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Recent advances in metasurfaces have shown the importance of controlling the bianisotropic re-
sponse of the constituent meta-atoms for maximum efficiency wavefront transformation. By carefully
designing the bianisotropic response of the metasurface, full control of the local transmission and
reflection properties is enabled, opening new design avenues for creating reciprocal metasurfaces.
Despite recent advances in the highly efficient transformation of both electromagnetic and acous-
tic plane waves, the importance of bianisotropic metasurfaces for transforming cylindrical waves is
still unexplored. Motivated by the possibility of arbitrarily controlling the angular momentum of
cylindrical waves, we develop a design methodology of a bianisotropic cylindrical metasurface that
enables transformation of cylindrical waves for both acoustic and electromagnetic waves with theo-
retically 100% power efficiency. This formalism is further validated in the acoustic scenario where
the first experimental demonstration of highly efficient angular momentum transformation is shown.

I. INTRODUCTION

Metamaterials have been serving as a primary ap-
proach to fully control the behavior of electromagnetic
waves, acoustic waves and elastic waves in recent years
[1, 2], and is at present a highly active research area.
Metasurfaces, as the 2D version of metamaterials, have
opened up unprecedented possibilities for controlling
waves at will, offering a solution of molding wave prop-
agation within a planar geometry [3, 4]. By engineer-
ing the local phase shift in the unit cells, various func-
tionalities have been achieved by metasurfaces, such as
focusing [5], wave redirection and retro-reflection [6–8],
enhanced absorption [9], cloaking [10], and holographic
rendering [11, 12], to name a few. However, the efficiency
of phase-gradient metasurfaces is fundamentally limited
by the impedance mismatch between incident field and
reflected/transmitted field, so that some of the energy is
scattered into unwanted higher order diffracted modes,
which hinders their applicability in various scenarios.

Recent advances have demonstrated that for electro-
magnetic and acoustic waves, full control of refraction
or reflection can be achieved by carefully controlling the
bianisotropy [13–19], also called Willis coupling in elasto-
dynamics [20], in the unit cells. By tuning both transmit-
ted and reflected phase profiles, one can not only control
the microscopic phase profile along the metasurface but
also achieve the overall macroscopic impedance match
between the incident and scattered fields. Such metasur-
faces, i.e., bianisotropic gradient metasurfaces, serve as
the second generation of metasurfaces for wavefront ma-
nipulation [21]. In recent studies of wave deflection with
both electromagnetic and acoustic bianisotropic gradient
metasurfaces, it has been shown that the transmission ef-
ficiency can be significantly improved, especially for large
deflection angles. Also, it has been demonstrated that
bianisotropic gradient metasurfaces offer scattering-free

wave manipulation even with a relatively coarse piecewise
approximation of the required impedance matrix profile
[19], which provides advantages in fabrication. However,
the concept of bianisotropic metasurfaces and systematic
design for scattering-free manipulation have only been
explored in flat interfaces. Cylindrical topologies are
among the most commonly used structures in electro-
magnetics, acoustics, and elastodynamics. The concept
and benefits of bianisotropic metasurfaces, however, have
not been extended to this field yet.

In analogy to anomalous refraction for flat metasur-
faces, one of the possibilities offered by cylindrical meta-
surfaces is the transformation between different cylindri-
cal waves. This transformation was achieved by locally
controlling the phase profile along the surface and con-
tribute to the generation of source illusion [22]. Gener-
ation of angular-momentum waves using a single meta-
surface layer designed with the generalized Snell’s law
(GSL) will not only introduce a large impedance mis-
match but will also require a fine discretization of the
surface which is not easily achievable by conventional cell
architectures. Therefore, generation of wave fields with a
large angular momentum still remains challenging. The
successful realization of scattering-free bianisotropic pla-
nar metasurfaces suggests that scattering-free cylindrical
metasurfaces might be possible.

There are numerous application possibilities offered by
angular momentum-controlling metasurfaces beyond the
source illusion mentioned above. Recent research has
also demonstrated the manipulation of beams for par-
ticle trapping [23, 24] and boosting communication effi-
ciency [25, 26] with acoustic angular momentum. Passive
generation of wave fields with non-zero angular momen-
tum is typically implemented by aperture design, leaky
wave antennas or metasurfaces based on GSL [22, 27–29]
for acoustic waves and inhomogeneous anisotropic media
[30], spatial light modulator or spiral phase plates [31, 32]
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for electromagnetic waves. However, the recent advances
in metasurfaces for wavefront manipulation have shown
that if only the transmission phase profile is controlled,
parasitic scattering will inevitably appear, which reduces
the efficiency, or even cause the structures fail to realize
the desired functionalities, especially for large angular
momentum.

In this paper, we present the first theoretical study,
simulation, and experimental demonstration of highly ef-
ficient angular momentum generation by cylindrical bian-
isotropic metasurfaces. In particular, the work is fo-
cused on metasurfaces for the manipulation of cylindri-
cal acoustic waves (see APPENDIX A for the electro-
magnetic counterpart). First, we theoretically analyze
the generation of angular momentum showing that bian-
isotropic response is required for wavefront transforma-
tion with 100% power efficiency. Next, we propose a pos-
sible realization of the required impedance matrix pro-
file. We take an example of the transformation between
a point source (zero angular momentum) and a field with
an angular momentum n = 12 and confirm in simulations
that the desired field distribution is indeed created with-
out any reflection and scattering. Finally, a realization
in acoustics is verified by experiments.

