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We utilize an effective Hamiltonian formalism, within the Floquet scattering framework, to design
a class of driving-induced non-reciprocal components with minimal complexity. In the high driving-
frequency limit, where our scheme is formally applicable, these designs demonstrate a leading order
non-reciprocal performance which is inverse proportional to the driving frequency. Surprisingly, the
optimal non-reciprocal behavior persists also in the slow driving regime. Our approach highlights
the importance of physical loops in the design of these driven non-reciprocal components.

PACS numbers:

I. INTRODUCTION

The quest for schemes that lead to the realization
of novel non-reciprocal components has been, for many
years now, a subject of intense activity [1–8]. On the fun-
damental level these schemes must invoke mechanisms
that violate time-reversal symmetry – the latter being
in the core of wave transport reciprocity theorems [9–
12]. On the technological level, the employed designs
must satisfy a set of requirements; the non-reciprocal
components have to be bounded by the small footprint
of the devices, they have to be easily fabricated, have
small cost, small energy consumption etc. Needless to
say that any achievement along these lines can influence
the progress of wave transport management in areas as
diverse as electromagnetism, acoustics, thermal, matter
and quantum waves. At the same time, the development
of such new class of circulators, isolators and other non-
reciprocal components will have dramatic implications in
the next generation of communication, protection, imag-
ing, and quantum information schemes.

In the electromagnetic framework, non-reciprocal
transport has been mainly achieved via magneto-optical
materials [13, 14]. These exotic materials are normally
very lossy when deposited at thin films. Moreover, the
weak nature of the magneto-optical effects makes them
incompatible with on-chip integration. Similar problems
appear in acoustics, where magneto-acoustic effects are
even weaker than their optical counterparts [15]. An al-
ternative approach to directional wave transport utilizes
nonlinear spatially asymmetric structures [1, 6, 16–22].
The nonlinear effects can be different for the forward and
backward propagating waves, thus resulting in intensity-
dependent propagation asymmetry. The same principle
applies also for phononic heat transport and can lead to
thermal diodes and rectifiers [2, 6, 23, 24]. Despite this
success, nonlinear mechanisms impose limitations on the
operational amplitude of the device - an undesirable fea-
ture from the engineering perspective. At the same time,
in the case of electromagnetic and acoustic waves, they
often introduce inherent signal distortions (generation of
higher harmonics) [6].

Parallel approaches that aim to realize non-reciprocal

FIG. 1: Non-reciprocal components withO(1/ω) performance
consisting of a minimal number of modes having the simplest
connectivity. Red highlights indicate the components which
are potentially modulated in time. (a) An isolator based on
two-mode modulated target. In the specific case, the modu-
lated elements can be the resonant frequency of each mode
and the coupling between them. (b) A circulator based on a
three-mode target where the coupling between the modes is
periodically modulated. The bold circle indicates the direc-
tion of circulation.

components have capitalized on active schemes. These
designs utilize spatio-temporal modulations of the
impedance profile of the propagating medium and pro-
vide a promising alternative for the realization of com-
pact, reconfigurable non-reciprocal components [1, 3, 4,
7, 25–27]. In fact, when paired with the emerging field of
Floquet engineering [28–30], they might provide a power-
ful approach that can produce frequency and bandwidth-
tailored non-reciprocal transport [31, 32].

In this paper we will utilize the toolbox of Floquet en-
gineering, in order to design an efficient class of driving-
induced non-reciprocal components with minimal com-
plexity, i.e. non-reciprocal set-ups consisting of a mini-
mal number of modes having the simplest connectivity,
see Figs. 1a,b. Our design scheme is demonstrated us-
ing the universal framework provided by coupled mode
theory. Although it is formally applicable at the high-
frequency modulation limit, it also provide guidance
for the design of non-reciprocal components in the low-
frequency modulation regime. The proposed methodol-
ogy highlights the importance of physical loops in these
designs i.e. ring-like spatial configurations like the ones
shown in Fig. 1a,b [33]. Moreover, it allow us to de-
rive analytical expressions for the left/right transmit-
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tance asymmetry ∆ = TL→R−TR→L which, in the high-
frequency ω modulation regime, is ∆ ∼ O(1/ω). We find
that the theoretical expressions that describe the trans-
mittance asymmetry ∆ of this class of isolators and cir-
culators matches nicely with the numerical results and in
many occasions can reach the maximum value of 100%
non-reciprocal behavior.

