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Abstract 

We propose an approach for real-time manipulation of low-frequency phononic band gaps in a 

metamaterial without affecting the material geometry, microarchitecture, or the crystal structure 

of the base material. Metamaterials with tunable band gaps are realized by introducing 

periodically arranged negative stiffness inclusions, the modulus of which can be varied in time in 

order to modify the metamaterial macroscopic stiffness in certain directions, without bringing 

the material to the point of elastic instability or inducing extreme geometric change. The 

evolution of band gaps is investigated numerically, and the proposed concept is verified 

experimentally in a lattice prototype with magnetic elements functioning as negative stiffness 

units. Design guidelines for achieving real-time tunable phononic band gap are also presented. 
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1. Introduction 

Various strategies exist in the literature to create and widen band gaps (i.e., frequency 

ranges of strong attenuation of propagating waves within a material at any polarization and any 

incident angle) in crystalline materials as well as photonic, phononic and acoustic metamaterials 

[1–3]. For example, reducing the crystal symmetry of a FCC lattice by introduction of a two-

point basis set could result in a non-Bravais diamond cubic structure with reduced band 

degeneracies, thus introducing band gaps [4, 5]. Photonic and phononic band gaps in 

metamaterials are commonly formed by Bragg scattering [6, 7], i.e., the establishment of 

destructive interference between transmitted and reflected waves.  Bragg-type band gaps appear 

about an angular frequency ߱ of the order of ܿ/ܽ, where ܽ is the unit cell size and ܿ is the wave 

speed in the medium [5]. This relationship necessitates a sufficiently large lattice size for 

creation of a low frequency band gap. For instance, phononic crystals with periodicities on the 

order of meters to tens of centimeters are required to forbid the propagation of mechanical waves 

with frequencies in the range 20-2,000 Hz [1]. Locally resonant band gaps [8–11], on the other 

hand, arise typically in the vicinity of the natural frequencies of the resonating units, and can be 

experimentally realized at frequencies up to two orders of magnitude lower than the typical 

Bragg limit of a material with equal lattice constant [12].  

Based on these physical considerations, various techniques have been proposed in order 

to obtain real-time tunable frequency band gaps. Such a technology, if successfully developed 

and implemented, could enable important phononic, photonic or acoustic applications in active 

cloaking [13], wave guiding [14, 15], active noise reduction [16–18], super-lensing [19, 20], and 

acoustic mirrors [21, 22]. The literature on this subject includes recent efforts to create or enlarge 

acoustic band gaps through application of macroscopic deformation fields within a elastomeric 
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metamaterial, of either pre- [19, 23, 24] or post- [25–28] elastic bifurcation (buckling) nature. 

The induced change in the size and/or shape of the unit cell in turn modifies the Bragg scattering 

or local resonance characteristics of the phononic crystal. The requirement for extreme 

geometrical change in order to achieve tunability even appears in magneto-electro-elastic 

phononic crystals, where a coupling between magnetic, electric and elastic phenomena is 

responsible for creation or widening of band gaps [3, 29–33]. All these approaches share a few 

critical limitations. Inducing deformations sufficiently large to yield tangible phononic change in 

a material is inconvenient and energetically costly (especially if the material is load bearing). 

Moreover, geometric conversions at frequencies high enough for active filtration of incident 

waves with time-varying frequencies could lead to undesirable vibrational complications. An 

alternative proposed approach towards phononic tunability stems from thermally induced 

material phase transitions accompanied by changes in bulk acoustic velocities [34–37]. In these 

methods, the achievable response time for tunability is somewhat restricted by physical 

constraints on heat flow rate within the phononic crystal[38]. 

2. General framework for tunable negative-stiffness-based phononic metamaterials 

Here, we propose a novel and convenient method for real-time manipulation of low-

frequency complete phononic band gaps in an active composite material. The proposed material 

consists of an elastic matrix encompassing negative stiffness (NS) inclusions, the modulus of 

which can be actively tuned in order to locally reduce the material stiffness at controlled periodic 

locations and in certain directions, thus yielding changes in its phononic response, including both 

the width and locations of frequency band gaps. Interestingly, a selective band gap tuning for 

quasi-longitudinal and quasi-transverse waves is also shown to be possible. As no large 

geometric changes in the material is required, the actuation time depends on the physics behind 
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the implementation of the tunable NS phase. We propose to use electromagnets for this purpose, 

thus enabling actuation times as fast as a few milliseconds [39]. If piezoelectric actuators are 

used in lieu of magnets, response times of the order of microseconds can be achieved [40, 41].  

