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Recent advances in nanotechnology have enabled researchers to manipulate small collections of
quantum mechanical objects with unprecedented accuracy. In semiconductor quantum dot qubits,
this manipulation requires controlling the dot orbital energies, tunnel couplings, and the electron
occupations. These properties all depend on the voltages placed on the metallic electrodes that
define the device, whose positions are fixed once the device is fabricated. While there has been
much success with small numbers of dots, as the number of dots grows, it will be increasingly useful
to control these systems with as few electrode voltage changes as possible. Here, we introduce a
protocol, which we call the Compressed Optimization of Device Architectures (CODA), in order to
both efficiently identify sparse sets of voltage changes that control quantum systems, and to introduce
a metric which can be used to compare device designs. As an example of the former, we apply this
method to simulated devices with up to 100 quantum dots and show that CODA automatically
tunes devices more efficiently than other common nonlinear optimizers. To demonstrate the latter,
we determine the optimal lateral scale for a triple quantum dot, yielding a simulated device that
can be tuned with small voltage changes on a limited number of electrodes.

I. INTRODUCTION

Nanoscale systems are challenging to control in part
because their size makes them susceptible to even the
smallest materials defects. Quantum devices present spe-
cial challenges because their energy spectra and tunnel
couplings each require precise control [1, 2]. Here, we fo-
cus on quantum bits (qubits) formed in electrostatically-
gated quantum dots [3]. In these systems, voltages are
simultaneously tuned on many electrodes to precisely
shape the electrostatic potential landscape within a de-
vice. Working with a small number of qubits, researchers
have already demonstrated excellent qubit coherence and
performance in devices based in GaAs [4–7] and sili-
con [8–18], including the successful implementation of
two-qubit gates [19–21] and algorithms [22]. Addition-
ally, there has been rapid progress in systems with elec-
trons bound to donors [23–32], which share many of the
same design challenges as quantum dot qubits. Tuning
schemes for these devices are typically determined empir-
ically; however, there has been recent progress towards
automatic tuning of quantum dots both experimentally
[33, 34] and in simulated systems [35]. One challenge
in controlling quantum dot devices is ensuring that the
voltage changes on the electrodes remain small during
tuning, a property that we refer to as voltage moderation.
Imposing voltage moderation reduces the power required
during dynamic operation and lowers the risk of instabil-
ity. Another challenge is ensuring that a small number of
electrodes can be used to tune quantum dots, preferably
with those electrodes proximal to the relevant dots. We
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refer to this property as voltage sparsity, which eases the
demands on control electronics and will be increasingly
important as devices are scaled to very large numbers
of quantum dots. In order to achieve these goals, it is
critical to use simulations both to identify moderate and
sparse tunings, and to design these features into devices
before they are fabricated.

Here, we introduce the Compressed Optimization of
Device Architectures (CODA) protocol, which both de-
termines optimized ways to change the voltages in a given
system to achieve a desired outcome, and provides a met-
ric to characterize the ease with which the device can be
tuned. We show that by minimizing the L1 norm of the
applied voltage changes, we can simultaneously achieve
voltage moderation and voltage sparsity. We minimize
this norm by implementing the CODA protocol, which
relies on results and methods used for compressed sensing
[36, 37] in the signal processing literature. Using a simu-
lated eight-dot device, we demonstrate that CODA yields
solutions that are simultaneously sparse and moderate.
Moreover, we show that by imposing voltage sparsity and
moderation, we obtain solutions that only involve gates
that are proximal to the dot being manipulated – an ex-
tremely desirable property for extensibility. To further
demonstrate the extensibility of the CODA protocol, we
use a simple model to measure the number of device simu-
lations required to tune devices with up to 100 quantum
dots. We find that CODA requires nearly an order of
magnitude fewer simulations than other commonly-used
nonlinear optimization techniques. Additionally, formu-
lating control as an optimization problem allows us to
directly compare the effectiveness of different device ar-
chitectures, enabling improvement of the electrode de-
signs themselves. To demonstrate this, we use CODA to
optimize the overall lateral scale of a triple quantum dot,
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which leads to a device that is optimally “tunable.”