II. THEORETICAL FORMULATION

For acoustic waves in homogeneous media, the 2D wave
equation in the cylindrical coordinates is written as

∇2p =
1

r

∂

∂r

(
∂p

∂r

)
+

1

r2

∂2p

∂ϕ2
=

1

c20

∂2p

∂t2
, (1)

where p is the acoustic pressure and c0 is the sound speed
in the background medium. Just like plane waves in
Cartesian coordinates, Bessel-like spinning waves with
different angular momentum serve as the bases in cylin-
drical coordinates. In the general case, the solution to
this equation can be written as

p =
∑
n

[
anH

(1)
n (kr) + bnH

(2)
n (kr)

]
ejnϕejωt, (2)

where H
(1)
n denotes the Hankel function of the first kind

(waves converging to the center) and H
(2)
n denotes the

Hankel function of the second kind (waves diverging from
the center), index n represents the angular momentum,
an and bn are the amplitudes of the waves, and k =
ω/c0 is the wavenumber at the frequency of interest. The
assumed time dependence for the monochromatic wave
is ejωt, and it will be omitted throughout the paper for
brevity.

In this section we will discuss the theoretical require-
ments for a metasurface to produce perfect transforma-
tion between cylindrical waves with different angular mo-
menta, i.e. with different spinning characteristics, as it is
shown in Fig. 1. The term perfect is in the sense of wave-
front transformation with 100% power efficiency. The
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FIG. 1. Illustration of the desired performance of a meta-
surface to convert the inner field to a prescribed outer field
without parasitic scattering

derivation of the solution will be presented considering
acoustic waves, however, a similar formulation can be
used for electromagnetic waves (see APPENDIX A).

The formulation of the problem starts with the defini-
tion of the fields inside and outside the volume bounded
by the metasurface. Let us consider the field in Medium I
(inside the metasurface) and Medium II (outside the vol-
ume bounded by the metasurface) as divergent waves
with the angular momentum n1 and n2 that can be ex-
pressed as

pI,II = p1,2H
(2)
n1,2

(kr)ejn1,2ϕ, (3)

where p1,2 are the amplitudes for the incident and trans-
mitted waves. In general, both amplitudes are complex.
However, for arbitrarily given complex wave amplitudes,
we can always rotate the coordinate system and pick a
start time such that both complex amplitudes become
real. Such an operation will simplify the derivation but
wont affect the generality, and it wont affect the final de-
signed structure as well. It is important to mention that
we only consider a divergent wave inside the metasurface
because the objective of the metasurface is to completely
transform the incident cylindrical wave without reflec-
tions. The velocity vector can be calculated from the
pressure field ( #»v = j

ωρ∇p) as

#»v I,II =
p1,2

Z0

[
j∂rH

(2)
n1,2

(kr)ρ̂− n1,2

kr
H(2)
n1,2

(kr)ϕ̂
]
ejn1,2ϕ,

(4)
where Z0 = ρc0 is the characteristic impedance of air and
∂r represents the partial derivative with respect to r.

We assume that the metasurface is a cylindrical tube
whose axis is located at the origin, with inner radius and
outer radius being r1 and r2, respectively. For lossless
and scattering-free metasurfaces, the energy conservation
condition shall be met. Denoting the time-averaged in-
tensity vector as

#»

I =
1

2
Re {p #»v ∗} = Irρ̂+ Iϕϕ̂, (5)
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this condition can be expressed in terms of the radial
components of this vector at the two sides of the meta-
surface:

II
r =

p21
2Z0

[Jn1
(kr)∂rYn1

(kr)− Yn1
(kr)∂rJn1

(kr)] |r1(6)

III
r =

p22
2Z0

[Jn2
(kr)∂rYn2

(kr)− Yn2
(kr)∂rJn2

(kr)] |r2 ,(7)

where Jα and Yα represent the Bessel functions of the
first and second kind, respectively. These expressions
can be simplified as

II
r =

p2
1

πZ0

1

r1
(8)

III
r =

p2
2

πZ0

1

r2
. (9)

To ensure that all the energy of the incident wave is
carried away by the transmitted spinning wave, the nor-
mal component of the intensity vector crossing a line seg-
ment of the inner radius, S1 = r1dϕ, has to be equal to
the one crossing the corresponding line segment in the
other radius, S2 = r2dϕ. This condition can be written
as II

rS1 = III
r S2, which yields p2 = p1. If we define the

macroscopic transmission coefficient as

T =
pII(r2)

pI(r1)
=
H

(2)
n2 (kr2)

H
(2)
n1 (kr1)

ej(n2−n1)ϕ, (10)

it is possible to see that if |n2| > |n1|, the magnitude of
macroscopic transmission coefficient can be greater than

one when |H(2)
n2 (kr2)| > |H(2)

n1 (kr1)|, given the fact that
waves with larger angular momentum decay slower along
the radial direction. The feature of transmission coef-
ficient greater than one can never be realized by phase
engineering only. It is noted here that this condition is
analogous to the plane-wave case described in [18, 19].

The next step towards the realization of perfect trans-
formation between cylindrical waves is to determine the
required boundary conditions at both sides of metasur-
face. At the inner and outer boundaries of the meta-
surface, for each specific circumferential position, the
impedance matrix which models the metasurface is de-
fined as[

pI(r1, φ)
pII(r2, φ)

]
=

[
Z11 Z12

Z21 Z22

] [
S1n̂ · #»v I(r1, φ)
−S2n̂ · #»v II(r2, φ)

]
, (11)

where n̂ is the unit normal vector to the metasurface.
Such a system can be viewed as a two-port network,
which can be represented by an equivalent circuit. In
the most general linear, time-invariant, and reciprocal
case, the impedance matrix is symmetric, Z12 = Z21. If
we further assume that the system is lossless where the
equivalent circuit is composed of only capacitors and in-
ductors without resistors or other dissipative elements,
the resulting impedance matrix is purely imaginary, i.e.,
Zij = jXij .