As the addition of NS inclusions to a matrix could lead to loss of mechanical stability of 

the resulting metamaterial, it is imperative to start by investigating stability considerations. The 

stability of composite materials containing NS elements has been the subject of various 

studies[42–44]. Kochmann and Drugan [43] showed that, assuming strong ellipticity for all the 

constituents including the NS inclusions, the critical condition for positive definiteness of the 

fourth order macroscopic elasticity tensor of an isotropic composite material, and hence its 

macroscopic stability, is given by ܭഥ ൐ 0, where ܭഥ is the effective bulk modulus of the composite 

material. As the Hashin-Shtrickman solution provides an analytical bound for the bulk modulus 

of a two-phase composite [45, 46], this condition translates into a minimum allowable bulk 

modulus for the NS inclusions, crk , i.e.: 
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where ݇௠ and ܩ௠ are the bulk modulus and shear stiffness of the matrix, and ݂ is the volume 

fraction of the NS inclusions. NS intensities past the critical value given in (1) will lead to 

instabilities in the composite medium under generalized (mixed) boundary conditions [47]. As 

will be seen later, considerable changes in the phononic response of the composite material begin 

to emerge at NS intensities notably smaller in magnitude than ݇௖௥. In the current work, the 

condition on simultaneous structural (macroscopic) and microscopic stabilities is also rigorously 

satisfied by ensuring the positiveness of all Bloch eigenfrequencies corresponding to elastic 
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waves of various directions and wavelengths propagating within the periodic elastic medium (i.e. 

all non-zero wave vectors within the Brillouin zone of the phononic material)[48].  

As a schematic illustration of this concept, consider the phononic crystal depicted in 

Figure 1a, composed of a periodic arrangement of three phases: an elastic matrix (in black), 

circular-shaped NS inclusions (in gray when active), and square-shaped voids. We assume that 

the negative bulk modulus of the NS inclusions can be varied in real time in the range ݇௖௥ ൏ ݇ ൏0. In order to calculate the band structure of the phononic crystal, we use a finite element (FE) 

model of the unit cell subjected to Bloch boundary conditions (see Appendix 2 for details) 

[47,48]. As most commercial FE software packages do not support material models with 

negative stiffness, the NS inclusions are numerically modeled as circular voids, with 

diametrically opposed points on the circumference connected by linear springs with negative 

spring constant. The number of connectors and their spring constant are chosen to simulate the 

global effect of the prescribed NS negative bulk modulus. The bulk modulus, ݇, of the NS 

inclusions is incrementally decreased from zero to ݇௖௥, and the changes in the band structure are 

examined. The band structure diagram of the phononic crystal when the NS inclusions have a 

zero intensity (i.e. are inactive) are shown in Figure 1b left. By increasing the intensity of the NS 

inclusions, the normal elements of the stiffness matrix in X and Y directions are decreased, 

altering the location and width of the frequency band gap as shown in Figure 1b right. Notice 

that while the frequency gap is lowered by activating the NS elements, its width is not 

significantly expanded. In other words, all the bands have shifted to lower frequencies by similar 

amounts.  

A more efficient actuation strategy can be devised if the architected phononic crystal is 

designed according to two important criteria: (i) actuation of the NS elements results in 
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decreasing longitudinal stiffness in (arbitrary) direction, X, without decreasing the shear stiffness 

of the material, ܩ, in the same direction; and (ii) the macroscopic Poisson’s ratio of the material 

along X is near zero. Condition (i) satisfies two important physical functions. First, it ensures 

positive-definiteness of the elasticity tensor (for a two-dimensional isotropic linear elastic 

material the sufficient and necessary conditions for  positive definiteness are  ܩ ൐ 0 and െ1 ൏ ߥ ൏ 1) [49, 50]. Second, it ensures that, within the band-diagram of the real-time phononic 

material with NS inclusions, only the dispersion curves relating to predominantly longitudinal 

polarization are lowered while the transverse-type waves are almost unaffected by activations of 

the inclusions. Without this selectivity in suppression of eigensolutions, all existing modal 

frequencies will decrease together and the existing degeneracies will merely shift from a high 

frequency state to a lower one (as in 2D and 3D phononic crystals the longitudinal and transverse 

vibrations of the medium are coupled, in what follows we use the prefix ‘quasi’ to denote 

polarizations that are primarily horizontal or vertical [51]). Condition (ii) can be inferred based 

on the Bloch-periodic boundary condition in phononic crystals[52] 