II. AUTOMATIC TUNING OF SIMULATED
DEVICES

For qubit applications, the main properties we wish
to control are the quantum dot occupations, the orbital
energy splittings, and the tunnel rates between the dots.
Such properties are referred to as quantities of interest,
which we represent as a vector q in a vector space Q.
These values are controlled by the voltages applied to
the electrodes. A given set of voltages is represented as
a vector v in a vector space V. A physical system, or
a simulation thereof, acts as a function that maps the
voltages to the quantities of interest: Ŝ : V → Q, as
shown in Fig. 1(a).

Because generically there are more electrodes than
quantities of interest, many different v can yield target
values for the quantities of interest qtarget. The solu-
tions are not all equivalently useful – it is our goal to
select changes in voltages that are simultaneously mod-
erate and sparse. In Fig. 1(b), we highlight the advantage
of choosing the solution that satisfies the equation

δ̃v = argmin
δv

||δv||1 , subject to Ŝ(vinit + δv) = qtarget,

(1)
where vinit is the voltage vector at the starting point,
qtarget is the vector of target quantities of interest, δv is
the voltage change from the starting point, and || · ||1 is
the L1 norm, which is the sum of the absolute value of
each element in the vector.

Minimizing the L1 norm of the voltage change vec-
tor ensures both the magnitude of the individual volt-
age changes remain small (i.e., voltage moderation) and
that the voltage change vector is sparse. The sparsity
achieved by L1 norm minimization is a property used ex-
tensively in the field of compressed sensing [36, 37]. In
contrast, L2 norm minimization (minimizing the Euclid-
ian length of δv) does not guarantee voltage sparsity, and
L0 pseudonorm minimization (minimizing the number of
nonzero elements of δv) does not guarantee voltage mod-
eration. In principle, one could achieve both moderation
and sparsity by minimizing some combination of these
two quantities, but this would involve making an arbi-
trary choice for the relative weight given to the L0 and
L2 norms. Additionally, finding the solution that min-
imizes the L0 pseudonorm is known to be an NP-hard
problem [38], whereas convex programming methods can
be used to minimize the L1 norm efficiently [39]. There-
fore, by selecting the changes in voltages described in
Eq. (1), the CODA procedure yields a device tuning in
which a small number of voltages are changed by modest
amounts.

To demonstrate the CODA protocol, we first per-
form automatic tuning of a simple toy example shown
in Fig. 1(c)-(f). This system comprises two elec-
trode voltages δv1 and δv2 and one quantity of interest

q(δv1, δv2) = (δv1/(1 mV)−3/2)2+(δv2/(1 mV)−3/4)2.
During the protocol, we treat this as a black box function,
as in more complicated device models we do not have ac-
cess to an analytical form of the mapping from voltages
to quantities of interest. Starting with δv1 = δv2 = 0
mV, we wish to find the voltage changes with minimal
L1 norm that are necessary to change the quantity of in-
terest from qcurrent = 2.8125 to qtarget = 1. To achieve
this, we apply an iterative algorithm to minimize the
distance between the simulated quantities of interest and
the target quantities of interest. At the starting point, we
calculate the Jacobian J = ( ∂q

∂δv1
, ∂q
∂δv2

) and find all of the
solutions to the linear equation qtarget − qcurrent = J · δv,
shown as a red dashed line in Fig. 1(c). In this exam-
ple, it is easy to minimize the L1 norm along this line;
however, for more general and complicated problems, we
employ a matrix-free conic optimization algorithm [39]
to determine the particular δv that minimizes the L1

norm while satisfying this equation. This vector defines
a search direction in voltage space; CODA moves along
this direction in voltage space, stopping at the point that
brings the simulation closest to the target quantities of
interest. This process then repeats until the quantity
of interest converges on qtarget. In general, convergence
is declared when ‖q − qtarget‖2 falls below some thresh-
old. We typically choose an error threshold of ∼ 10−2;
in this example, we choose a threshold of 5 × 10−2. We
achieve convergence after two iterations, at which point
q ≈ 1.041, as shown in Fig. 1(d). In this example, we
achieved the target quantity of interest by changing only
one electrode voltage.

It is instructive to contrast this solution to one ob-
tained using an analogous procedure in which the L2

norm is minimized, rather than the L1 norm, as demon-
strated in Fig. 1(e),(f). Here, we again declare conver-
gence after two iterations, with q ≈ 1.012. However the
final solution involves changing the voltage on both elec-
trodes to achieve the target quantity of interest, and is
therefore less sparse than the solution obtained using the
L1 norm. For more details on the CODA algorithm, see
Appendix A.