For compactness, we denote

Cn1
= H(2)

n1
(kr1)ejn1φ (12)

Cn2
= H(2)

n2
(kr2)ejn2φ (13)

C ′n1
=

1

2
[H

(2)
n1−1(kr1)−H(2)

n1+1(kr1)]ejn1φ (14)

C ′n2
=

1

2
[H

(2)
n2−1(kr2)−H(2)

n2+1(kr2)]ejn2φ. (15)

Substituting the assumed pressure field and velocity field
for the incident wave and transmitted wave into Eq. (11)
and employing the recurrence relation for Hankel func-

tions, namely dH
(1,2)
α (x)/dx = [H

(1,2)
α−1 (x) +H

(1,2)
α+1 (x)]/2,

Eq. (11) can be rewritten in form of a system of two linear
equations:{

Z0Cn1
= −S1X11C

′
n1

+ S2X12C
′
n2

Z0Cn2
= −S1X12C

′
n1

+ S2X22C
′
n2

(16)

After some algebra, the components of the impedance
matrix can thus be calculated:

X11 =
Z0

S1

Im(Cn1)Re(C ′n2
)− Re(Cn1)Im(C ′n2

)

Im(C ′n2
)Re(C ′n1

)− Re(C ′n2
)Im(C ′n1

)
(17)

X22 =
Z0

S2

Im(Cn2
)Re(C ′n1

)− Re(Cn2
)Im(C ′n1

)

Im(C ′n2
)Re(C ′n1

)− Re(C ′n2
)Im(C ′n1

)
(18)

X12 = −Z0

S1

Im(C ′n2
)Re(Cn2

)− Re(C ′n2
)Im(Cn2

)

Im(C ′n2
)Re(C ′n1

)− Re(C ′n2
)Im(C ′n1

)
.(19)

For simplicity in the derivations, and to provide an-
other view point for the requirements, the required prop-
erties of the metasurface can also be expressed in terms
of the transfer matrix, which is defined by[

pI(r1, φ)
S1n̂ · #»v I(r1, φ)

]
=

[
M11 M12

M21 M22

] [
pII(r2, φ)

S2n̂ · #»v II(r2, φ)

]
(20)

Conversion from the impedance matrix to the transfer
matrix is given by

M =

[
Z11

Z21

Z11Z22−Z21Z12

Z21
1
Z21

Z22

Z21

]
(21)

which indicates that M11 and M22 are real, while M12

and M21 are imaginary. Explicit solution for the transfer
matrix are expressed as:

M11 =
Im(C ′n2

)Re(Cn1
)− Re(C ′n2

)Im(Cn1
)

Im(C ′n2
)Re(Cn2

)− Re(C ′n2
)Im(Cn2

)
(22)

M22 =
−S1

S2

Im(Cn2
)Re(C ′n1

)− Re(Cn2
)Im(C ′n1

)

Im(C ′n2
)Re(Cn2)− Re(C ′n2

)Im(Cn2)
(23)

M12 =
jZ0

S2

Im(Cn2
)Re(Cn1

)− Re(Cn2
)Im(Cn1

)

Im(C ′n2
)Re(Cn2)− Re(C ′n2

)Im(Cn2)
(24)

M21 =
jS1

Z0

Im(C ′n2
)Re(C ′n1

)− Re(C ′n2
)Im(C ′n1

)

Im(C ′n2
)Re(Cn2

)− Re(C ′n2
)Im(Cn2

)
.(25)

It can be easily checked that this matrix corresponds to
a reciprocal and lossless system.

Note that as long as |n1| 6= |n2|, we will always have
M11 6= M22, which leads to Z11 6= Z22 for a infinitely
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FIG. 2. Schematic representation of a multilayer system with
fully controllable asymmetric response.

thin surface (r1 = r2), which indicates carefully designed
asymmetric response shall be provided by the unit cell.
Discussion about metasurface with a finite thickness can
be found in APPENDIX B. This asymmetry is analo-
gous to the plane-wave case in the Cartesian coordinates,
meaning that controlling only the transmission phase
along the metasurface is not enough for full control of
the power flow. Instead, a bianisotropic metasurface with
precisely controlled asymmetric response is required.

III. DESIGN AND REALIZATION OF
CYLINDRICAL BIANISOTROPIC

METASURFACES

For the actual implementation of the metasurface de-
scribed in the previous section, there are several different
possible approaches.

A. Multilayer model

The analysis of a cylindrical metasurfaces with in-
finitesimal thickness capable of perfectly transforming
the scattered wavefronts shows that bianisotropic re-
sponse is needed. Such response can be obtained by con-
trolling the electromagnetic coupling for EM waves or
the Willis coupling in the acoustic counterpart. Looking
into the scattering characteristics of such particles, one
can see that the bianisotropic response is translated into
asymmetric reflection from the backward and forward di-
rections with same magnitude but different phases. Due
to the small size required for the implementation of bian-
isotropic gradient metasurfaces, an extended way to fully
control the asymmetric response of the particles is to cas-
cade multiple impedance layers.

1. Electromagnetic metasurfaces

For the electromagnetic case, one can consider a cas-
cade of metallic pattern separated by concentric dielectric
substrates [see Figure 2]. The patterned metallic sheets

can be modeled as shunt impedances with the following
transfer matrix

MZi =

[
1 0
Yi 1

]
, i = 1, 2, 3 (26)

where Yi = 1/Zi represents the effective impedance of the
metallic patterns. On the other hand the transmission
matrix of the of a wedge-shaped dielectric sector can be
expressed as

MTi =

[
Ai Bi
Ci Di

]
, i = 1, 2 (27)

The values of the matrix elements are functions of the
inner and outer radii and the dielectric permittivity εd
(see APPENDIX B for more information). Finally the
total transmission matrix can be calculated as

M =

[
M11 M12

M21 M22

]
= MZ1MT1MZ2MT2MZ3 (28)

After some algebra, we can obtain the required sheet
admittances (Y1, Y2, and Y3) as a function of the required
scattering properties (M11, M12, M21, and M22)

Y2 =
M12 −B1D2 −A1B2

B1B2
(29)

Y1 =
M22 − (D1D2 + C1B2 +D1B2Y2)

A1B2 +B1D2 +B1B2Z2
(30)

Y3 =
M11 − (B1C2 +A1A2 +B1A2Y2)

A1B2 +B1D2 +B1B2Y2
(31)

At microwave frequency the required sheet admit-
tances can be implemented by using metallic patterns
[33].