࢞௞ሺݑ  ൅ ,࢘ ሻݐ ൌ ,࢞௞ሺݑ  (2)  ࢘ڄ࢑ሻ݁௜ݐ

where ࢞ ,࢑ and ࢘ denote the wave vector, the (Cartesian) position vector, and the periodicity 

vector, respectively, and ࢛௞ሺ࢞,  ሻ is a complex periodic vector-valued function with the sameݐ

spatial period as the phononic crystal. Equation (2) requires all sets of periodic points within the 

material which are relatively located perpendicular to the direction of propagation of the incident 

wave (i.e. ࢑ · ࢘ ൌ 0) to have equal displacements. The set of conditions (i) and (ii) essentially 

implies that the proposed material hosting a propagating wave in X needs to satisfy reduced 

longitudinal stiffness in X quasi-statically, whilst accommodating near-zero lateral expansion in 

Y as required by the Bloch theorem. It is speculated that the described approach for tunable 
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phononic response would be most effective at relatively low wave frequencies, where the 

existence of NS inclusions results in decreased quasi-static stiffness of the material in the desired 

directions. Such hypothesis is consistent with the observation that the proposed method yields 

little to virtually no change in the band structure response of the phononic material in the high 

frequency domain.  

 

Figure 1. (a) Schematic of a 2D tunable phononic crystal with NS inclusions in the inactive (left) 

and active (right) states. The black, white and grey colors represent matrix, void, and active NS 

inclusions, respectively. (b) Dispersion relations for the phononic crystal in the inactive (left) 

and active (right) states. 
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3. Physical implementation in a lattice material configuration 

With the general concepts clarified and demonstrated, we now apply the aforementioned 

conditions simultaneously to a physical implementation consisting of 1D and 2D lattice materials 

incorporating electro-magnets. These implementations are both physically realizable and 

particularly instructive.  

A building block for the proposed tessellated structures, shown in Figure 2a, consists of a 

diamond-shaped frame, two vertical bars extended inward from the two opposite vertices of the 

frame and attached to two electromagnets facing the center of the unit cell, and two bars 

extended outward horizontally from the two other corners of the frame with their outer ends 

denoted by nodes A and B. The axial stiffness of the building block measured between points A 

and B, denoted by xK , can be decreased by applying a voltage to the two attracting 

electromagnets at the center of the unit cell. The attractive electromagnetic force between the 

two electromagnets as a function of their distance for different values of applied voltage is given 

in Figure 2b. Also shown in this figure by a dashed line is the load-displacement response 

between nodes C and D when the electromagnets are inactive, whose slope is denoted by yK  (at ߠ ൌ 45° the diamond frame becomes square, and  x yK K=  since the unit cell is kinematically 

indeterminate based on Maxwell’s rule[47]). After activation of the electromagnets, a 



9 
 

theoretically zero-stiffness (albeit unstable) state, marked by an asterisk in Figure 2a, is achieved 

if the electromagnetic force–distance curve is chosen to be tangent to the dashed line. In the 

general case, the axial stiffness of the unit cell with an active set of electromagnets resulting in a 

NS of *k , can be expressed by
*( )( ) 1eq y

x

k VK V K
K

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, where V is the applied voltage (see 

Appendix 1). The value of applied voltage can be changed to tune, in real-time, the overall 

stiffness of the phononic lattice. The concept of modulating stiffness via actuation of 

electromagnets was verified numerically, through the finite elements method, and 

experimentally, on a unit cell consisting of a Poly(lactic acid) (PLA) 3D printed frame with two 

embedded electromagnets (Figure 2a). The experimental force-separation curve for the magnets 

was measured by separating a pair of magnets initially in contact, in a quasi-static displacement-

controlled  test, as a function of the applied voltage (Figure 2b). As noted in Appendix 1, these 

measurements allow extraction of k*. The load-displacement response of the diamond frame was 

obtained by compressing the frame along the A-B direction, for two different values of the 

applied voltage (corresponding to voltage equal to zero and to voltage offsetting the elastic 

stiffness of the frame). In the FE model (solved with Abaqus/Standard), the interactions between 

the magnets is modeled with a non-linear spring connector element, with the same force-

separation law measured experimentally. The numerical and experimental force-displacement 

response of the unit cell with the electromagnets in the inactive and active states are given in 

Figure 2c, and show excellent agreement. The initial slope of the force-displacement response 

decreases significantly by activation of the electromagnets. Notice that at large displacements the 

tangential stiffness of the two modes converge. 
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Figure 2. (a) Schematic and fabricated unit cell of a tunable phononic metamaterial, activated 

by a pair of attracting electromagnets in the middle of the unit cell. (b) The magnetic (colored 

curves for different applied voltages) and elastic (dashed line) force-distance profile between 

two electromagnets. (c) The force-displacement response of the proposed unit-cell under 

external uniaxial quasi-static loading. The green and black dots show the experimental results 

for inactive and active electromagnets, respectively. The solid lines show the finite element 

results. 

