data shown
in solid curves and fittings shown in dashed curves.
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FIG. 3. Power dependence of SHG, showing a quadratic re-
lation between the SH power and the pump power. The mea-
sured conversion efficiency is 1,500% W−1. The inset shows
an optical image of generated NIR light scattered from the
microring, with a pump power of 440 µW at the FF mode.

a loaded optical Q of 1.4×105 [see Fig. 2(c)]. On the
other hand, the SH mode at 773.55 nm is under-coupled,
with a coupling depth of ∼83% and a loaded optical Q
of 9×104 [see Fig. 2(d)]. To achieve phase matching,
the FF and SH resonances were fine-tuned by controlling
the temperature with a thermoelectric cooler under the
device chip. The fiber-to-chip coupling losses are about
6.9 and 11.4 dB/facet for the FF and SH modes, respec-
tively. These high optical Q’s, together with the large
nonlinearity in the designed type-0 process using d33, in-
dicate strong and efficient nonlinear optical interactions
in phase-matched parametric generation with cavity en-
hancement.

III. Optical parametric generation

To study SHG in the microring resonator, we launched
pump power into the FF mode at 1547.10 nm, and ob-
served strong scattering of generated NIR light from the
resonator by an optical microscope, with an example
shown in the inset of Fig. 3. By varying the pump power,
we obtained the power dependence of the SHG, as shown
in Fig. 3. The experimental data exhibit a quadratic
relation between the generated SH power and the FF
pump power, which is the signature of SHG in the low-
pump-power regime. The measured conversion efficiency
is 1,500% W−1. This efficiency is more than one or-
der of magnitude higher than those in many other LN
microresonators [19–21, 24–29]. It is even comparable
with a recent study of cyclic phase matching in an X-cut
microdisk exhibiting an ultra-high Q of ∼107 [23], two
orders of magnitude higher than that of our microring
resonator, due to the use of modal phase matching that
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FIG. 4. Recorded DFG spectra, when pumping at the SH
mode in the NIR and one of the five nearest modes with longer
wavelengths than the FF mode in the telecom band. Pump
power at the SH mode was 6.6 µW.

offers a major advantage. With future optimization of
the optical Q’s of our device (e.g., by using a thicker LN
film and an oxide cladding to reduce the sidewall scatter-
ing loss), we expect a further increase in the conversion
efficiency.

The measured efficient SHG validated phase match-
ing in our microring, and also indicated its capability
of other parametric processes. In order to explore this,
we launched power in both the SH mode, and one of the
modes near the FF mode. Figure 4 presents the recorded
spectra in the telecom band. With only 6.6 µW of on-chip
power at the SH mode, we were able to convert long-
wavelength telecom light coherently into shorter wave-
lengths through DFG. The long-wavelength pump power
launched on chip was 105 µW, and the generated power
at the difference frequencies was about 480 pW, indicat-
ing a conversion rate of about -53 dB.

IV. Theoretical analysis

In order to acquire a better understanding of nonlin-
ear parametric processes in our device, we analyze the
system with a model derived from the coupled-mode the-
ory [32, 33]. The conversion efficiency is calculated with
numerically simulated modes of the waveguide and ex-
perimentally measured Q-factors of the microring res-
onator (see Appendix A for details). Using this model,
the SHG efficiency in our LN microring is calculated to be
Γ ≈ 30, 000% W−1. Thus, there is more than one order of
magnitude difference between the theoretical prediction
and the experimental result.

The main reason for this discrepancy is likely non-
uniformity of the microring at different azimuthal an-
gles. By simulation, a change of 1 nm in the waveguide
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width, for example, will lead to a shift of ∼ −3 nm in the
phase-matched pump wavelength of SHG. Considering
the small linewidths of our cavity modes, which are only
11 pm for the FF mode and 9 pm for the SH mode, the
local phase-matching window at some azimuthal angle is
easily shifted out of the cavity resonances due to fabrica-
tion imperfections (see Appendix B for details). In the
current work, relevant fabrication imperfections include
the non-circular beam spot in electron-beam lithography,
the proximity effect in lithography and etching, and the
non-uniformity in the thickness of the LN thin film, all
of which could prevent the fabricated microring from ex-
hibiting perfect rotational symmetry. We believe this
efficiency degradation can be resolved by optimized fab-
rication techniques in the near future, and the conversion
efficiency can be significantly improved.