The structure of the paper is as follows. In Sec. II,
we present the Floquet engineering scattering formalism
in the limit of high modulation frequency. The method
utilizes the notion of effective Floquet Hamiltonian. In
the next Sec. III, we implement this formalism for the
design of reconfigurable non-reciprocal components with
leading order performance which is inverse proportional
to the driving frequency. In Subsec. III A, we discuss
the applicability of our scheme for the case of an isola-
tor and demonstrate the validity of our approach via a
specific model. The applicability of the method in the
case of a circulator is shown in Subsec. III B. In Sec. IV,
we demonstrate the persistence of optimal performance
of our designs in the low driving frequency regimes via
numerical examples. Finally, our conclusions are given
at the last Sec. V.

II. FLOQUET SCATTERING IN THE HIGH
MODULATION FREQUENCY LIMIT

We consider periodically time-modulated systems con-
sisting of Ns coupled modes. In the context of cou-
pled mode theory such a (Hermitian) system can be
described by a time-dependent Ns-dimensional Hamil-

tonian Ĥ0 (t) = Ĥ†0 (t) = Ĥ0 (t+ T ). It turns out
that the evolution of such systems can be expressed
in terms of a Ns-dimensional time-independent effective
(Floquet) Hamiltonian ĤF and a micromotion operator

ÛF (t) = ÛF (t+ T ) [28].

To clarify these notions of ĤF and ÛF , we
first introduce the one-period time-evolution opera-
tor Û (t0 + T, t0) of the time-dependent Schrödinger-

like equation ı ddt |ψ (t)〉 = Ĥ0 (t) |ψ (t)〉. This time-

evolution operator Û (t0 + T, t0) evolves states from an
arbitrary initial time t0 to time t0 + T . The unitarity of
Û (t0 + T, t0) allows us to construct an orthonormal ba-
sis of the Hilbert space from its eigenvectors. Specifically,
we have

Û (t0 + T, t0) |ψα (t0)〉 = e−ıεαT |ψα (t0)〉 , (1)

where {|ψα (t0)〉} , 〈ψβ (t0)| ψα (t0)〉 = δβα form a com-
plete orthonormal basis and the real quasienergies εα
are independent of the initial time t0 and can be re-
stricted to εα ∈ (−ω/2, ω/2] without loss of generality
(ω ≡ 2π/T ). Starting from each specified initial state
|ψα (t0)〉, we can evaluate the stationary solutions (Flo-

quet states) |ψα (t)〉 ≡ Û (t, t0) |ψα (t0)〉 of the aforemen-
tioned Schrödinger-like equation. These Floquet states

can be written as

|ψα (t)〉 = |uα (t)〉 e−ıεαt, (2)

where |uα (t)〉 = |uα (t+ T )〉 are the so-called Floquet
modes. Eq. (2) constitutes the essence of Floquet theo-
rem.

Based on the quasienergies εα and the Floquet modes
|uα (t)〉, we can define the one-point micromotion oper-

ator ÛF (t) and the effective (Floquet) Hamiltonian ĤF

as [34]

ÛF (t) =
∑
α

|uα (t)〉 〈uα (0)| , ĤF =
∑
α

εα |uα (0)〉 〈uα (0)|

(3)

Notice that ÛF (t) = ÛF (t+ T ) and, more importantly,

the effective Hamiltonian ĤF does not depend on the
initial time t0 since |uα (0)〉 = |ψα (0)〉 is an eigen-

vector of Û (T, 0). Finally, using Eq. (3), we can ex-

press the general time-evolution operator Û (t, t0) =∑
α |ψα (t)〉 〈ψα (t0)| in the form

Û (t, t0) = ÛF (t) e−ıĤF (t−t0)Û†F (t0) , (4)

where the dependence on t0 is attributed to the one-
point micromotion operator. From the above discussion
it becomes clear that HF describes the long time (stro-
boscopic) dynamics while UF accounts for the evolution
within one period of the driving.

The effective Hamiltonian formalism allows us to in-
voke a systematic high-frequency expansion in ω for both
the effective Hamiltonian ĤF and the micromotion op-
erator ÛF (t) [29]. A benefit of this representation is the
fact that one can eliminate the artificial dependence of
the effective Hamiltonian on the driving phase (i.e. ini-
tial time of periodic driving) which can be elusive as far
as symmetry preservation is concerned [29].