 

3.1 One-dimensional tessellation 

The first design studied is an infinite one-dimensional tessellation, shown in Figure 3c. In 

order to obtain the band structure of the proposed phononic material, the Bloch boundary 

condition given in Equation (2) was applied to the unit cell of the structure (see Appendix 2). To 

produce a change in the phononic response, the absolute value of the negative stiffness was 

swept incrementally from zero (electromagnet OFF) to the opposite of the stiffness of the frame. 

For each NS intensity, the eigenfrequencies for a varying set of wave vectors describing the 

irreducible Brillouin zone associated with the phononic crystal were recorded. The band 
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structure for this structure is shown in Figure 3d (left) when the NS elements are inactive. Figure 

3e (left) shows the band structure when the NS intensity of the electromagnets equals ~70% of 

the stiffness of the polymeric frame.  The dispersion curves within the frequency range shown 

are labeled by numbers 1 through 4; note that the modes are crossing, as opposed to veering. The 

calculated mode shapes indicate that the first and second curves correspond to quasi-transverse 

and quasi-longitudinal modes, respectively. As shown in Figure 3e (left), activation of the 

electromagnets can eventually result in a complete suppression of the quasi-longitudinal mode 

(curve 2 in Figure 3d (left)), and therefore in the instability of the structure. Note that in the band 

diagram of the activated phononic crystal shown in Figure 3e (left), the difference between the 

maximum frequency of the quasi-transverse mode (curve 1 in Figure 3d (left)) and the minimum 

frequency of the mode 3 with a predominately shear component determines the width of the band 

gap formed at the frequency range presented. Figure 4Error! Reference source not found. 

shows the relationship between the width of the bandgap formed versus the intensity of the 

negative stiffness due to activated electromagnets, normalized by the axial stiffness of the frame, 

( / )magnet

x

F x
k

K
∂ ∂

= . As shown in this figure, no bandgap is formed in the range 0k =  to 0.5k = . 

At ത݇~0.6 the maximum width of bandgap is achieved when the peaks of curves 1 and 2 

coincide, and increasing the voltage after this point dose not lead to any further advantage. This 

example clearly shows that, in order to achieve the maximum bandgap, a complete loss of 

stiffness of the structure is not necessary: in the case presented, decreasing the stiffness by 65% 

was sufficient to yield maximum achievable bandgap without bringing the structure to the point 

of instability. 
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Figure 3. (a) 3D Laser Doppler Vibrometry system. (b) The frequency response test setup for the 

proposed 1D structure, suspend horizontally and excited with shaker. (c) Schematics of a 1D 

infinite periodic phononic structure, a primitive unit cell and the associated reduced Brillouin 

zone. (d-e) Band structure diagram of a 1D structure (left) and the frequency–dependent 

transmittance (right) obtained experimentally on a 4-unit cell sample of the structure with 

inactive and active magnetic elements. The colored insets show the exaggerated deformations of 

the unit cell and sample structure. 
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Figure 4: Evolution of phononic band gap width in the proposed 1-D tessellation as a function of 

the normalized value of negative stiffness between the electromagnets in the unit cell. 

 

To corroborate the numerical results, a prototype of the 1D structure was manufactured 

(Figure 5) and its vibration transmittance was experimentally measured. Permanent magnets 

(N50 1/2"x1/4"x1/4" Neodymium Rare Earth Block Magnets, CMS Magnetics Company) were 

used in this study instead of the electromagnets for the sake of simplicity. The periodic 1D 

lattice, containing four unit cells, was fabricated through laser cutting of a 3/16” sheet of cast 

acrylic using a Trotec Speedy 360 laser cutter with laser wavelength of 630-680 nm and 

maximum laser beam power of 1mW. The dimensions of the structure were selected based on the 

attraction force of the magnets (depicted as red rectangles in Figure 5) and the stiffness of the 

acrylic base material. The experimental setup is shown in Figure 3b. The sample was suspended 

in air using thin, flexible strings and excited from one side using a LabWorks axial shaker and 
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amplifier (Model ET-132 and PA-119) in the frequency range of 0 to 300 Hz. The frequency 

response of the proposed structure was measured using a 3D Laser Doppler Vibrometer (PSV 