In a more realistic demonstration of CODA’s capabil-
ities, we can use it to perform automatic tuning of the
accumulation-mode eight-dot device shown in Fig 1(g).
The device contains four capacitively-coupled double
quantum dot qubits in a Si/SiGe heterostructure. In
principle, the CODA protocol can use any underlying
physical model. Here, we model the device using the
semiclassical Thomas-Fermi approximation [40] to com-
pute electron densities and potentials, and the WKB ap-
proximation [41] to calculate tunnel rates, as described
in Appendices B-C. The quantities of interest are chosen
to be the eight dot occupations and the four intra-qubit
tunnel rates. While this semiclassical approach is ap-
propriate for these quantities of interest, one may need a
more sophisticated model to correctly capture the physics
of different quantities of interest, e.g. valley splitting
within a dot [42]. Our starting point is chosen to give
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FIG. 1. Example implementations of the CODA protocol, including comparisons of using the L1 norm (the sum of absolute
values) and the L2 norm (the Euclidian length) of the voltage changes needed to achieve the desired values of the quantities of
interest (dot occupations, tunnel couplings, etc.). (a) A simulated quantum dot device maps electrode voltages to quantities
of interest. Generically, there are more electrodes in a device than quantities of interest. (b) There are many combinations
of electrode voltages that result in a target system state (grey dashed line). By choosing the solution associated with the
minimum L1 norm of voltage changes, described in Eq. (1) (purple), we simultaneously ensure that voltages are changed by
small amounts on a small number of electrodes. Minimizing the L2 norm (orange) does not ensure that voltage changes will be
applied to a small number of electrodes. (c)-(f) Depiction of CODA algorithm tuning voltages to obtain qtarget = 1 in a simple
system. The voltages which yield the target quantity of interest are indicated with the circular segment in panels (c) and (e).
Starting at δv1 = δv2 = 0 mV (green circle), we calculate the Jacobian J and find all of the solutions to the linear equation
qtarget−qcurrent = J ·δv, shown as a green dashed line. We then find the voltage changes on this line which minimize the L1 and
L2 norm, blue circle in panel (c) and (e), respectively. Using the derivatives at this new point, we again estimate the voltage
changes required to hit the target (blue dashed line), and again find the solution which minimizes the appropriate norm (black
circle). The solution found here has converged on qtarget. Additionally, we have obtained the voltage changes associated with the
minimum of the appropriate norm, indicated by the purple color scale in panel (c), and the orange color scale in panel (e). (g)-(i)
CODA tuning of an 8-dot device. (g) Schematic of a simulated 8-dot device, with metal electrodes colored yellow/orange (lower
level) and green (upper level). Here, the objective is to increase the occupation of the right-most quantum dot (underneath the
orange electrode) by one electron, keeping all other dot occupations and tunnel couplings unchanged. (h),(i) Visualization of
the voltage changes obtained by the optimization protocol, plotted on a logarithmic color scale (electrodes with voltage changes
less than 0.5 µV are colored white), minimizing the (h) L1 and (i) L2 norms of the voltage changes. As expected, minimizing
the L1 norm ensures that a limited number of electrode voltages are changed, whereas minimizing the L2 norm does not.

dot occupations of 1 electron, and transmission coeffi-
cients between the dots of 0.01, corresponding to tunnel
rates of approximately 400 MHz (see Appendix B-C for
details about the simulation parameters and methods).
Our goal is to find the optimal changes in voltages that
can be applied to the device electrodes to add one elec-
tron to the right-most dot, leaving all other dot occupa-
tions and transmission coefficients unchanged.