At the same time, the notion of ĤF and ÛF has been
proven useful in the analysis of Floquet scattering set-
tings [32]. The latter constitutes the natural framework
where the scattering properties of driven targets can be
inferred from the dynamics of their isolated (i.e. in the
absence of coupling with leads) counterparts [31]. The
proposed approach [32] allows us to treat the driven tar-
get as a static one – which is described by the effective
Hamiltonian ĤF – coupled to leads. In this framework
the coupling constants that describe the coupling of the
target with the leads are also time-independent - albeit
they are different from their bare values due to a renor-
malization procedure which involves information encoded
in the micromotion.

To be specific, we consider a time-periodic driven tar-
get which is coupled with M identical leads. The cou-
pling strengths between the target and the leads are given
by the bare coupling matrix ĉ. The transport characteris-
tics of this system are given by the Floquet scattering ma-
trix S, which couples the outgoing propagating channels
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with the incoming ones. Below we will assume for sim-
plicity that in the high-driving frequency domain there
exists only one propagating channel in each lead. The
case of multimode leads, although more cumbersome,
can be also worked out along the same lines. The flux-
normalized scattering matrix S, up to order O

(
1/ω2

)
, is

[32]

S ≈ −IM + ıvg ĉuGĉ
†
u, G =

1

E − ĤF + Λu + ı
2vg ĉ

†
uĉu

(5)

where IM is the M ×M identity matrix, vg = ∂E/∂k
is the group velocity of the propagating channel, and
ĉu = ĉû0 is the renormalized bare coupling due to the

micromotion ûn ≡ 1
T

∫ T
0
dtÛF (t) eınωt. The latter can

be approximated as

ûn ≈

{
INs − 1

2ω2

∑
m6=0

1
m2 Ĥ

(−m)Ĥ(m); n = 0
1
nω Ĥ

(n); n 6= 0
(6)

where Ĥ(n) ≡ 1
T

∫ T
0
dtĤ0 (t) eınωt. The term Λu =

λĉ†uĉu+
∑
n û
†
nıΓ̂ûn in the denominator of Eq. (5) repre-

sents the fact that the target is not isolated. The origin
of these two terms is different: the first one describes the
channel-coupling induced renormalization to the close-
system Hamiltonian while the second one is optional and
describes potential material gain/loss of the target (−ıΓ̂
is a non-Hermitian diagonal matrix). In fact, in an alter-
native formulation of the problem, we could absorb the
gain/loss properties of the isolated system in a composite

coupled mode Hamiltonian Ĥ0(t) → Ĥ0 (t) − ıΓ̂ with a

corresponding ĤF → ĤF − ı
∑
n û
†
nΓ̂ûn.

Finally, the high-frequency expansion of the effective
Hamiltonian ĤF is given in many references [32, 35], and
it is shown here for the sake of completeness and conven-
tion consistency:

ĤF ≈ Ĥ(0) −
∞∑
n=1

1

nω

[
Ĥ(n), Ĥ(−n)

]
+
∑
n 6=0

[
Ĥ(−n),

[
Ĥ(0), Ĥ(n)

]]
2n2ω2

+
∑
n 6=0

∑
n′ 6=0,n

[
Ĥ(−n′),

[
Ĥ(n′−n), Ĥ(n)

]]
3nn′ω2

. (7)

Hereafter we will consider tight-binding leads with dis-
persion relation E (k) = −2 cos (k) (in units of coupling).
In this case, λ = cos (k) (appearing in Λu) and the group
velocity vg = 2 sin (k), where k ∈ (0, π).

Finally, we point out the structural similarities be-
tween the S-matrix given by Eq. (5) and the scattering
matrix associated with static targets, when the latter is
written in terms of the Hamiltonian of the correspond-
ing isolated system, see for example Refs. [36, 37]. These
similarities can be proven useful in other investigations
where scattering properties of complex/ chaotic systems
are investigated. Interestingly enough, although the for-
mula Eq. (5) is formally correct up to order O

(
1/ω2

)
,

its performance typically go beyond this order (compare,
for example, Fig. 2b and Fig. 2a). The reason is subtle
but we might appreciate it from the preserved structure
and general properties. For example, in the absence of
gain/loss, i.e., Γ̂ = 0, the approximate scattering matrix
in Eq. (5) preserves the unitarity as it should.