500) as shown in Figure 3a, in the X, Y, and Z directions. Several scanning points were used to 

accurately measure the full-field vibration in both the time and frequency domain. The frequency 

response of all the scan points were measured, and the average displacement of the scan points 

near the shaker (excited side) and the average displacement of the scan points on the opposite 

side of the structure (free side) were recorded. Transmittance was determined as the logarithm of 

the ratio of the vibration amplitude on the free side to that of the excided side. Negative 

transmittance with high decay corresponds to band gap. The performance of the structure was 

experimentally evaluated in two different scenarios: (i) with the magnets press-fitted inside the 

rectangular slots representing the ‘Active’ state; (ii) with non-magnetic steel parts with equal size 

and almost equal density as the magnets fitted in the slots to keep the overcall mass of the 

structure unchanged from case (i) (‘Inactive’ state).  

 

Figure 5. The dimensions of 1D structure fabricated by Laser cutting. 
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The results indicate a frequency range of strong attenuation around ~250 Hz in the 

structure without magnets, and one around ~150 Hz in the structure with magnets. The vibration 

isolation at ~250 Hz and ~150 Hz in the structures without and with magnets, respectively, can 

also be observed in the scaled-up deformation of the sample at each of these frequencies (Video 

1-4). The slight discrepancies observed in the locations of the bandgaps captured from the FE 

models and the experiments are attributed to manufacturing imperfections (in particular 

variability in the wall thickness, which results in stiffness differences from cell to cell), and the 

low number of the unit cells used in the experiments (most studies of 1D phononic structures 

have been conducted on at least 5-6 unit cells [24, 25, 53]). Nonetheless, in spite of these slight 

discrepancies, these experiments clearly show that even a system with four unit cells allows us to 

strongly manipulate the band structure (and in particular the band gap location and width) by 

controling the negative stiffness elements within the material. In the presented color spectrum, 

the smallest and largest displacements are represented by red and blue colors, respectively. Note 

that here band gaps are created by changing the resonating frequency of the entire unit cell, 

rather than creation of the local resonance units (the observed band gap frequencies are an order 

of magnitude lower than the standalone local resonance of vertical bars around 800 Hz). It is also 

important to note that the low frequency bandgap shown in Figure 3e is obtained at a NS which 

is smaller than the overall stiffness of the polymeric structure. As discussed above, at a NS 

intensity of the electromagnets equal to only ~65% of the (positive) stiffness of the polymeric 

frame, the apexes of the dispersion curves for the quasi-longitudinal and quasi-transverse waves 

coincide. Further increase in NS intensities after this critical value does not lead to an increase in 

the width of the phononic band gap. 
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Video 1. Frequency response of the 1D structure without magnet at 143 Hz.  

 

Video 2. Frequency response of the 1D structure without magnet at 255 Hz.  

 

Video 3. Frequency response of the 1D structure without magnet at 143 Hz. 
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Video 4. Frequency response of the 1D structure without magnet at 255 Hz. 

3.2 Two-dimensional tessellation 

The 1D tessellation presented in Figure 3c encompasses NS inclusions that reduce the 

stiffness of the material in one direction (i.e. X). As a result, this architected material can only 

lead to modification of the dispersion curve for quasi-longitudinal low-frequency waves. A 

simultaneous lowering of the dispersion curves for both longitudinal- and transverse- dominated 

modes, however, could potentially lead to increased width of the introduced band gaps. As 

explained before, lowering all types of dispersion curves could also lead to a decrease in 

achievable band gap due to band degeneracies, making the determination of a proper strategy for 

creating phononic band gaps frequency- and structure-specific. A possible architecture to reduce 

material stiffness in multiple directions simultaneously, affecting propagating phononic waves of 

different polarizations, is the 2D triangular arrangement shown in Figure 6a. Here, we uniformly 

reduce the intensity of all electromagnets at various orientations, affecting the stiffness of 

material equally in all in-plane directions, while preserving linear elastic isotropy of the inactive 

material through geometrical symmetries[54]. Primitive cells of the structure and the associated 

Brillouin zone are shown in Figure 6a. The numerically obtained band diagrams of the lattices, 

for both the inactive and active states, are shown in Figure 6b. The frequencies are normalized by ඥ݇ ݉⁄ , where ݇ is the stiffness of the frame and ݉ is the mass of the electromagnets [29]. At the 

extreme NS intensity shown in Figure 6c, the dispersion curve corresponding to a quasi-

transverse polarization becomes tangent to the horizontal axis, indicating that the material is at 

the onset of elastic instability (a band approaching ߱ ൌ 0 at a non-zero wave vector k is a 

common criterion used to detect the onset of buckling with wavelength given by 2[57–55] ݇/ߨ). 