2. Acoustic models

For the acoustic scenario, the asymmetric response can
be obtained as cascade of three different membranes sepa-
rated by a certain distance. The response of a meta-atom
can be expressed in terms of the transmission matrices

M = MZ1MT1MZ2MT2MZ3 (32)

with

MZi =

[
1 Zi
0 1

]
, i = 1, 2, 3 (33)

and MTi, i = 1, 2 is the transfer matrix of a wedge-shaped
sector, which is a function of its inner and outer radius.
Detailed derivation of the explicit expression of MTi can
be found in APPENDIX B. Here for simplicity, let us
denote

MTi =

[
Ai Bi
Ci Di

]
, i = 1, 2 (34)
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FIG. 3. Unit cell consisting four resonators for the realization
of the impedance matrix in cylindrical coordinates.

Then the required impedances for the three membranes
can be calculated as

Z2 =
M21 − C1A2 −D1C2

C1C2
(35)

Z1 =
M11 − (A1A2 +B1C2 +A1C2Z2)

C1A2 +D1C2 + C1C2Z2
(36)

Z3 =
M22 − (C1B2 +D1D2 + C1D2Z2)

C1A2 +D1C2 + C1C2Z2
(37)

B. Channel with side-loaded resonators

By controlling the thickness and in-plane tension of the
membranes, one can, in principle, control the impedances
to satisfy Eqs. (17)-(19). However, the surface tension,
uniformity and durability for the membranes are ex-
tremely hard to control, and it is questionable whether
such configuration can be practically realized.

An alternative approach based on a straight channel
with four resonators was proposed for flat surfaces [19].
The design provides enough degrees of freedom for full
control over the bianisotropic response while reducing
the loss induced by resonances. Here, we propose the
four-resonator design in cylindrical coordinates for full
control over the bianisotropic response of the unit cells.
An examplary cell is shown in Fig. 3. In this structure
the width and the height of the neck wneck = 1.5 mm and
hneck = 1 mm are fixed for the four resonators. The wall
thickness between the resonators is 1 mm, and the width
of the cavities wcav = 11.5 mm is also fixed; the sector an-
gle of the wedge-shaped channel θc and the height of the
resonators wa, wb, wc, and wd can be varied to control
the overall impedance response; and the wall thickness
of the unit cell is fixed and will be defined by the fabri-
cation limitations. The walls between adjacent cells are
assumed to be hard so that the wave does not propagate
along the orthogonal direction inside the metasurface.
Therefore, all the cells in the bianisotropic metasurfaces
can be designed individually.

The transfer matrix of the proposed meta-atom topol-
ogy can be calculated as

M = MTLMH1MT1MH2MT2MH3MT3MH4MTR (38)

with MTL, MTR, and MT1,2,3 being the transfer func-
tions of transmission lines at the entrance, exit, and be-
tween adjacent resonators, as is shown in Fig. 3. MHi are

the transfer matrices of each individual resonator and are
expressed as

MHi =

[
1 0

1/ZHi 1

]
, i = 1, 2, 3, (39)

where ZHi are the acoustic impedances for each shunted
resonator. The detailed derivation of ZHi is given in [34].

The impedance matrix of an arbitrary meta-atom can
then be calculated by converting the transfer matrix us-
ing

Z =

[
M11

M21

M11M22−M21M12

M21
1

M21

M22

M21

]
. (40)

With the theoretical requirement for perfect wavefront
transformation and the versatility of the meta-atom for
full control over the bianisotropic response, the next step
is to decide the detailed physical dimensions of the meta-
atoms that form the metasurface. Since there are three
independent elements in the required impedance matrix
(X11, X12, X22) and five controlling parameters (θc, wa,
wb, wc and wd), there can be many combinations for
a meta-atom to realize the required impedance matrix.
To solve for a practical design within geometrical limi-
tations, a continuous genetic algorithm (GA) is adopted
for optimization of the design parameters, so that the
impedance matrix of the optimized structure matches the
theoretical requirements. In the algorithm, we minimize
the cost function, which is the relative error between the
impedance matrix for the unit cell and the theoretically
required impedance matrix at each point, defined as

cost =

√√√√∑
i,j

∣∣∣∣∣Zstr
ij − Z

req
ij

Zreq
ij

∣∣∣∣∣
2

(41)

where “str” stands for impedance matrix of the structure
and “req” stands for the theoretical requirements. i, j =
1, 2 denote each element in the matrix.

We have designed a metasurface to transform a
monopole source (n1 = 0) located at the center to a
spinning field with the angular momentum of n2 = 12.
In this case, r1 = 15 cm, r2 = 20 cm, and one period is
represented by 6 meta-atoms. In this case, each unit cell
occupies a sector of ∆φ = π/36, therefore, S1 = ∆φr1

and S2 = ∆φr2. We swept the circumferential positions
with a step of 0.1 degrees, and run the GA optimization
50 times at each point to search for the best combination
with the lowest relative error.