Below we will present our design strategy for the re-
alization of non-reciprocal components with O(1/ω) per-
formance (see Fig. 1a,b). It consists of two steps: first
we utilize the Floquet engineering within the scattering
set-up to develop driving schemes that provide optimal
non-reciprocal responses in the high-frequency limit. At
the second step we demonstrate that these same designs
manifest optimal transmittance asymmetry also in the
limit of slow driving. Our proposal is supported by de-

tail simulations.

III. NONRECIPROCAL COMPONENTS IN THE
HIGH FREQUENCY LIMIT

First we utilize Eq. (5) to derive analytical expres-
sions for the left/right transmittance asymmetry ∆ up to
leading order in driving frequency ω, i.e. ∆ ∝ O(1/ω).
A subsequent optimization of these expressions with re-
spect to various driving parameters, allow us to engineer
non-reciprocal components (circulators, isolators) with
maximum transmittance asymmetry.

A. Reconfigurable Isolators

The first reconfigurable nonreciprocal component that
we design is an isolator. We consider the simplest possi-
ble scenario involving two driving modes, i.e., Ns = 2,
coupled to two leads M = 2 [38]. We first observe
that the leading order contribution ∝ O (1/ω) in the
expression Eq. (5) for the scattering matrix, originates

solely from the effective Floquet Hamiltonian ĤF (see
Eq. (7)). Due to its Hermitian nature, however, the

2 × 2 matrix ĤF cannot lead to a transmittance asym-
metry |S12| 6= |S21|. One needs, therefore, to “break”
this Hermiticity constraint – an operation performed by
incorporating in ĤF the non-Hermitian diagonal matrix
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FIG. 2: Non-reciprocal characteristics of a two-mode driven
isolator with a physical loop (see Fig. 1a). The driving proto-
col is given by Eq. (9). (a) The numerical (lines) values (using
the Floquet scattering matrix approach, see Ref. [31]), for the
transmittance asymmetry ∆ versus the incident frequency E,
are compared with the theoretical (symbols) results of Eq. (8).
Three different relative driving phases for the left resonator
φL = π, π/2 and π/6 are studied. The best isolation perfor-
mance is observed when φL = π/2 (see also the inset). Inset:
the transmittance asymmetry ∆ versus the phase φL when
the incident frequency is fixed to be E = 1. (b) Left/right
transmittances (TL→R/TR→L) versus the incident frequency
E when the optimized phase φL = π/2 is used. The theoreti-
cal result (symbols) are given by Eq. (5). In both (a) and (b)
we have used the following set of parameters associated with
the driving protocol Eq. (9): ε0L = ε0R = 0, fL = fR = 1,
φR = −π/2, h0 = −2h = −1, ω = 6 and finally γ = 0.3 for
the uniform loss. The bare coupling matrix that describes the
coupling between the target and the leads has matrix elements
cL = cR = c̃L = −1,

ıΓ̂ (see previous discussion). As a result, the matrix G
in Eq. (5) has, up to a common factor, complex diagonal
matrix elements G11, G22 ∈ C while its off-diagonal ele-
ments are complex conjugates of each other G12 = G∗21.
This, by itself, does not guarantee that |S21| 6= |S12|,
let alone that ∆ ∝ O (1/ω). The latter requirement can
be fulfilled only when the bare coupling matrix ĉ has
off-diagonal elements which lead to a mixing of diagonal
and off diagonal terms of G after performing the mul-
tiplication (see Eq. (5)). The presence of off-diagonal
elements in ĉ suggests an isolator design that involves
physical loops. An example of such system is shown in
Fig. 1a and it is mathematically modeled via the bare

coupling matrix ĉ =

(
cL c̃L
0 cR

)
. We stress again that this

design is a direct consequence of the theoretical analysis
of Eq. (5).

Next we proceed with the evaluation of transmittance
asymmetry ∆ for the design of Fig. 1a. For simplic-
ity, we assume uniform gain/loss, i.e., Γ̂ = γINs . Fur-

thermore, we parametrize the effective Hamiltonian ĤF

as ĤF = Ĥ†F =

(
η1 ηr + ıηi

ηr − ıηi η2

)
and the micromo-

tion operator û0 as û0 = û†0 =

(
µ1 µr + ıµi

µr − ıµi µ2

)
.