There are certain distinctions between the results presented in Figures 3 and 6. First, in the 2D 
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lattice all polarizations of propagating waves, especially those in the low frequency range, are 

influenced by activation of NS elements (in other words, the Poisson’s ratio is not near zero). 

Second, a gradual increase in NS intensity monotonically increases the band gap width until 

material instability is reached. The substantial band gap opening that results is due to the fact that 

the optical modes are largely unaffected by the stiffness change.  

 

Figure 6. (a) Schematics of a 2D infinite periodic phononic structure (left), a primitive unit cell 

(middle), and the associated Brillouin zone (right). (b-c) Band structure diagram of the material 

obtained numerically for inactive and active states. 

 

4. Conclusions 
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In summary, we proposed a novel pathway for convenient, real-time introduction and 

modification of extremely low frequency band gaps in phononic crystals. This was achieved by 

reducing the resonating frequencies of the unit cell of the phononic crystal, which will in turn 

lead to downshifting of the acoustic modes (<1000 Hz) without substantially affecting the optical 

modes. The evolution of band gaps can be explained through emergence of low-energy 

deformation modes due to introduction of NS inclusions. Specifically, the lowest dispersion 

branches of a material, corresponding to quasi-transverse and longitudinal waves, were 

modulated through reduction of material stiffness in specific directions. A 1D periodic structure 

was shown to allow suppression of longitudinal waves, and a 2D architecture was presented for 

suppression of both shear and longitudinal waves. We believe that the presented mechanistic 

model is able to correctly explain the following observed physical phenomena corresponding to 

the evolution of phononic band gaps in these phononic materials: i) selective suppression of 

quasi-longitudinal and transverse waves, shown in Figure 3, and ii) unaffected dispersion 

relations for high frequency waves in the proposed materials.  

In closing, we note that in this manuscript we only investigated one-way tunability, 

whereby the voltage of the electromagnets (and hence the stiffness of the NS phase) is varied 

independently on environmental stimuli and a gap shift is detected (see Figure S2 in the 

supplementary information). In the experiments, permanent magnets are used in lieu of 

electromagnets in order to simplify the fabrication and experimental validation. Nonetheless, the 

ambitious, long-term vision for the proposed metamaterial concept is to ultimately enable real-

time band gap manipulation by active control of the negative stiffness elements. Strategies for 

active control of band gap are currently under investigation.  
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Appendix 1 – Analytical model for magneto-elastic metamaterial design  

In this section, simple analytical formulas are presented to express the overall stiffness of 

the tunable phononic lattices proposed in section 2 in terms of the geometric, elastic and 

electromagnetic properties. A unit cell of the structure is shown in Figure 2a. The unit cell 

embeds a pair of attracting electromagnets, which effectively functions as a mechanical spring 

with a negative spring coefficient between the two electromagnets. The overall stiffness of the 

deformed unit cell is determined by two components: (i) the stored elastic strain energy in the 

frame and (ii) the change in the magnetic potential energy between the two electromagnets. 

Linearizing the contributions of the elastic and magnetic components, the overall stiffness of the 

unit cell can be expressed in terms of the elastic stiffness of the frame and the tangential negative 

stiffness of the pair of electromagnets at the center of the unit cell. 

The distance between the electromagnets in the frame in the inactive state is denoted by 

0χ . When the electromagnets are activated, this distance is reduced to fχ , where the magnetic 

attraction and the elastic force exerted by the frame to the electromagnets are in equilibrium. 

Around this equilibrium state, the derivative of the electromagnetic force with respect to distance 

is denoted by *k , which represents the (negative) stiffness created by the pair of electromagnets. 

Also, around this equilibrium state, the values of elastic stiffness of the frame in x and y are 
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denoted by ܭ௫ and ܭ௬, which can be expressed in terms of geometrical parameters of the frame 

as follows: 
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In obtaining these values, Euler–Bernoulli beam assumption is adopted, and furthermore the 

effect of the initial deformation of the frame due to electromagnetic forces is neglected. Using 

Castigliano’s theorem, the overall stiffness of the unit cell is obtained as: 
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where I , l  are the second moment of area and the length of  the bars constituting the frame, 

respectively, E  is the stiffness of the constituent material, and θ  is the angle of the bars with 

respect to the horizontal line. Note that for 45oθ = , xK  is equal to yK . From Eq. (4), one can see 

that if *
xk K=  the overall stiffness of the structure, eqK , is zero.  