Although theoretical calculation offers a fast and close
approximation of the meta-atom behavior, it will also
introduce some error due to truncation of the infinite
series and the straight channel assumption. On the
other hand, extracting the impedance using commercial
simulations (for example, COMSOL Multiphysics) offers
slow but more precise characterization. Therefore, based
on the structure obtained from theoretical optimization,
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FIG. 4. Theoretically determined and optimized impedances
and the simulated fields. (a) Comparison between theoretical
requirements and the achieved values using GA optimization.
(b) The real part of the simulated acoustic field using real
structures. The inset shows the pressure amplitude near the
metasurface. (c) The field generated by GSL based metasur-
face using ideal unit cells as a comparison.

we further optimize it locally using genetic algorithm
by slightly perturbing the structure dimensions within
±1 mm. The method used for extracting the impedance
matrix from simulation was adopted from the standard
“4-microphone” method.

The method uses four microphones to measure the
pressure at two fixed points on both sides of the tested
structure under two different boundary conditions, and
the properties can be calculated accordingly. Based on
the same idea, we developed a method to extract the
structure properties in cylindrical coordinates. Detailed
derivation of the method is summarized in APPENDIX
D.

The theoretical requirement for the desired metasur-
face and the achieved values from the two-step optimiza-
tion is shown in Fig. 4(a). Detailed dimensions of the
meta-atoms and their relative errors can be found in Ta-
ble I. We can see that the required impedance is accu-
rately realized by the optimized meta-atoms. Simulation
of the obtained structure was performed in COMSOL

TABLE I. Design parameters of the meta-atoms

Cell cost(%) θc (mm) wa (mm) wb (mm) wc (mm) wd (mm)
1 2.08 0.5699 6.8 8.8 8.6 6.9
2 0.66 0.5655 7.0 7.0 8.3 6.4
3 0.16 0.6997 8.4 7.9 2.5 5.2
4 0.55 0.7002 7.4 8.4 0.9 4.3
5 0.35 1.0221 4.1 8.1 6.7 3.0
6 0.84 1.3931 8.7 2.1 0.5 3.0

Multiphysics with the pressure acoustics module. The
walls of the unit cells are set to be hard due to the large
impedance contrast in the implementation. The back-
ground medium is air with density 1.21 kg/m3 and sound
speed 343 m/s. The incident pressure amplitude is 1 Pa
at r = 2 cm. The outer edge of the simulated region is
connected to a perfectly matched layer. The simulated
pressure field and the pressure amplitude are shown in
Fig. 4(b). We can see that the monopole wavefront is
nearly perfectly converted to a field with the angular
momentum of 12 without parasitic reflection and scat-
tering. Remarkably, from the pressure amplitude field
we can see that the macroscopic transmission coefficient
|T | > 1. This means that the pressure on the trans-
mission side is larger than the incident side, which is in
agreement with the theoretical analysis. The correspond-
ing reference GSL metasurface formed by ideal unit cells
with the same size and the same number of cells period is
shown in Fig. 4(c) as a comparison. Here the ideal GSL
unit cells are defined as the unit cells whose transmission
coefficient has the amplitude 1 and precisely controlled
phase, i.e., the scattering matrix for an ideal unit cell is
expressed as:

S =

[
0 ejΦt

ejΦt 0

]
(42)

where Φt = nφ denotes the desired transmission phase
along the metasurface. By converting the scattering ma-
trix into transfer matrix (APPENDIX. C), the multilayer
model in Sec. III A can be applied to realize such an ideal
scattering property in simulation. From Fig. 4(c) we can
see that there is strong reflection and lots of the trans-
mitted energy is scattered to the unwanted modes and
the overall wave pattern is corrupted.

IV. EXPERIMENTAL VERIFICATION.

The theory and simulations are then verified with ex-
periments. We choose the same scenario discussed in the
previous section. The experimental setup is shown in
Fig. 5(a). The sample was fabricated by Selective Laser
Sintering (SLS) 3D-printing. The material is nylon with
a density of 950 kg/m3 and sound speed of 1338 m/s, so
that the walls can be regarded as acoustically rigid due to
the large impedance contrast with air. The printed sam-
ple has the inner radius of 150 mm and the outer radius
of 200 mm, and the height of the sample is 41 mm to fit in
the 2D waveguide. The overall size of the 2D waveguide
is 1.2 m by 1.2 m. The monopole source was provided
by a 1-inch speaker located at the center, which sends a
Gaussian modulated pulse centered at 3000 Hz. At each
scanned point, the transmitted pulse was recorded by
averaging the measurement 10 times to eliminate noise.
The pulse is then time-gated to eliminate reflections from
the boundaries. Then the complex field at each point is
calculated by performing Fourier transform of the time-
gated signal. The whole field was scanned by moving
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the microphone with a step of 1 cm. Since the overall
size of the scanning system is limited, a quarter of the
whole field is scanned, as shown in Fig. 5(a), and the
measured data is then mapped to other regions due to
field symmetry.

The real part of the scanned field and the phase of
the field is plotted in Fig 5(b) and Fig. 5(c), respec-
tively. From the experimental results, we can see that the
fabricated metasurface creates a field with much lower
unwanted scattering compared with an ideal GSL-based
metasurface shown in Fig. 5(d). The small discrepancies
between simulation and experiment are due to fabrication
tolerance and the small difference between the assumed
and actual properties of air. In particular, the sound
speed was 344 m/s in our lab during the measurement
window, while we assumed 343 m/s in the simulation,
which will cause the working frequency to increase by
about 8 Hz. The small misalignment in the vertical and
horizontal directions is caused by a small misalignment
of the sample and the scanning stage. To quantitatively
characterize the results, we extracted the coefficients of
contributing modes by taking the measurements on a
r = 22 cm circle centered at the source and performing a
Fourier transform of the fields to extract the amplitudes
of different modes. The power of each mode is calculated
and then normalized by the total power. The power dis-
tribution over the modes of n = −30 to n = 30 is plot-
ted in Fig. 5(d). For comparison, the same analysis is
performed for the simulation of the bianisotropic meta-
surface and the ideal GSL-based metasurface. We can
clearly see that the GSL-based metasurface, even with
the perfectly designed cells of full transmission and pre-
cise control of the transmitted phase, produces a large
component of n = −12 mode, and only 70% of the trans-
mitted energy is in the desired mode. On the other hand,
for the bianisotropic designs, the unwanted scattering is
greatly suppressed, showing 99% and 92% of the trans-
mitted energy in the desired mode n = 12 in simulation
and experiment, respectively. The experimental results
show good agreement with the simulation, demonstrating
the possibility of near perfect transformation of acoustic
wavefronts.