In the above parametrization we have consider terms
up to order O

(
1/ω2

)
. Specifically, since the target in

the absence of modulation is recirpocal, we have that
ηi ∼ O (1/ω) while generally {η1, η2, ηr} ∼ O (1). Simi-
larly, the components of the micromotion operator û0 are
µ1,2 = 1 +O

(
1/ω2

)
and µr,i ∼ O

(
1/ω2

)
.

It turns out that the matrix elements ηi and µi are es-
sential for the presence of the transmittance asymmetry.
Their origin are traced back to the presence of driving
and can be associated with an effective gauge field [40].
To appreciate the importance of ηi and µi, we have eval-
uated the transmittance asymmetry ∆ explicitly up to
O
(
1/ω2

)
. Using Eq. (5) we get

∆ ≈ −
4cLc

2
Rv

2
gγ {ηic̃L + µi [c̃L (η1 − η2)− 2cLηr]}

|detD (γ)|2

∝ ηi +O(1/ω2) (8)

where the matrix D (γ) ≡ E + ıγ − ĤF + eık ĉ†ĉ and ĤF

has been evaluated using the first two terms in Eq. (7).
Let us now consider a specific driving protocol de-

scribed by the time-dependent Hamiltonian Ĥ0 (t)

Ĥ0 (t) =

(
εL (t) h (t)
h (t) εR (t)

)
(9)

where εL/R (t) = ε0L/R + 2fL/R cos
(
ωt+ φL/R

)
and

h (t) = h0 + 2h cos (ωt+ φ0). For the specific driv-
ing protocol of Eq. (9), we have that µi ∼ O

(
1/ω3

)
,

ηi = 2h
ω [fL sin (φL − φ0)− fR sin (φR − φ0)] + O

(
1/ω3

)
and ĤF =

(
ε0L h0 + ıηi

h0 − ıηi ε0R

)
+ O

(
1/ω2

)
. Without

any loss of generality, we will assume that the starting
time of the driving scheme is such that φ0 = 0. Then the
other two driving phases φL/R can be measured relative
to φ0, and can be used to optimize the transmittance
asymmetry. A theoretical expression for the transmit-
tance asymmetry ∆, as a function of incident frequency
E, can be calculated by direct substitution of µi, ηi into
Eq. (8). Specifically we find that in the leading order
O (1/ω), the following expression for the transmittance
asymmetry

∆ ≈ −
8cLc

2
Rc̃Lv

2
gγh

|det D (γ)|ω→∞|
2

(fL sinφL − fR sinφR)

ω
(10)

which takes its maximum value |∆| for φL = −φR = π/2.
In Fig. 2a we report the theoretical predictions Eq.

(8) for the transmittance asymmetry ∆, together with
the outcome of the simulations (where the exact Flo-
quet scattering matrix has been used [31]). Various val-
ues of the driving phases φL = π, π/2, π/6 (for fixed
φR = −π/2) have been considered. In all cases we ob-
served a nice agreement between theory and numerics.
Moreover, we find that the maximal transmittance asym-
metry occurs when φL ≈ π/2, as predicted by our the-
ory. This optimal phase choice is further verified in the
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inset of Fig. 1a where we report ∆ versus φL for a fixed
incident wave-frequency E = 1. At Fig. 2b we also
report the individual left TL→R and right TR→L trans-
mittances versus the incident wave frequency, for the op-
timized phase configuration φL = −φR = π/2. The the-
oretical results (symbols) have been calculated using the
(approximated) expression Eq. (5) for the S-matrix (high
frequency limit).

At this point we would like to attract the attention
to the fact that the correspondence between theory and
numerics in Fig. 2b is superior to the one found in Fig.
2a. To this end we remind that both theoretical results
associated with Eq. (5) and the first equality in Eq. (8)
are formally correct up to order O(1/ω2). Nevertheless,
they also incorporate higher order terms in 1/ω. It turns
out that some of these terms which are present in Eq.
(5) and have been excluded when evaluating Eq. (8) are
responsible for this deterioration of the agreement be-
tween theory and numerics in Fig. 2a. We speculate
that the unitarity relation which holds in Eq. (5) (in
the absence of loss) imposes some additional constrains
on the higher orders which are responsible for the better
agreement with the numerics. In a sense the structure of
Eq. (5) reminds us a Padé approximation for the scat-
tering matrix in 1/ω asymptotic series. It will be indeed
very interesting to pursue further such a possibility. This,
however, is beyond the scope of the current paper.