Even though in Eq. (4) the force-displacement profiles of both magnetic and elastic 

components are assumed linear, the magnetic force-displacement response between two 

attracting electromagnets has a highly nonlinear nature (ௗிௗ௫  ଷ), especially at close distancesିݔ~

between the two electromagnets (i.e. 0x → ). Therefore, it is imperative to consider an entire 

range of nonlinear magnetic force-displacement response in order to find the equilibrium state 

between the elastic and magnetic components, or inversely, to find the initial state of the unit cell 

such that a near-zero stiffness for the structural unit cell is achieved by activation of the 
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electromagnets. For a given geometry, a near-zero stiffness is obtained if the initial distance 

between the magnets 0χ  is such that (i) the magnetic and elastic forces between the pair of 

electromagnets after activation are equal, and (ii) the derivative of the magnetic force, F
x

∂
∂

, at 

the equilibrium distance fχ  is equal to xK  (or *
xk K= ). These conditions can be mathematically 

expressed as: 
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where ( )F χ  represents the nonlinear magnetic force between the two electromagnets as a 

function of their distance. The set of Eq. (2) can be also presented geometrically, as shown in 

Figure A1. Here, the green line represents the purely-elastic (i.e. electromagnets inactive) load-

displacement response of the unit cell measured between the locations of the electromagnets. The 

magnetic force-distance response of the electromagnets for a given applied voltage is shown by 

the black curve. Zero-stiffness, albeit unstable, equilibrium is achieved in the unit cell through 

activation of the electromagnets, only if the initial gap between the two electromagnets 0χ  is 

designed to be equal to the x-intercept of a line of slope xK−  tangent to the magnetic force – 

distance curve, as shown in this figure. This unstable equilibrium state is marked by an asterisk 

in this figure. 

We experimentally measured the magnetic force-distance profile of the electromagnets 

used in this study. The pairs of electromagnets with an overall size of 34 mm x 18 mm (diameter x  height) and weight of 90 gr, rated for 12V DC, purchased from Uxcell. To measure the force-
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displacement response, the electromagnets were screwed into two steel rods, which were in turn 

clamped to the tensile grips of a universal testing machine, Instron 8862 frame. During the test, 

the electromagnets were first snapped together, with the voltage turned on, and the 

electromagnets were quasi-statically separated while the force displacement data was recorded. 

This procedure was repeated for different applied voltages, from 4V to 12V with an increment of 

2V. Figure 2b shows the attraction force between two electromagnets as a function of their 

distance for different applied voltages. By increasing the voltage, the force displacement 

response shifts to the upper right corner of the graph, resulting in higher attraction load for a 

given distance. The relation between the magnetic force, distance and voltage of the 

electromagnets can be approximated by: 

 
2

2(x a)
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+
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Equation (3) was curve-fitted into the experimental data to determine constant c and a. The slope 

of a line tangent to the force displacement curve is calculated by differentiation of Eq. (4): 
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Using Eq. (1,2 and 4), the geometry of the frame including the initial gap 0χ , the frame wall 

thickness t , length, l , angle θ , and out of plane thickness for a required overall material 

stiffness can be estimated from the values of applied voltage, unit cell dimensions, and 

constituent materials properties. 
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Figure A1. The magnetic force – distance curve (black) between the pair of electromagnets for 

an applied voltage of 12 V, and the tangent to this curve (green) used to obtain the final frame 

configuration (asterisk). 

For fabrication of the unit cell shown in Figure 2a, a frame with dimensions 50 mm=l , 

3.7 mmt = , 45θ = o , and depth of 15 mmw = was manufactured using FDM 3D printing. The 

base material was PLA, that has a Young’s Modulus of 1.9 GPaE = . For the described unit cell, 

a near-zero stiffness is resulted for the values of applied voltage and electromagnets initial 

distance of 6V and 0 1.2 mmχ = , respectively. 

Appendix 2 – Wave Propagation in Infinite Periodic Structures 

In this appendix, an implementation of the Bloch-wave theorem[52] for obtaining the 

band structure of a phononic crystal through finite elements method is explained. This approach 

has been previously used by a number of researchers to predict the wave propagation response 

[22, 58] and instability [55, 59] in periodic structures. Here, we summarize this method for 

completeness. Besides the current implementation, other commonly used approaches for 

calculation of band structure in phononic and photonic crystals include the plane-wave expansion 
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(PWE) [60, 61], the multiple-scattering theory (MST) [61, 62], and the finite-difference (FD) 

[63] methods. 