In Fig. 1(h), we show the voltage changes needed to
achieve convergence of the CODA procedure applied to
the eight-dot device. Note that although voltages are
allowed to vary on all the electrodes, CODA chooses to

vary only four electrode voltages, and those electrodes
are proximal to the target of interest. For compari-
son, we also performed an alternative optimization pro-
tocol based on L2-minimization, with results shown in
Fig. 1(i). Note that although the latter protocol achieves
the same target quantities of interest, the solution in-
volves voltage changes on almost all of the electrodes,
indicating that this solution is neither sparse nor prox-
imal. In both tuning protocols, the magnitudes of the
voltage changes applied to the electrodes are all under 5
mV. Because minimizing the L2 norm explicitly ensures
voltage moderation, the similarity in the magnitude of
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voltage changes applied in both cases confirms that the
solution found via L1 norm minimization exhibits voltage
moderation as well. Hence, we confirm that CODA is a
practical tool for tuning a device, because it selects volt-
ages that are both sparse and moderate while achieving
the specified target quantities of interest.

III. EXTENSIBILITY

In the previous section, we applied the CODA proto-
col to simulated devices with up to eight quantum dots,
showing that the method can find sparse voltage tunings
which are moderate and sparse for these devices. These
solutions were obtained after two iterative steps, suggest-
ing that this procedure is efficient even for large systems.
Here, we show that the CODA protocol scales efficiently
with device size, and can be used to find sparse tunings
for devices with 100 quantum dots.

We consider the device shown in Fig. 2(a), which con-
sists of m quantum dots, m− 1 tunnel rates, and 4m− 1
electrodes. The electrode separating the quantum dots
(thin blue rectangle in Fig. 2(a)) is 35 nm from the cen-
ter of the neighboring electrodes (red and blue squares in
Fig. 2(a)). The centers of the square-shaped electrodes
are separated by 50 nm. The quantum dots are located
20 nm below the electrodes.

There are many methods one could employ to model
this device, including taking the semiclassical approach
described in Appendix B-C, or self-consistently solving
the Schrödinger and Poisson equations, which more ac-
curately take into account quantum effects. Here, we
use a simple model that can be regarded as phenomeno-
logical, although it is physically motivated, describing a
non-linear system in which an electrode’s proximity to
a quantum dot or tunnel barrier determines that elec-
trode’s effect on the corresponding quantity of interest.
Specifically, we define the occupation ni of dot i to be

ni =
∑
j

(
Vj/(1 mV) + 1

10 sgn(Vj)Vj
2/(1 mV2)

)(
‖−→rVj

−−→rni
‖2
)3
/(1 nm3)

, (2)

and the tunnel rate τi between the ith and (i+1)th quan-
tum dot is given by

τi =
1

100

∑
j

(
Vj/(1 mV) + 1

2 sgn(Vj)Vj
2/(1 mV2)

)(
‖−→rVj

−−→rni
‖2
)3
/(1 nm3)

.

(3)
In these equations, Vj is the voltage applied to electrode
j, sgn(x) is the sign function of x, −→rVj

is the center po-
sition of electrode j, −→rni

is the center position of dot i,
and −→rτi describes the half-way point between dots i and
(i+1). The r−3 scaling of these quantities is the expected
spatial decay for a screened 2DEG [43], while the voltage
dependence was chosen assuming that these quantities
scale approximately linearly with voltage, with an addi-
tional, explicitly non-linear contribution.
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FIG. 2. Demonstrating the extensibility of the CODA pro-
tocol using a simple model involving up to 100 quantum dots.
(a) Diagram of simulated device. The quantities of interest
in this device are the occupations ni of the quantum dots
(dashed circles) and tunnel rate τi between the dots (dashed
double arrows). Each quantum dot has three electrodes in
close proximity: one located directly above the quantum dot
(blue square) and two located above and to either side of the
quantum dot (red squares). Additionally, there is an elec-
trode separating each pair of dots (thin blue rectangle). The
dependence of ni and τi on the electrode voltages is defined
phenomenologically in Eqs. (2) and (3), respectively. (b)-(d)
Given a device with m quantum dots, we use a variety of
nonlinear optimizers (including CODA) to find the changes
in electrode voltages which add one electron to the left-most
quantum dot, keeping all other occupations and tunnel rates
constant. We consider devices with m ranging from 2 to 100.
The results corresponding to CODA are shown in green, and
the results corresponding with the other nonlinear optimizers
are shown in hues of purple. In panel (b) we show the average
over all considered devices of the maximum voltage change
applied to any of the electrodes. The standard deviation is
smaller than the points used in this plot. The uniformity of
the results here indicates that all of the optimizers find solu-
tions with similar voltage moderation. In panel (c) we show
the number of electrodes used in each solution. The CODA
procedure consistently requires fewer electrodes than any of
the other nonlinear optimizers considered. In panel (d) we
show the number of function calls used by each optimizer.
CODA requires roughly an order of magnitude fewer function
calls than any of the other nonlinear optimizers considered.