V. Conclusion

In conclusion, we have demonstrated optical paramet-
ric generation in an LN microring resonator with modal
phase matching. We have used a single bus waveguide
to conveniently couple the FF and SH modes, both ex-
hibiting coupling depths over 80% and loaded optical Q’s
around 105, resulting in a measured conversion efficiency
of 1,500% W−1 for SHG. In addition, we have also ob-
served DFG in the telecom band. Our work represents
an important step towards ultra-highly efficient optical
parametric generation in photonic circuits based on the
LN integrated platform.
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Appendix A: Derivation of SHG efficiency in an
optical resonator

The analytical model of the cavity-enhanced nonlin-
ear optical parametric processes is derived from the
coupled-mode theory [32, 33]. For simplicity, the ma-
terial anisotropy is not fully accounted for. The deriva-
tion is first performed to obtain the coupling strength
between two cavity modes assuming no optical losses,
and loss terms and laser-cavity detunings are added in
the simplified equations later.

SHG induced by the quadratic nonlinear interaction is
described by driven wave equations as

∇2Ẽ1(r, t)− ε(r, ω1)

c2
∂2

∂t2
Ẽ1(r, t) =

1

ε0c2
∂2

∂t2
P̃
NL
1 (r, t), (1)

∇2Ẽ2(r, t)− ε(r, ω2)

c2
∂2

∂t2
Ẽ2(r, t) =

1

ε0c2
∂2

∂t2
P̃
NL
2 (r, t), (2)

where c and ε0 are the speed of light and permittivity in
vacuum, respectively, ε(r, ω1) [ε(r, ω2)] is the relative per-
mittivity, ω1 (ω2) is the angular optical frequency at the
FF (SH), with ω2 = 2ω1, and the nonlinear polarizations
are represented as

P̃
NL

1 (r, t) = ε0χ
(2)(ω1;−ω1, ω2)Ẽ

∗
1(r, t)Ẽ2(r, t), (3)

P̃
NL

2 (r, t) =
ε0
2
χ(2)(ω2;ω1, ω1)Ẽ1(r, t)Ẽ1(r, t). (4)

In an optical resonator, when ω1 and ω2 are near the
frequencies of two cavity resonances, the electric fields
can be written as

Ẽ1(r, t) = A1(t)E1(r)e−iω10t, (5)

Ẽ2(r, t) = A2(t)E2(r)e−iω20t. (6)

where ω10 and ω20 are the resonance frequencies that
are close to phase matching, i.e. ∆ω ≡ ω20 − 2ω10 �
min (ωFSR,1, ωFSR,2), with ωFSR,1 and ωFSR,2 being the
free-spectral ranges; E1(r) and E2(r) are the mode pro-
files in the three-dimensional cavity; A1(t) and A2(t) are
the field amplitudes. By substituting Eqs. (3)-(6) into
Eqs. (1)-(2), the relation between the coupled field am-
plitudes is obtained as

dA1

dt
ε(r, ω10)E1(r) =

iω10

2
A∗1A2e

−i∆ωtχ(2)E∗1(r)E2(r), (7)

dA2

dt
ε(r, ω20)E2(r) =

iω20

4
A2

1e
i∆ωtχ(2)E1(r)E1(r), (8)

where slowly evolving amplitudes, |d
2Aj

dt2 | � |ωj0 dAj

dt |,
and weak dispersion, ε(r, ωj) ≈ ε(r, ωj0) (j = 1, 2), have
been assumed. Also, it has been considered that the
mode profiles, E1(r) and E2(r), satisfy

∇2E1(r) + ε(r, ω10)
ω2

10

c2
E1(r) = 0, (9)

∇2E2(r) + ε(r, ω20)
ω2

20

c2
E2(r) = 0. (10)

By multiplying E∗1(r) on both sides of Eq. (7), multiply-
ing E∗2(r) on both sides of Eq. (8), and integrating both
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equations over all three-dimensional space, Eqs. (7)-(8)
become

dA1

dt
=
iω10

2
A∗1A2e

−i∆ωt

∫
χ

(2)
ijkE

∗
1iE
∗
1jE2kd

3x∫
ε(r, ω10)|E1|2d3x

, (11)

dA2

dt
=
iω20

4
A2

1e
i∆ωt

∫
χ

(2)
ijkE

∗
2iE1jE1kd

3x∫
ε(r, ω20)|E2|2d3x

, (12)

The amplitudes can be normalized as

a′1(t) = A1(t)

√
ε0
2

∫
ε(r, ω10)|E1(r)|2d3x, (13)

a′2(t) = A2(t)

√
ε0
2

∫
ε(r, ω20)|E2(r)|2d3x, (14)

such that |a′1|2 and |a′2|2 represent intracavity optical en-
ergies. The amplitudes can be further normalized as

a1(t) =
a′1(t)√
~ω10

, (15)

a2(t) =
a′2(t)√
~ω20

, (16)

such that |a1|2 and |a2|2 represent intracavity photon
numbers, with

da1

dt
=
iω10

2

√
2~ω20

ε0
a∗1a2e

−i∆ωt

∫
χ

(2)
ijkE

∗
1iE
∗
1jE2kd

3x∫
ε(r, ω10)|E1|2d3x

√∫
ε(r, ω20)|E2|2d3x

, (17)

da2

dt
=
iω10

4

√
2~ω20

ε0
a2

1e
i∆ωt

∫
χ

(2)
ijkE

∗
2iE1jE1kd

3x∫
ε(r, ω10)|E1|2d3x

√∫
ε(r, ω20)|E2|2d3x

. (18)