Let us finally discuss in more detail the accuracy of
the theoretical results of Eq. (10) for the transmittance
asymmetry ∆. Indeed, we find that for this specific
model, the detD (γ) which appears in Eq. (8) can be
expanded as detD (γ) = detD (γ)|ω→∞ +O

(
1/ω2

)
. As

a result we conclude that the accuracy of the theoret-
ical result Eq. (10), is up to the order O

(
1/ω2

)
. We

have confirm this prediction using detail numerical sim-
ulations, see Fig. 3. In the inset of the same figure, we
report the error between Eq. (10) and the exact numer-
ical data evaluated from the Floquet scattering matrix
which shows an O(1/ω3) scaling, in agreement with our
prediction.

B. Reconfigurable Circulators

We proceed with the design of circulators. As be-
fore, we consider a design with the minimal complex-
ity consisting of three (driven) modes, each of which
is coupled to a lead (i.e., M = 3) with equal coupling
strength c. As opposed to the case of (two-channel) iso-

lators, here the presence of the non-Hermitian term Γ̂
(describing material losses/gain) is not necessary. The
non-Hermiticity is automatically satisfied by the pres-
ence of the propagating channel in the third lead and
thus we will assume below that Γ̂ = 0. At the ab-
sence of driving, the system is respecting a rotational
symmetry. We want to design a counter-clock-wise cir-
culator, i.e. a three-port structure for which counter-
clock-wise transmittances T21, T32, T13 6= 0, while trans-

FIG. 3: (a) The transmittance asymmetry ∆ versus the mod-
ulation frequency ω for the specific example of Eq. (9). The
theoretical result of Eq. (10) are compared with the results of
the simulations from the (exact) Floquet scattering matrix.
The difference between theoretical and numerical results for
∆ (indicated as |error| in the inset), turns out to be O

(
1/ω3

)
,

see the black dash reference line in the inset which has slope
−3. The other parameters are the same as in Fig. 2b.

FIG. 4: (a) Non-reciprocal transmittance ∆ between leads
1 and 2 (see Fig. 1b) for the model Eq. (14). An optimal
phase configuration φ1 = 0, φ2 = 2π/3 and φ3 = 4π/3 and
various coupling constants c are considered. Maximum non-
reciprocity ∆ = 1 is achieved for perfect impedance matching
conditions corresponding to c ≈ −0.5 (and E ≈ 1.1. The nu-
merical data (lines) have been derived using the (exact) Flo-
quet scattering matrix, see Ref. [31]. The theoretical results
(symbols) correspond to Eq. (15). (b) The transmittances
Tnn′ = |Snn′ |2 in clockwise/counterclockwise direction versus
the incident frequency E when the coupling c = −0.5. The
theoretical results (symbols) Eq. (5) match perfectly the nu-
merical results (lines). The other parameters for both (a) and
(b) are: h0 = −1, h = 0.5, ε0 = 0 and ω = 6.

mittances in the clock-wise direction are (essentially) zero
i.e. T31, T23, T12 ≈ 0. Obviously, such a structure must
demonstrate a strong positive transmittance asymmetry
∆ > 0 between two consequent leads. A schematics of
this circulator is shown in Fig. 1b.

Similar to the case of the isolator, we parametrize the
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effective Hamiltonian ĤF as

ĤF =

 η01 η1r + ıη1i η3r − ıη3i
η1r − ıη1i η02 η2r + ıη2i
η3r + ıη3i η2r − ıη2i η03

 (11)

where ηni ∼ O (1/ω) , η0,n = ε0 + O(1/ω), ηn,r = h0 +
O(1/ω) and n = 1, 2, 3. At the same time the micromo-
tion operator û0 can be written as

û0 =

 µ01 µ1r + ıµ1i µ3r − ıµ3i

µ1r − ıµ1i µ02 µ2r + ıµ2i

µ3r + ıµ3i µ2r − ıµ2i µ03

 , (12)

with µ0n = 1 + O
(
1/ω2

)
, {µnr, µni} ∼ O

(
1/ω2

)
, n =

1, 2, 3.
From Eqs. (5,11,12) we are able to derive the follow-

ing expression for the transmittance asymmetry ∆ up to
O
(
1/ω2

)
between two consequent leads (say lead 1 and

lead 2, see Fig. 1b):