V. DISCUSSION

In this paper, we have introduced a multi-physics de-
sign method for creation of acoustic or electromagnetic
bianisotropic metasurfaces of cylindrical shape for per-
fect generation of waves with arbitrary angular momenta.
We first defined theoretically the conditions and require-
ments, and pointed out that controlling the local phase
shift in transmission alone cannot achieve such trans-
formations. Instead, full control over the reflection and
transmission coefficient in both directions through bian-
isotropy is required. Then we proposed possible realiza-
tions for acoustic waves, and verified them with simu-
lations, showing that the proposed metasurface nearly
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FIG. 5. Experimental setup and results. (a) A photo of the
experimental setup. The field is scanned by moving the micro-
phone in the green region. (b) The real part of the measured
pressure field. (c) The phase of the scanned field. We can
clearly see that the wavefront is nearly perfectly transformed
to the field with the angular momentum n = 12. (d) The
comparison among the bianisotropic metasurface in simula-
tion and experiment, and the ideal GSL-based metasurface in
the simulation. In the experiment, 92% of the transmitted
energy is concentrated in the desired mode.

perfectly transforms a monopole source into a spinning
wave field with the angular momentum of 12, which is be-
yond the ability of conventional GSL-based metasurfaces.
Then we proposed a systematic and practical way of cre-
ating cylindrical bianisotropic acoustic metasurfaces and
verified it with experiments. The experimental results
show excellent agreement with simulations, with 92% of
the transmitted energy concentrated in the desired mode,
whereas with the use of an ideal GSL-based metasur-
face, 30% of the transmitted energy is scattered to other
modes. Here we would like to note that the efficiency of
the conventional GSL-based design is even lower because
the simulation shows that 10% of the energy is reflected
indicating that the ideal efficiency can reach only 63%,
while our design is free of reflections.

The use of waves with non-zero angular momenta
has shown great potential in high-speed communications,
source illusion and particle manipulation in the fields of
optics, electromagnetics, and acoustics. However, one
obstacle is the efficiency of generating angular momen-
tum, especially when the target angular momentum is
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large. In this paper, we have proposed and demonstrated
the realization of theoretically perfect generation of angu-
lar momenta with a bianisotropic metasurface. We also
hope that such metasurfaces can be explored in optics to
enhance the efficiency of generating orbital angular mo-
mentum beams for high-speed optical communications
and other applications.

Here we would like to stress that the proposed de-
sign strategy is not only valid for generation of angular
momentum beams but for the arbitrary manipulation of
wavefronts, both for acoustic and electromagnetic waves.
For example, by designing the bianisotropic impedance
matrix profile, one may create a multi-polar sources from
a single excitation within a limited space; the proposed
metasurface may also be applied as an interface between
two media to enhance energy transfer; the metasurface
may also be applied in topological insulators to either
act as a spinning source to excite some certain modes,
or even provide the “pseudo spin” for topological insula-
tors in airborne systems. We believe that the proposed
bianisotropic metasurface concepts can serve as a new
approach to designing highly efficient metasurfaces.
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APPENDIX A: ELECTROMAGNETIC
FORMULATION OF THE CYLINDRICAL

BIANISOTROPIC METASURFACE

Medium I

Medium II

FIG. A1. Schematic representation electromagnetic system
for TE-polarization.

Using a similar analysis to that the proposed in the
main text, metasurfaces for perfect cylindrical transfor-
mations of electromagnetic wavefronts can be designed.
For example, let us consider the TE-polarization case

where electric field along z-direction, E = Ez ẑ. The
wave equation for TE-polarization can be written as

1

r

∂

∂r

(
∂Ez
∂r

)
+

1

r2

∂2Ez
∂ϕ2

=
1

c20

∂2Ez
∂t2

. (A1)

It is clear that this wave equation has the same form
as the acoustic counterpart and consequently the solu-
tion can also be expressed as a combination of cylindrical

waves emerging [H
(1)
n (kr)] and diverging [H

(2)
n (kr)] from

the origin of coordinates with a certain angular momen-
tum n.

We start by defining a diverging wave with angular
momentum, n1, in the Medium I that can be written as

EI
z = E0H

(2)
n1 (kr)ejn1ϕ, (A2)

where E0 is the amplitude of the wave. It is easy to ob-
tain the expression of the corresponding magnetic field by
applying Maxwell equation (∇×E = −jωµ0H). Finally,
the magnetic field reads

HI = −E0

Z0

[n1

kr
H

(2)
n1 (kr)r̂ + j∂rH

(2)
n1 (kr)ϕ̂

]
ejn1ϕ, (A3)

with Z0 =
√
µ0/ε0 being the wave impedance in the back-

ground field. Following the same procedure, the field in
Medium II will be defined as

EII
z = EtH

(2)
n2 (kr)ejn2ϕ, (A4)

where T is the transmission coefficient and n2 is the an-
gular momentum of the fields outside the metasurface.
The expressions for the magnetic field in the Medium II
is

HII =
Et

Z0

[n2

kr
H

(2)
n2 (kr)r̂ + j∂rH

(2)
n2 (kr)ϕ̂

]
ejn2ϕ. (A5)

𝑆1𝑃𝑟
I

𝑆2𝑃𝑟
II

𝑆3𝑃𝑟
II

FIG. A2. Schematic representation of the Poynting vector dis-
tribution inside and outside the metasurface. Green patterns
represent the wavefronts.