Eqs. (17)-(18) can be simplified when only one non-
linear medium is in the system. In this case, the mode
overlap factor is written as

ζijk =

∫
χ(2) E

∗
2iE1jE1kd

3x

|
∫
χ(2) |E1|2E1d3x| 23 |

∫
χ(2) |E2|2E2d3x| 13

, (19)

where
∫
χ(2) and

∫
all

denote integration over the nonlin-

ear medium and all space, respectively, and the effective
mode volume can be defined as Veff ≡ (V 2

1 V2)
1
3 , with

Vj =
(
∫

all
ε(r, ωj0)|Ej |2d3x)3

|
∫
χ(2) ε(r, ωj0)

3
2 |Ej |2Ejd3x|2

, (j = 1, 2). (20)

As a result, the single-photon coupling strength is written
as

γ =

√
~ω2

10ω20

8ε0ε̃21ε̃2

χ
(2)
ijkζijk√
Veff

, (21)

where ε̃1 and ε̃2 are the relative permittivity of the non-
linear medium at ω10 and ω20, respectively. Eq. (21) is
a general form of the coupling strength for SHG in an
optical cavity.

In the current work, the mode overlap factor has a

dominant contribution from
∫
χ(2) E

∗
2zE

2
1zd

3x due to χ
(2)
333,

thus it can be simplified to

ζ =

∫
χ(2) E

∗
2zE

2
1zd

3x

|
∫
χ(2) |E1|2E1d3x| 23 |

∫
χ(2) |E2|2E2d3x| 13

. (22)

For a rotationally symmetric microring with a rela-
tively large radius, the transverse mode profiles can be
approximated by those of the corresponding waveguide

modes, E
(wg)
1 and E

(wg)
2 , thus the overlap factor can be

further represented as that of the waveguide, i.e.,

ζ = ζ(wg) =

∫
χ(2)(E

(wg)
2z )∗(E

(wg)
1z )2dxdz

|
∫
χ(2) |E(wg)

1 |2E(wg)
1 dxdz| 23 |

∫
χ(2) |E(wg)

2 |2E(wg)
2 dxdz| 13

. (23)

Similarly, the effective volume of the cavity can be repre-
sented as the product of the effective area of the waveg-

uide, A
(wg)
eff , and the cavity length, L, i.e. Veff = A

(wg)
eff L,

where A
(wg)
eff ≡ [(A

(wg)
1 )2A

(wg)
2 ]

1
3 , with

A
(wg)
j =

[
∫

all
ε(r, ωj0)|E(wg)

j |2dxdz]3

|
∫
χ(2) ε(r, ωj0)

3
2 |E(wg)

j |2E(wg)
j dxdz|2

, (j = 1, 2).

(24)
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Therefore, the coupling strength can then be written as

γ =

√
~ω2

10ω20

2ε0ε̃21ε̃2

deffζ
(wg)√

A
(wg)
eff L

, (25)

where deff = d33 = χ
(2)
333/2. Note that Eq. (25) only con-

tains basic physical quantities of the cavity, and infor-
mation of the optical modes are from the corresponding
waveguide. As a result, the coupled-mode equations can
be simplified to

da1

dt
= 2iγ∗e−i∆ωta∗1a2, (26)

da2

dt
= iγei∆ωta2

1. (27)

When the two cavity modes have finite linewidths and
external pump fields, the driven coupled-mode equations
can be written as

da1

dt
= −κ1t

2
a1 + 2iγ∗e−i∆ωta∗1a2 + i

√
κ1eF1e

−iδ1t, (28)

da2

dt
= −κ2t

2
a2 + iγei∆ωta2

1 + i
√
κ2eF2e

−iδ2t, (29)

where κ1t (κ2t) is the total cavity loss rate, κ1e (κ2e) is the
external coupling rate, and δ1 ≡ ω1 − ω10 (δ2 ≡ ω2 − ω20) is
the laser-cavity detuning, of the FF (SH), and F1 (F2) is the
amplitude of the driving field at ω1 (ω2). In an SHG process,
only the FF mode is externally pumped, leading to

da1

dt
= −κ1t

2
a1 + 2iγ∗e−i∆ωta∗1a2 + i

√
κ1eF1e

−iδ1t, (30)

da2

dt
= −κ2t

2
a2 + iγei∆ωta2

1. (31)