To study the extensibility of our approach, we employ
a variety of nonlinear optimizers, including CODA, to
tune the voltages in devices with m = 2 to 100 dots.
In each case, we begin with voltages -100 mV applied to
each of the electrodes indicated with red in Fig. 2(a), and
with positive voltages applied to the electrodes indicated
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with blue in Fig. 2(a). The latter voltages are set such
that ni = 1 and τi = 0.01 for every i. We then find a
combination of voltage changes that adds one electron to
dot i = 1, keeping all other ni and τi fixed. We specifi-
cally consider the CODA protocol, the conjugate gradient
(CG) algorithm, the Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) algorithm, the Newton conjugate gradi-
ent (Newton-CG) algorithm, the limited memory BFGS
algorithm L-BFGS-B, and the Sequential Least SQuares
Programming (SLSQP) algorithm, as implemented in the
SciPy package [44]. In all of these algorithms we mini-
mize ‖q−qtarget‖2, where ‖·‖2 denotes the L2 norm, q is
the vector consisting of every quantity of interest, ni and
τi, and qtarget is the vector consisting of the target values
for the quantities of interest. We define the system to be
converged on the target when ‖q− qtarget‖2 < 10−5.

We assess the voltage moderation and sparsity of each
of the solutions found by the nonlinear optimizers. The
maximum voltage change Vmax applied to a given device
is shown in Fig. 2(b). The number of nonzero voltage
changes found by each optimizer as a function of m is
shown in Fig. 2(c). While all of the nonlinear solvers
apply voltage changes of comparable magnitudes, CODA
consistently finds solutions which require changing fewer
electrode voltages than any of the other optimizers we
consider. Moreover, the number of electrodes used by
CODA does not change for devices with m ≥ 26. In
contrast, all of the other nonlinear optimizers show high
variability in the number of electrodes used as a function
of device size.

We find that the CODA protocol requires fewer func-
tion calls than any of the other nonlinear optimizers con-
sidered. In Fig. 2(d), we show the number of function
calls made in each optimization. The average number
of function calls made by a given nonlinear optimizer
scales linearly with the number of quantum dots in the
system, regardless of the optimizer used. In the case of
the CODA protocol (green line in Fig. 2(d)), the num-
ber of function calls is exactly proportional to the de-
vice size, as the number of iterations required for CODA
to converge is independent of the number of quantum
dots. Although the overall scaling is the same for each
of these optimizers, the CODA protocol achieves conver-
gence using approximately an order of magnitude fewer
function calls compared with the next-most efficient op-
timizer, the L-BFGS-B algorithm. Since the device sim-
ulations dominate the computation time, the CODA pro-
tocol can therefore automatically tune simulated devices
significantly faster than any of the other nonlinear op-
timizers considered. We conclude that CODA can effi-
ciently find sparse and moderate solutions in large de-
vices.

IV. DEVICE DESIGN OPTIMIZATION

In addition to automatically tuning quantum dot de-
vices, the CODA protocol can be used to characterize
the voltage sparsity and moderation of typical gate op-
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FIG. 3. The protocol used to compare the “tunability” of
device designs. Given multiple simulated devices, we use the
CODA protocol to find the minimum L1 norm of voltage vari-
ations needed to induce a common change in each device (e.g.,
change the dot occupations in device #1, device #2, etc.).
The device with the minimum norm can simultaneously pro-
vide voltage moderation and sparsity, and should therefore be
regarded as the most “tunable” device.

erations, thus providing a key metric for evaluating and
comparing different device designs. Here, we consider a
series of triple-dot devices, shown in Fig 3. Each device
has the same electrode layout, save for the overall lateral
scale – we parameterize this scale via the width of the
paddle electrode, as shown in Fig 4(a). All devices have
an identical Si/SiGe heterostructure with a silicon quan-
tum well a distance 30 nm below the electrodes. Optimiz-
ing device size is important, because a device with elec-
trodes too small will lead to instability and larger power
requirements for switching, and a device with electrodes
too big will not have sufficient control over the potential
landscape at the required length-scales. In particular,
it has been observed in experiments [19, 22, 45] that in
larger devices it is often necessary to form the quantum
dots away from their intended locations. We now show
that CODA can be used to determine an optimal device
scale.