In order to realize cylindrical transformations with
100% power efficiency, it is necessary to ensure the ful-
fillment of the power conservation between the waves
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inside and outside the metasurface. The Poynting vec-

tor of the cylindrical waves can be calculated as ~P =
1
2Re

{
~E × ~H∗

}
= Pr r̂ + Pϕϕ̂, where

Pr =
E2

0

πZ0

1

r
(A6)

and

Pϕ =
E2

0

πZ0

n

kr
Jn(kr). (A7)

The angular component of the Poynting vector, Pϕ, rep-
resents the circumferential contour around the origin of
coordinates (see Figure A2). Due to the inherent period-
icity of the system in the angular direction, this compo-
nent do not contribute to the global power balance. If we
consider that the internal and external boundaries of the
metasurface are located at r1 and r2, the condition for
ensuring the power balance reads S1P

I
r |r1 = S2P

II
r |r2 . Fi-

nally, the amplitude of transmitted waves should satisfy
Et = E0.

Once the desired waves are fully defined, one has to
relate the fields at both sides of the metasurface as follows

[
EI(r1, ϕ)
EII(r2, ϕ)

]
=

[
Z11 Z12

Z12 Z22

] [
S1n̂×HI(r1, ϕ)
−S2n̂×HII(r1, ϕ)

]
(A8)

where n̂ is the normal vector to the metasurface and
the matrix [Z] defines the electromagnetic properties of
the metasurface. It is important to notice that the off-
diagonal terms of the impedance matrix are forced to be
equal, meaning that we will inspect only reciprocal meta-
surfaces. In addition to the reciprocal condition, we will
impose the lossless behavior by considering all the ele-
ment of the impedance matrix to be purely imaginary,
i.e., Zij = jXij . By putting all these constraints into
Eq. (A8), the equation can be found to be exactly the
same as Eq. (16). The solution to the impedance com-
ponents are therefore the same as Eqs. (17-19).

APPENDIX B: TRANSFER MATRIX OF A
SECTOR OF WEDGE-SHAPED MATERIAL

Here we consider an acoustic notation as an example,
for TE-polarized EM waves, the results are equivalent.
For waves propagating in isotropic and homogeneous ma-
terial, the fields generated by a monopole source located
at the center can be written as

p = XH
(2)
0 (kr) + Y H

(1)
0 (kr) (B1)

v = − 1

2jZ0
{X[H

(2)
−1 (kr)−H(2)

1 (kr)]

+ Y [H
(1)
−1 (kr)−H(1)

1 (kr)]}
(B2)

The transfer matrix is defined as[
pi
S1vi

]
=

[
M11 M12

M21 M22

] [
po

S2vo

]
. (B3)

where the subscripts denote the fields at the input port
r1 and output port r2. To calculate these values, we first
impose that vo = 0, so that M11 = pi/po and M21 =
S1vi/po. This condition is satisfied when

Y

X
= α = −

H
(2)
−1 (kr2)−H(2)

1 (kr2)

H
(1)
−1 (kr2)−H(1)

1 (kr2)
(B4)

Then M11 and M21 can be calculated as

M11 =
H

(2)
0 (kr1) + αH

(1)
0 (kr1)

H
(2)
0 (kr2) + αH

(1)
0 (kr2)

(B5)

M21 = − S1

2jZ0
[
H

(2)
−1 (kr1)−H(2)

1 (kr1)

H
(2)
0 (kr2) + αH

(1)
0 (kr2)

+ α
H

(1)
−1 (kr1)−H(1)

1 (kr1)

H
(2)
0 (kr2) + αH

(1)
0 (kr2)

]

(B6)

Similarly, we can impose that po = 0, so that M12 =
pi/S2vo and M22 = S1vi/S2vo. This condition is satisfied
when

Y

X
= β = −H

(2)
0 (kr2)

H
(1)
0 (kr2)

(B7)

Then M12 and M22 can be calculated as

M12 = −2jZ0

S2

H
(2)
0 (kr1) + βH

(1)
0 (kr1)

H
(2)
−1 (kr2)−H(2)

1 (kr2) + β[H
(1)
−1 (kr2)−H(1)

1 (kr2)]
(B8)

M22 =
S1

S2

H
(2)
−1 (kr1)−H(2)

1 (kr1) + β[H
(1)
−1 (kr1)−H(1)

1 (kr1)]

H
(2)
−1 (kr2)−H(2)

1 (kr2) + β[H
(1)
−1 (kr2)−H(1)

1 (kr2)]
(B9)

Hence the transfer matrices can be calculated by as- signing the corresponding input and output positions.
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The impedance matrix can be calculated with Eq. (40).
For a given finite-thickness metasurface with fixed r1

and r2, there are only two variables: k and Z0 (essentially
ρ and κ for acoustics and ε and µ for EM waves). How-
ever, the derived requirement for the metasurface shows
3 components to control (Z11, Z12, and Z22). Therefore,
conventional GSL-based metasurfaces by phase shifting
with high index media cannot fulfill the requirements,
even with ideally matched characteristic impedance. To
realize the required impedance matrix profile, we need
another degree of freedom, which is the bianisotropy, or
Willis coupling within the unit cells.