∆ ≈
(
c2vg

)3
(hη +mµ)

|detD (0)|2
∝ hη +O(1/ω2) (13)

where the matrix D(γ) is defined below Eq. (8).
Above hη ≡ 2 (η1rη2rη3i + η3rη1rη2i + η2rη3rη1i) orig-

inates from the effective Hamiltonian ĤF and mµ ≡
4h20 (h0 − ε0 − 2 cos k)

∑
n µni from the micromotion.

Due to the structural symmetry of the undriven system,
Eq. (13) applies also for the transmittance asymmetry
between the leads 2 (3) and 3 (1).

Let us work out a specific driving protocol described
by the following time-periodic Hamiltonian

Ĥ0 (t) =

 ε0 h1 (t) h3 (t)
h1 (t) ε0 h2 (t)
h3 (t) h2 (t) ε0

 , (14)

where the periodic modulation pertains to the couplings
hn (t) = h0 + 2h cos (ωt+ φn). We want to identify the
driving phases configuration {φn} for which the circu-
lator will demonstrate maximum performance. In this
case we have that µni ∼ O

(
1/ω3

)
, ηnr = h0 +O

(
1/ω2

)
,

η1i = 2h2

ω sin (φ3 − φ2) + O
(
1/ω3

)
(and cyclicly η2i =

2h2

ω sin (φ1 − φ3) + O
(
1/ω3

)
, etc) [41]. According to

Eq. (13), the associated transmittance asymmetry reads

∆ ≈
4h20h

2
(
c2vg

)3
(sin (φ2 − φ1) + sin (φ1 − φ3) + sin (φ3 − φ2))

ω |detD (0)|2
. (15)

The above equation indicates that ∆ depends only on the
relative driving phases i.e. φ2−φ1 and φ3−φ1. Without
loss of generality, we set φ1 = 0. From Eq. (15) we find
that the phase configuration φ2 = 2π/3 and φ3 = 4π/3
(or similarly φ2 = 4π/3 and φ3 = 2π/3) can produce
the maximum asymmetry up to order O (1/ω). We point
out that a similar driving phase configuration has been
implemented recently in the case of mode-modulated cir-
culators [42] - though in our case it is important to realize
that this optimal configuration emerged as a result of our
optimization approach. We can further optimize ∆ with
respect to the coupling parameter c. It turns out that for
the specific case of optimal phases the critical coupling
(perfect impedance matching) occurs for c ≈ −0.5.

In Fig. 4a, we show the numerical data for the trans-
mission asymmetry ∆ between channels 1 and 2 (see Fig.
1b) versus the incident frequency for the optimal phase
configuration φ1 = 0, φ2 = 2π/3 and φ3 = 4π/3. Var-
ious coupling strengths c have been considered. At the
same figure we also report the theoretical results for ∆,
see Eq. (15). We found a non-monotonic behavior of the
transmittance asymmetry with respect to the coupling c
due to the impedance mismatch. For the predicted cou-
pling c ≈ −0.5, the system demonstrates a nonreciprocal
behavior which is as high as 100%.

The individual transmittances Tnn′ = |Snn′ |2 versus
incident frequency E (for the optimal phase and coupling
configurations) are reported in Fig. 4b. Both theoretical
(using Eq. (5)) and numerical (using the exact Floquet
scattering matrix [31]) results fall nicely one on top of
the other and indicate that for the optimal phase config-
uration T31 = T23 = T12 ≈ 0 while T21 = T32 = T13 6= 0
at a frequency range around E ≈ 1.1.

Similar to the case of isolators, we evaluate the accu-
racy of the theoretical results of Eq. (15) for the trans-
mittance asymmetry ∆ versus the modulation frequency
ω, see Fig. 5. In the same figure we report the numerical
results (using the Floquet scattering matrix) for ∆. Since
our theoretical expression Eq. (15) is accurate up to the
order O

(
1/ω2

)
, we expect that the error, i.e., the de-

viation between the theoretical and the exact numerical
result for ∆ has to scale as O

(
1/ω3

)
. These expectations

are nicely confirmed by our detail numerical analysis, see
the inset of Fig 5.