We again use the semiclassical Thomas-Fermi approx-
imation [40] and the WKB approximation [41] to model
the devices. Since it is relatively difficult to determine
the gate voltages needed to achieve single-electron occu-
pancies in each dot, we choose a starting point for our
simulations with 30 electrons in all three dots, and tun-
nel couplings that yield transmission coefficients of 0.01
between the left and middle dots and the middle and
right dots. In each device, we then use the CODA proto-
col to automatically tune gate voltages to achieve single-
electron occupation of each dot, while keeping the trans-
mission coefficients constant, exploiting CODA’s ability
to automatically tune voltages. Additionally, we require
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FIG. 4. Using CODA to optimize the triple quantum dot de-
signs shown in Fig. 3. (a) Every device in the series has an
identical electrode layout, save for the lateral scale of the de-
vice, which we characterize in terms of the width of the paddle
electrode. The Si/SiGe heterostructures for all devices consid-
ered are identical. (b) For each device in the series, we use the
CODA protocol to lower all three dots from an occupation of
thirty electrons to one electron, keeping the transmission co-
efficients fixed at 0.01. Additionally, the single-electron dots
are required to have orbital excitation energies greater than 1
meV. (c)-(e) Visualization of the optimized voltage variations
required to tune each device. Voltage changes are shown in
red and blue, and the resulting electron density distributions
are shown in black. For smaller devices (e.g., (c)), fewer elec-
trodes are required to tune the device. However larger volt-
age changes must be applied to those electrodes, resulting in
a high voltage L1 norm. For larger devices (e.g., (e)), quan-
tum dots no longer form underneath the paddle electrodes
(e.g., right-most dot, indicated with purple arrows), so that
many electrodes are required to tune the device. Balancing
these effects leads to a local minimum in the voltage L1 norm,
corresponding to device (d).

the orbital energy splitting of each dot to be 1 meV or
more, as consistent with recent experiments. Orbital en-
ergy splittings are calculated using a 2D finite-difference
Schrödinger solver; see Appendix B for details.

The minimized voltage L1 norms required for the auto-
tuning process in each device are plotted in Fig 4(b).
Comparing these results, we see that the voltage L1 norm

is minimized for the device labeled (d), with a paddle
width of approximately 80 nm, suggesting that this de-
vice is optimal from a control standpoint.

The voltage changes for the auto-tuning protocol and
the resulting electron charge density distributions are
shown in Figs. 4(c)-4(e). For the optimal device, shown
in Fig. 4(d), the number of gates with voltage changes
is relatively small, indicating good voltage sparsity. For
devices smaller than the optimal device, voltage spar-
sity is still maintained, as a benefit of small device size.
However, voltage moderation is not, with large voltage
changes required on multiple electrodes, as shown in
Fig. 4(c). For devices larger than optimal, voltage moder-
ation is maintained, but the solution is no longer sparse,
as shown in Fig. 4(e). The constraints on dot occupa-
tion, dot energy and transmission coefficients lead to con-
straints on the size and relative position of the dots. In
smaller devices, such as those shown in Fig. 4(c),(d), the
dots can be formed underneath the paddle electrodes and
still meet these requirements. In larger devices, such as
the device in Fig. 4(e), to achieve the required quantities
of interest, the dots can no longer form under the paddle
gate electrodes, with the right-most dot forming under
the nominal right tunnel-barrier electrode as indicated
by the arrows. This misalignment between electrodes
and dots, which has also been observed in experimental
devices [19, 22, 45], leads to solutions that are less sparse
than in the smaller devices.