APPENDIX C: CONVERSION FROM
SCATTERING MATRIX TO TRANSFER

MATRIX

The schematics is shown in Fig.D1 . The transfer ma-
trix of an arbitrary structure in a wedge-shaped waveg-

uide is defined in Eq. (B3), and the scattering matrix is
defined as

[
B
C

]
=

[
S11 S12

S21 S22

] [
A
D

]
. (C1)

Calculation strategy of the transfer matrix is the same
as in Appendix B, where we first set vo = 0 to obtain
M11 and M21. In this case we have D

C = α and

A

C
=

1− S22α

S21
(C2)

B

C
=

1− S22α

S21
S11 + S12α (C3)

where α is defined in Eq. (B4). Then M11 and M21 can
be expressed in terms of S matrix:

M11 =
(1− S22α)H

(2)
0 (kr1) + (S11 − S11S22α+ S21S12α)H

(1)
0 (kr1)

S21H
(2)
0 (kr2) + S21αH

(1)
0 (kr2)

(C4)

M21 = − S1

2jZ0

(1− S22α)[H
(2)
−1 (kr1)−H(2)

1 (kr1)] + (S11 − S11S22α+ S21S12α)[H
(1)
−1 (kr1)−H(1)

1 (kr1)]

S21H
(2)
0 (kr2) + S21αH

(1)
0 (kr2)

(C5)

Similarly, we can impose that po = 0, in which case

A

C
=

1− S22β

S21
(C6)

B

C
=

1− S22β

S21
S11 + S12β (C7)

where β is defined in Eq. (B7).so that M12 = pi/S2vo
and M22 = S1vi/S2vo can be expressed as

M12 = −2jZ0

S2

(1− S22β)H
(2)
0 (kr1) + (S11 − S11S22β + S21S12β)H

(1)
0 (kr1)

S21[H
(2)
−1 (kr2)−H(2)

1 (kr2)] + S21β[H
(1)
−1 (kr2)−H(1)

1 (kr2)]
(C8)

M22 =
S1

S2

(1− S22β)[H
(2)
−1 (kr1)−H(2)

1 (kr1)] + (S11 − S11S22β + S21S12β)[H
(1)
−1 (kr1)−H(1)

1 (kr1)]

S21[H
(2)
−1 (kr2)−H(2)

1 (kr2)] + S21β[H
(1)
−1 (kr2)−H(1)

1 (kr2)]
(C9)

APPENDIX D: CALCULATION OF THE
MATRICES IN THE SIMULATION

For the ease of implementation, the method we used to
retrieve the impedance matrix in COMSOL is inspired by
the standard 4-microphone method for acoustic experi-
ments with impedance tubes, whose setups are shown in
Fig. D1. The waves in the upstream and downstream

can be written as

pup = AH
(2)
0 (kr) +BH

(1)
0 (kr) (D1)

pdown = CH
(2)
0 (kr) +DH

(1)
0 (kr) (D2)

The positions of 4 microphones are x1, x2, x3, x4, re-
spectively. By performing two measurements with dif-
ferent boundary conditions at the end of the tube, we
can obtain four independent equations for the determi-
nation of the four transfer matrix elements. Two differ-
ent boundaries we used at the end of the tube are plane
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FIG. D1. Setups for the measurement of samples in a wedge
shaped waveguide.

wave radiation (condition #1) and hard wall (condition
#2). The pressure detected by these microphones under

these two boundary conditions are noted as p
(n)
m where

m denotes the number of the microphone and n denotes
the number of the boundary condition. They satisfy the
condition:[

H
(2)
0 (kx1) H

(1)
0 (kx1)

H
(2)
0 (kx2) H

(1)
0 (kx2)

] [
A(1) A(2)

B(1) B(2)

]
=

[
p

(1)
1 p

(2)
1

p
(1)
2 p

(2)
2

]
(D3)

Similarly,

[
H

(2)
0 (kx3) H

(1)
0 (kx3)

H
(2)
0 (kx4) H

(1)
0 (kx4)

] [
C(1) C(2)

D(1) D(2)

]
=

[
p

(1)
3 p

(2)
3

p
(1)
4 p

(2)
4

]
(D4)

With the measurement of p
(n)
m under two different con-

ditions, all the ABCD in the matrices can be calculated.
Therefore, the scattering matrix can be calculated as

S =

[
B(1) B(2)

C(1) C(2)

] [
A(1) A(2)

D(1) D(2)

]−1

(D5)

If the inner radius and outer radius of the metasurface is
r1 and r2, then the pressure and volume velocity at both
sides can be written as:

[
p

(1)
i p

(2)
i

S1v
(1)
i S1v

(2)
i

]
=

[
H

(2)
0 (kr1) H

(1)
0 (kr1)

− S1

2jZ0
[H

(2)
−1 (kr1)−H(2)

1 (kr1)] − S1

2jZ0
[H

(1)
−1 (kr1)−H(1)

1 (kr1)]

] [
A(1) A(2)

B(1) B(2)

]
(D6)[

p
(1)
o p

(2)
o

S2v
(1)
o S2v

(2)
o

]
=

[
H

(2)
0 (kr2) H

(1)
0 (kr2)

− S2

2jZ0
[H

(2)
−1 (kr2)−H(2)

1 (kr2)] − S2

2jZ0
[H

(1)
−1 (kr2)−H(1)

1 (kr2)]

] [
C(1) C(2)

D(1) D(2)

]
(D7)

The transfer matrix of the measured unit cell can thus
be calculated as

T =

[
p

(1)
o p

(2)
o

S2v
(1)
o S2v

(2)
o

][
p

(1)
i p

(2)
i

S1v
(1)
i S1v

(2)
i

]−1

(D8)

Hence the impedance matrix can is calculated as

Z =

[
− T22

T21 − 1
T21

T12T21−T11T22

T21 − T11

T21

]
(D9)
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