IV. NONRECIPROCAL COMPONENTS IN THE
LOW DRIVING FREQUENCY LIMIT



7

FIG. 5: The transmittance asymmetry ∆ versus the modula-
tion frequency ω for the specific example Eq. (14) of the cir-
culator. The theoretical result of Eq. (15) are compared with
the results of the simulations from the (exact) Floquet scatter-
ing matrix. The difference between theoretical and numerical
results for ∆ (indicated as |error| in the inset), is O

(
1/ω3

)
,

see the black dash reference line in the inset which has slope
−3. The other parameters are the same as in Fig. 4b.

Although the Floquet S-matrix can be always ex-
pressed in terms of ĤF , one cannot use any more the
approximated forms Eqs. (5,6,7) in the slow-frequency
driving limit. As a result, our theoretical expressions
Eqs. (8,13) for the transmittance asymmetry are not any
more applicable. We have found, nevertheless, that the
driving designs that lead to optimal non-reciprocity in
the case of high-frequency driving schemes are applicable
even in the case of small driving frequencies. This conclu-
sion has been supported via detail numerical simulations
for various drivings. Typical examples are shown in Fig.
6a,b where we plot the numerical results for |∆| (using
the exact Floquet scattering matrix [31]) for the previous
designs of isolators and circulators. A small driving fre-
quency ω = 0.2 is now used. In the case of an isolator, see
Fig. 6a, we report |∆(E)| for three representative driving
phases φL = π, π/2, π/6. An overall optimal asymmetric
transmittance is observed for φL = π/2 which is the pre-
dicted optimal phase in the case of high-frequency driving
schemes (see Fig. 2). Similarly, in Fig. 6b we report the
behavior of |∆(E)| for φ1 = 0, φ3 = 4π/3 and various
values of φ2 = 2π/3, π and π/3. Again we find that
an overall optimal transmittance asymmetry is observed
when φ2 = 2π/3 which is the predicted optimal driving
phase in the case of high-frequency driving schemes.

V. CONCLUSION

We have developed a scheme for designing optimal non-
reciprocal components (isolators, circulators etc) which
utilize the concept of Floquet engineering. In the high-
frequency modulation limit we developed a theoretical
formalism that relies on the notion of effective Floquet
Hamiltonians ĤF and allows us to express the trans-
mittance asymmetry in inverse powers of the modula-
tion frequency. An analysis of the theoretical expres-

FIG. 6: Performance of nonreciprocal components in the low
driving-frequency limit ω = 0.2. (a) Isolator: the magni-
tude of the transmittance asymmetry |∆| versus the incident
frequency E when φL = π, π/2 and π/6 respectively. The
model for the isolator and the other parameters are the same
as in Fig. 2. (b) Circulator: the magnitude of the transmit-
tance asymmetry |∆| versus the incident frequency E when
φ2 = 2π/3, π and π/3 while φ1 = 0 and φ3 = 4π/3 are kept
fixed. The design of the circulator and the other parameters
are the same as in Fig. 4b. As shown in the subfigures (a)
and (b), the relative driving phases for the (overall) optimal
performance of the nonreciprocal components are consistent
with the high driving-frequency prediction.

sions provides guidance for the geometrical design of non-
reciprocal components and driving schemes that can lead
to optimal performance. Specifically, the method high-
lights the importance of physical loops in getting maxi-
mum non-reciprocal efficiency. Detail numerical investi-
gation indicates that these designs can provide optimal
non-reciprocal transport even in the case of low driving
frequencies.

Our approach can find promising applications in the
framework of classical electromagnetic and acoustic wave
physics. In the microwave (or RF) regime, for exam-
ple, one can implement the time-modulated coupling be-
tween LC resonators (or the resonance frequency modu-
lations of the LC resonators) via capacitance modulation
achieved with varactor diodes [42, 43]. In the acoustic
framework, one can use actuators that compress elasti-
cally the acoustic medium filling the coupled cavities (or
the coupling channels between these cavities) in order to
impose a temporal modulation of their effective acoustic
index by weak variations of their volumes) [44]. Other
potential applications could be in the framework of mat-
ter wave physics as well as thermal transport where the
design of reconfigurable thermal diodes is a challenging
research direction.
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