V. CONCLUSION

We have introduced a protocol for the Compressed Op-
timization of Device Architectures, which determines the
optimal voltage changes for a given device operation by
minimizing their L1 norm. We have demonstrated the ef-
fectiveness of this scheme by considering its application
to semiconductor nanoelectronic quantum dot systems.
As devices continue to grow in complexity, such auto-
mated control schemes will be essential for design and
operation. Our protocol is computationally efficient to
implement, and it provides a systematic approach for
achieving local and sparse control. Through realistic
semiclassical simulations of multi-dot devices, we have
illustrated how the CODA scheme can be used for quanti-
tative benchmarking and device development. While the
current work focuses on quantum dot geometries, we note
that the CODA protocol could also be applied to other
device geometries, including donor-bound qubits, using
simulation tools appropriate for those systems. This
method provides a path toward the rational design and
operation of extensible quantum nanodevices.
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VI. APPENDIX

A. CODA protocol

Here, we provide further details about the CODA pro-
tocol described in the main text. The simulated device is
considered to be a nonlinear function Ŝ : V → Q, where
V is the space of electrode voltages and Q is the space
of quantities of interest (e.g., dot occupations, dot ener-
gies, transmission coefficients). Suppose that we have
n quantites of interest and m electrode voltages, and
that m > n, so the system is underconstrained. We
first identify a starting point of experimental interest
(v0

op,q
0
op) such that Ŝ(v0

op) = q0
op, and a target quan-

tity of interest qtarget. It is our goal to find the vec-
tor δvtot with the minimum L1 norm which satisfies
Ŝ(v0

op + δvtot) = qtarget.

The following are the steps taken at the (i+ 1)th iter-
ation of CODA.

1. Given a working point (viop,q
i
op), consider a set

of linearly independent, small voltage variations
{ε1, ε2, ..., εm} (εj ∈ V) about the current work-
ing point. In the simulations described in the main
text, we assumed took εj to correspond to a voltage
change of 0.1 mV on the jth electrode. Perform m
simulations Ŝ(viop + εj) to obtain the resulting m

qiop + δqj . From the collection of {ε1, ε2, ..., εm}
and the associated {δq1, δq2, ..., δqm}, construct
the Jacobian matrix Ji using the method of least
squares. For small δv, Ŝ(viop + δv) ≈ qiop + Ji · δv.

2. Using a convex program (such as the matrix-
free conic optimization implemented in the
CVXPY package [39]), find the δvi that mini-
mizes

∣∣∣∣viop − v0
op + δvi

∣∣∣∣
1

subject to the constraint

qtarget = qiop+Ji ·δv1. The vector viop−v0
op+δvi is

the total change in voltage from the initial working
point (v0

op).

3. The voltage change vector δvi defines a search di-
rection, similar to the gradient used in nonlinear
gradient descent. Evaluate Ŝ(viop + δvi); if the
quantities of interest move closer to the target, i.e.,∣∣∣∣∣∣Ŝ(viop + δvi)− qtarget

∣∣∣∣∣∣
2

<
∣∣∣∣qiop − qtarget

∣∣∣∣
2
,

then define vi+1
op = viop + δvi. If not, then replace

δvi with δvi/2, and repeat this step. Continue until
the quantities of interest move closer to the target.

We repeat this process until
∣∣∣∣qiop − qtarget

∣∣∣∣
2

is below a
specified threshold value. For the simulations described
in the main text, we assumed a threshold value of 0.01.
For a detailed explanation of the units of this vector, see
the following section.

To decrease the total number of device simulations
in CODA, one can replace step 1 in the protocol de-
scribed above by Broyden’s method [46]. This method
finds an approximate Jacobian matrix Ji+1 by combin-
ing the Jacobian obtained in the previous iteration Ji
and the nonlinear error from the previous step: Ŝ(viop +

δv)− (qiop + Ji · δv). Although this eliminates the need
for explicit Jacobian formation, using Broyden’s method
often does increase the number of iterations required for
convergence. In many cases, using this method leads to
an overall speedup. However, in cases where sparse con-
trol cannot be achieved, we find that the number of it-
erations required for convergence increases dramatically,
which negates any potential speed-up.