In infinite phononic crystals (including, 1D, 2D and 3D periodic structures), elastic waves do not 

propagate as plane waves, but they propagate as Bloch waves [52]. A Bloch wave can be 

described by the expression: 

,࢞ሺ࢛  ሻݐ ൌ  ఠ௧ሻ  (8)ି࢞·࢑ሻ݁௜ሺ࢞෥ሺ࢛

where k is the wave vector, inversely proportional in magnitude to the wavelength ߣ (݇ ൌ  ሻ is a periodic complex vector function with the same࢞෥ሺ࢛ ሻ, ߱ is the angular frequency, andߣ/ߨ2

spatial periodicity as the phononic crystal. Therefore, for any pair of periodically located lattice 

points at a distance R, we have: 

࢞෥ሺ࢛  ൅ ሻࡾ ൌ  ሻ  (9)࢞෥ሺ࢛

As x and x+R are periodically located, for a 2D lattice we can express ࡾ ൌ ݊ଵࢇ૚ ൅ ݊ଶࢇ૛, with 

1n  and 2n  arbitrary integers, and ࢇ૚and ࢇ૛ the primitive vectors of the lattice. In 2D, the 

reciprocal lattice primitive vectors are related to the lattice primitive vectors through the 

following relationships [1]: 
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where ˆ ×
×

1 2
3

1 2

a ae =
a a

. The set of all reciprocal lattice vectors (i.e., the set of vectors 

1 2m m= +1 2G b b , where 1m  and 2m  are any integers) denotes the entire set of wave vectors that 
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can satisfy the periodicity of the lattice. The set of wave vectors, k, required to completely 

describe the propagation of electromagnetic waves in two-dimensional photonic crystals is 

referred to as the Brillouin zone [1, 64]. The Brillouin zone for a 2D structure with cubic 

symmetry is shown in Figure 1a in the main manuscript.  

Bloch waves propagating through a periodic isotropic elastic medium must satisfy the 

Navier’s equation, namely: 

ሷ࢛ߩ  ൌ ሺߣ ൅ ሻસሺસߤ · ሻ࢛ ൅  (11)    ࢛ଶ׏ߤ

where ߣ and ߤ are the Lame’s elastic constants of the material. Inserting the Bloch solution (Eq. 

(6) in the Navier’s equation results in an eigenvalue problem that has non-trivial solutions only if  

the frequency ߱ and the wave vector k are in a particular relation, ߱ ൌ ߱ሺ࢑ሻ, called the 

dispersion relation. In an infinite lattice, the dispersion relation has infinitely many branches, 

called modes (corresponding to the eigenvalues of the problem). The set of frequency modes 

plotted along key directions in the Brillouin zone is called the band diagram. For a square 2D 

lattice (depicted in Figure 1) with cubic symmetry, the tip of the wave vectors k  should follow 

the ΓΧΜΓ path, representing the outlines of the irreducible Brillouin zone. For triangular lattice 

with the six folds symmetry, the Brillouin zone is hexagonal shaped (Figure 4) and the wave 

vector, k , follows the ΓKΜΓ path. 

This eigenvalue problem can be discretized and solved with the Finite Element method 

on a primitive cell. In the commercial FE software ABAQUS, this can be done using the 

Eigenfrequency solver. To implement the complex-valued Bloch boundary conditions (Eq. 6), 

two identical numerical parts with the same geometry and mesh were constructed, one 

representing the real part and the other the imaginary part of the solution. The equations for the 
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Bloch-periodic displacement boundary conditions can be also divided into two sets of uncoupled 

equations for the real and imaginary parts: 
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where i i

i i

B A
A B = −r x x  denotes the distance in the current/deformed configuration between the 

two nodes iA  and iB  periodically located on the boundaries of the unit cell. These boundary 

conditions can be easily assigned through the “Equation” subroutine in ABAQUS/Standard. 

For FE discretization of the phononic response, numerical models of the 2D crystals were 

meshed using 4 node bilinear plane stress quadrilateral elements with reduced integration and 

hourglass control (CPS3). To verify the experimental results, the base material of the frame was 

modeled as a linear elastic isotropic material with 31180 kg/mρ =  and 3.2 GPaE = , 

corresponding to cast Acrylic base material. The electromagnetic interactions between the pair of 

electromagnets within the unit cell were modeled through elastic axial connectors with negative 

stiffness which are extended between the parallel inside surfaces of the two attracting 

electromagnets. The negative stiffness connector is swept incrementally from xK−  to zero with 

increments of / 50xK , where xK is the (positive) stiffness of the frame measured between the 

connector ends. A negative stiffness connector with zero stiffness, represents a pair of “inactive” 

or non-interacting electromagnets, and a negative stiffness connector with stiffness xK−  

corresponds to a zero net stiffness albeit mechanically unstable frame.  

 