In order to remove the slowly oscillating factors, e±i∆ωt and
e−iδ1t, Eqs. (30)-(31) can be written in a rotating reference
frame (a1 → a1e

−iδ1t, a2 → a2e
−iδ2t), which yields

da1

dt
= (iδ1 −

κ1t

2
)a1 + 2iγ∗a∗1a2 + i

√
κ1eF1, (32)

da2

dt
= [i(2δ1 −∆ω)− κ2t

2
]a2 + iγa2

1, (33)

where the energy conservation law, ω2 = ω20 + δ2 = 2(ω10 +
δ1) = 2ω1, has been applied to obtain δ2 = 2δ1 − ∆ω. In
this case, an amplitude can be defined as G2 = i

√
κ2ea2, with

|G2|2 representing the flux of SH photons at the cavity output.
In the weak-conversion regime without pump depletion,

i.e. |a1| � |a2|, the cross-term in Eq. (32) is negligible, and
Eq. (32) can be simplified to

da1

dt
= (iδ1 −

κ1t

2
)a1 + i

√
κ1eF1. (34)

For a continuous-wave pump, the steady state requires da1
dt

=
da2
dt

= 0 in Eqs. (33)-(34), and the normalized amplitudes are
written as

a1 =
i
√
κ1eF1

κ1t
2
− iδ1

, (35)

a2 =
iγa2

1
κ2t
2
− i(2δ1 −∆ω)

. (36)

Thus, the relation between the pump photon flux, N1 = |F1|2,
and the output SH photon flux, N2 = |G2|2, is obtained as

N2 = N2
1 |γ2| κ2

1e

[(κ1t
2

)2 + δ2
1 ]2

κ2e

(κ2t
2

)2 + (2δ1 −∆ω)2
, (37)

With the input FF power, P1 = N1~ω1, and the output SH
power, P2 = N2~ω2, the conversion efficiency can be calcu-
lated as

Γ ≡ P2

P 2
1

=
|γ|2ω2

~ω2
1

κ2
1e

[(κ1t
2

)2 + δ2
1 ]2

κ2e

(κ2t
2

)2 + (2δ1 −∆ω)2
. (38)

In the case of exact phase matching and on-resonance
pumping, i.e. ∆ω = δ1 = 0, Eq. (38) can be written with
regard to quality factors, Qt(e) = ω/κt(e), as follows,

Γ =
64|γ|2

~ω4
1

Q4
1tQ

2
2t

Q2
1eQ2e

. (39)

Eq. (39) is used to calculate the maximal conversion efficiency
in the current device.

Appendix B: Efficiency degradation due to
inconsistent local phase matching

For the two cavity modes in the microring resonator, the
resonance frequencies are determined by the overall resonant
condition of the resonator (related to the total phase shift per
round trip), given as

ω10

c
n̄1(ω10)L ≡ ω10

c

∫ 2π

0

n1(ω10, φ)Rdφ = 2m1π, (40)

ω20

c
n̄2(ω20)L ≡ ω20

c

∫ 2π

0

n2(ω20, φ)Rdφ = 2m2π, (41)

where R is the cavity radius, n̄ is the effective refractive in-
dex averaged over the cavity, and m1 and m2 are the az-
imuthal mode orders, with m2 = 2m1. Even with fabrica-
tion imperfections, global phase matching can be conveniently
achieved between the two cavity modes, i.e., ω20 = 2ω10 and
n̄2(ω20) = n̄1(ω10).

Despite the global phase matching, the measured SHG effi-
ciency can be lower than the theoretical prediction, due to im-
perfect rotation symmetry of the fabricated device. As shown
in Eq. (22), the SHG efficiency is determined by the mode
overlap between the two cavity modes over the whole cavity,

ζ ∝
∫
χ(2)

E∗2zE
2
1zd

3x = ξ

∫
χ(2)

(E
(T)
2z )∗(E

(T)
1z )2dρdz, (42)

where ρ is the radial coordinate in cylindrical coordinates,

E
(T)
1 (ρ, z) and E

(T)
2 (ρ, z) are the transverse mode profiles of

the cavity modes, and ξ is an integrated phase mismatch fac-
tor written as

ξ =
1

2π

∫ 2π

0

ei
ω20
c

[n2(ω20,φ)−n1(ω10,φ)]RφRdφ. (43)

In the ideal case with n1(ω10, φ) = n2(ω20, φ) = const at any
azimuthal angle, ξ has a maximal value of 1, leading to the
maximal conversion efficiency calculated by Eq. (39). How-
ever, the φ-dependent variations of n1(ω10, φ) and n2(ω20, φ),
which are introduced by fabrication imperfections, can de-
crease the value of ξ, resulting in a degraded conversion effi-
ciency.
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