As with all ”hill-climbing” nonlinear optimization al-
gorithms, there is no guarantee that the local optimum
found by the CODA protocol is a global optimum. How-
ever, because CODA is a regularized optimization pro-
tocol, the solution with the globally minimal L1 norm
is by definition ”close” in control space to the starting
point, and therefore it is likely that the solution found
by CODA is the global minimum. While it is certainly
possible to devise systems in which the CODA protocol
does not find the global minimum, all indications are that
the solutions found in the main text are indeed global
minima. In principle, one could better ensure global op-
timization for these systems by implementing a version
of CODA which uses a basin-hopping protocol to sample
across several local minima.
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B. Simulation details

We perform semi-classical Thomas-Fermi calculations
[40] using the COMSOL Multiphysics software package
to solve a nonlinear Poisson equation in three dimen-
sions. We use zero-field boundary conditions on all sides
of the simulated domain, with the exception of the bot-
tom of the SiGe buffer, which is grounded. We assume
the following heterostructure profile for all the modeled
devices. This profile is consistent with the accumulation-
mode devices described in Refs. 47 and 48: 200 nm of
Si0.7Ge0.3 (with dielectric constant ε = 13.19), a 10 nm
Si quantum well (ε = 11.7), 30 nm of Si0.7Ge0.3, 10 nm
of Al2O3 (ε = 9.0), a 10 nm layer of metallic electrodes
embedded in the dielectric, 80 nm of Al2O3, and a second
10 nm layer of metallic electrodes, followed by vacuum.
Midway within the Si quantum well, we define a plane of
charge with the charge density given by

σ2D(x, y) = −2×2×emeff(U(x, y) + EF )

2π~2
×θ(U(x, y)+EF ),

(4)
where e is the charge of an electron, meff = 0.19melectron

is the transverse effective mass of a conduction electron
in silicon, U(x, y) is the strength of the electrostatic po-
tential energy as a function of position, EF is the Fermi
energy (which we take to be at ground), and θ(x) is the
step function. The two prefactors account for the spin
and valley degeneracies.

The dot occupations are calculated via integrating the
charge density found with the Thomas-Fermi approxi-
mation. Transmission coefficients between dots are cal-
culated by finding the center of charge of each dot, and
applying the WKB approximation [41] across a straight
line connecting the two charge centers. Orbital dot ener-
gies are calculated via a 2D finite-difference Schrödinger
solver in the plane of charge, using the electrostatic
confinement potential obtained from the Thomas-Fermi
analysis, and the transverse effective mass of a conduc-
tion electron in silicon.

Our CODA protocol requires all the components of the
voltage vector to have the same units (and comparable
magnitudes, for numerical stability). The quantities of
interest considered in our simulations were electron occu-
pations and tunnel barrier heights. When populating our

vectors in the space Q, we use the units of electron num-
ber for dot occupation, meV for dot energy and we take
the logarithm of the transmission coefficient, divided by
1000, since tunnel couplings can vary by orders of mag-
nitude as a function of gate voltage. These units were
chosen to ensure rapid convergence.

The details of the initial working point used in the anal-
ysis of the 8-dot device are given in the supplemental file
8DotDevice.txt. In this file, the physical attributes are
listed first. The dot occupations are expressed in electron
numbers, and the transmission coefficients are unitless.
Voltages are given for each electrode, with the following
labeling convention defined with respect to Fig. 1(g) of
the main text. Beginning with the upper layer of elec-
trodes, Electrode 1 is in the lower-right corner of the
schematic, and the ordering proceeds clockwise. In the
lower layer of gates, Electrode 5 is in the lower-right cor-
ner, and the ordering again proceeds clockwise.

Similar details for working points on the devices
shown in Fig. 3 are given in the supplemental file
TripleDot.txt. The dot occupations are given in num-
bers of electrons, the transmission coefficients are scaled
as before, and the dot orbital energies are given in meV.
Here, the labeling convention for the electrodes begins
with the upper layer at the electrode in the upper right
corner of the schematic and proceeds clockwise. On the
lower layer of electrodes, the labeling begins at the elec-
trode in the upper-left corner and proceeds clockwise.

C. Tunnel rates and transmission coefficients

Following Ref. 49 one can derive that the tunnel cou-
pling ∆ between two one-dimensional simple harmonic
oscillators with frequencies ω1 and ω2 is approximately

∆ ≈ 1

2π
TWKB~

√
ω1ω2, (5)

where TWKB is the transmission coefficient calculated
via the WKB approximation. For quantum dots with
orbital energies of ∼1 meV, a transmission coefficient of
0.01 corresponds with a tunnel coupling of ∆ ≈ 1.6 µeV,
or a tunnel rate of ∆/h ≈ 400 MHz.
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